Где применяются индуктивные датчики?
На сегодняшний день практически все технологические процессы автоматизированы. Но, сама система управления является многоуровневой и зависит от отрасли промышленности и поставленной задачи. Для осуществления управления этими системами используются специальные устройства – индуктивный датчик. Такое устройство не подвержено влиянию окружающей среды и не содержит подвижных деталей.
Предназначение индуктивных датчиков – контроль за предметами, которые созданы из магнито- или электропроводных материалов, то есть датчик наблюдает за металлическими объектами. Датчики различаются отличаются друг от друга характеристиками и выходами.
Широко применяются датчики в системах транспортеров, упаковочных машинах, сборочных линиях, в составе запорной арматуры и станков, для контроля мелких и крупных деталей оборудования для промышленности (зубцов шестеренок, металлических флажков, штампов), объектов производства (метизов, листов металла, крышек) и т.д. Индукционные датчики подключаются к импульсным счетчикам, и в результате получается простое, но эффективное считывающее устройство.
- не изнашивается механически;
- нет отказов в работе, дребезжания, ложного срабатывания, как это часто бывает при плохом состоянии контактов;
- устойчивость к механическим повреждениям;
- возможность высокой частоты переключений – до 3 тысяч Hz.
При подборе индукционного датчика следует обращать внимание на следующие особенности:
- В основном датчик имеет форму цилиндра, но всей длине которой нарезана резьба. Материал для датчика – нержавеющая сталь, прикрепляется конструкция посредством гаек, накручивающихся на корпус.
- Расстояние, на котором система срабатывает. Этот показатель зависит от встроенного генератора, влияние на который оказывают вихревые токи предмета, подвергающемуся измерению.
- Типу выхода: дискретный и аналоговый.
- Напряжение тока: переменное или постоянное.
- Монтаж: выступающий и скрытый.
- Присоединение осуществляется при помощи трех- или двухпроводного кабеля, но производится подключение и по коннекторному типу.
Индуктивные датчики удобны в использовании, занимают минимум места, просты в монтаже.
Индуктивные датчики. Разновидности, принцип работы
В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.
Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.
Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.
Виды датчиков
Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.
Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.
Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.
Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.
Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.
Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”
Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.
Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.
Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.
Датчики могут называться также сенсорами или инициаторами.
Пока хватит, перейдём к теме статьи.
Принцип работы индуктивного датчика
Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.
СамЭлектрик.ру в социальных сетях:
Подписывайтесь! Там тоже интересно!
В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.
Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура
И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.
Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды
Большинство картинок в статье – не мои, в конце можно будет скачать источники.
Применение индуктивного датчика
Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.
Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.
Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.
Характеристики индуктивных датчиков
Чем отличаются датчики.
Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.
Конструкция, вид корпуса
Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.
Диаметр цилиндрического датчика
Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.
Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.
Расстояние переключения (рабочий зазор)
Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.
Количество проводов для подключения
Подбираемся к схемотехнике.
2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.
2-проводный датчик. Схема включения
Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.
3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.
4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.
Виды выходов датчиков по полярности
У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:
Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.
Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.
Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.
Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.
Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.
Виды датчиков по состоянию выхода (НЗ и НО)
Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).
Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.
То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:
- PNP NO
- PNP NC
- NPN NO
- NPN NC
Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.
Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!
Положительная и отрицательная логика работы
Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).
ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.
ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.
ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.
Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.
Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.
Скачать инструкции и руководства на некоторые типы индуктивных датчиков:
• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 2213 раз./
• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2836 раз./
• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 2244 раз./
• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2702 раз./
• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 4335 раз./
Индуктивный датчик: принцип работы, схемы подключения, характеристики
В современных станках и высокоточном оборудовании, где важно контролировать положение конструктивных элементов устанавливается индуктивный датчик. Для чего применяется данное устройство, какие разновидности и способы подключения существуют, как оно работает, мы рассмотрим в данной статье.
Назначение
Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.
Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.
Устройство
Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):
Рис. 1. Устройство индуктивного датчика
Как видите на рисунке, в его состав входят:
- магнитопровод или ярмо (1) – предназначен для передачи электромагнитного поля от генератора в зону чувствительности;
- катушка индуктивности (2) – создает переменное электромагнитное поле при протекании электрического тока по виткам;
- объект измерения (3) – металлический якорь, вводимый или перемещаемый в области чувствительности, неметаллические предметы не способные влиять на состояние электромагнитного поля, поэтому они не используются в качестве детектора;
- зазор между объектом измерения и основным магнитопроводом (4) – обеспечивает меру взаимодействия в качестве магнитного диэлектрика, в зависимости от модели датчика и способа перемещения может оставаться неизменным или колебаться в заданном диапазоне;
- генератор (5) — предназначен для генерации электрического напряжения заданной частоты, которое будет создавать переменное магнитное поле в заданной области.
Принцип работы
Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.
Рис. 2. Магнитное поле в состоянии покоя
При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.
Рис. 3. Магнитное поле при введении объекта срабатывания
При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.
Расстояние срабатывания и объект воздействия
В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.
Рис. 4. Область и объект срабатывания
Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.
Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:
Рис. 5. Зависимость расстояния срабатывания от материала
На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:
- замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
- размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
- переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.
По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.
Рис. 6. Одинарый и дифференциальный датчик
По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.
Характеристики (параметры)
При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:
- напряжение питания – определяет допустимый минимум и максимум разности потенциалов, при которой индуктивный датчик нормально работает;
- минимальный ток срабатывания – наименьшее значение нагрузки, при котором произойдет переключение;
- расстояние срабатывания – допустимый промежуток удаления, при котором будет происходить коммутация;
- индуктивное и магнитное сопротивление – определяет проводимость электрического тока и линий магнитной индукции для конкретной модели;
- поправочный коэффициент – применяется для внесения поправки, в зависимости от дополнительных факторов;
- частота переключений – максимально возможное количество раз коммутации в течении секунды;
- габаритные размеры и способ установки.
Примеры подключения на схемах
Конструктивные особенности индуктивных датчиков определяют количество их выводов и способ дальнейшего подключения. В виду того, что существует четыре наиболее распространенных типа, рассмотрим примеры схем их подключения.
Двухпроводных датчиков индуктивности
Рис. 7. Схема подключения двухпроводного датчика
Как видите на схеме выше, двухпроводные индуктивные датчики применяются исключительно для непосредственной коммутации нагрузки: контакторов, пускателей, катушек реле в качестве электронного выключателя. Это наиболее простая схема и модель, но работа конкретной модели сильно зависит от параметров подключаемой нагрузки.
Трехпроводных датчиков индуктивности
Рис. 8. Схема подключения трехпроводного датчика индуктивности
В трехпроводной схеме присутствует два вывода на питание самого индуктивного датчика, а третий, предназначен для подключения нагрузки к нему. По способу коммутации их подразделяют на PNP и NPN, первый вид коммутирует положительный вывод, откуда и происходит название, второй тип коммутирует отрицательный вывод.
Четырехпроводных датчиков индуктивности
Рис. 9. Схема подключения четырехпроводного датчика индуктивности
По аналогии с предыдущим датчиком, четырехпроводный также использует два вывода 1 и 3 для получения питания. А вот 2 и 4 вывод используется для подключения нагрузки с той разницей, что коммутация для обеих нагрузок будет противоположной.
Пятипроводных датчиков индуктивности
Рис. 10. Схема подключения пятипроводного датчика индуктивности
В пятипроводном индуктивном датчике два вывода применяются для подачи напряжения на чувствительный элемент датчика, в рассматриваемом примере это 1 и 3. Два вывода 2 и 4 подают питание на разные нагрузки, а управляющий вывод 5 позволяет выбирать различные режимы работы и менять логику переключений.
Преимущества и недостатки
В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:
- высокая надежность за счет простой конструкции и отсутствия подвижных контактов;
- может функционировать как от бытовой сети, так и от специальных генераторов, преобразователей и прочих источников питания;
- способны обеспечивать значительную мощность на выходе — порядка нескольких десятков Ватт;
- характеризуются высокой чувствительностью в зоне измерения.
Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.
Физические основы индуктивных преобразователей. Область их применения.
Индуктивность – это физическая величина, характеризующая магнитные свойства электрической цепи.Ток, текущий в проводящем контуре создает в окружающем пространстве магнитное поле, причем магнитный поток Ф, пронизывающий контур, прямо пропорционален силе тока I: Коэффициент L называется индуктивностью контура, ограничивающего поверхность, через который проходит поток Ф, или коэффициентом самоиндукции этого контура. Величина L зависит от размеров и геометрической формы контура, от магнитной проницаемости проводников, образующих цепь, и от свойств окружающей среды. Для создания большой индуктивности проводник свертывают в спираль, называемую катушкой индуктивности, и внутри устанавливают сердечник – магнитопровод из ферромагнитных материалов. Магнитный поток через такой контур определится как где B – магнитная индукция внутри контура; S – площадь поперечного сечения магнитной цепи; N – число витков. тогда то есть где l – длина катушки; μ – магнитная проницаемость.
Из приведенного уравнения следует, что изменения индуктивности можно достичь изменением длины l, поперечного сечения S, или магнитной проницаемости μ.При прохождении переменного тока в цепи возникает ЭДС самоиндукции, величина которой зависит от значения индуктивности цепи. Направление этой ЭДС таково, что её действие препятствует изменению величины тока, то есть уменьшает амплитуду тока, а следовательно, и его эффективное значение. Пока индуктивность проводов мала, эта добавочная ЭДС тоже мала, и действие её практически незаметно. ЭДС самоинд-ии зависит от индуктивности контура. Чем больше индуктивность, тем значительнее ЭДС самоиндук и ее влияние на значение тока, значит изменение индуктивности доступно регистрации. Но при наличии большой индуктивности эта добавочная ЭДС может очень значительно влиять на величину переменного тока. Соответственно, легко будет зарегистрировать изменение индуктивности такого контура.
Индуктивным датчиком называют устройство для преобразования механических перемещений в электрический сигнал, представляющее собой катушку индуктивности с магнитопроводом и подвижным элементом (якорем), который при изменении линейного или углового размера перемещается и изменяет индуктивность катушки за счет изменения параметров магнитной цепи. Изменение индуктивности происходит в результате изменения зазора между якорем и сердечником (рис. а, в), либо и результате изменения площади их взаимного перекрытия (рис. б, г).
Изменение индуктивности зависит от перемещения якоря и, соответственно, от параметров зазора, нелинейно:
Здесь индекс 0 относится к параметрам воздушных зазоров участков магнитной цепи, индекс k относится к ферромагнитным участкам магнитной цепи, соответственно n – число воздушных участков, m – число ферромагнитных участков.
Для линеаризации характеристики и увеличения чувствительности применяются дифференциальные индуктивные датчики (рис. в, г).В этом случае при ходе якоря индуктивность одной катушки увеличивается на ΔL, а индуктивность другой уменьшается на ΔL. С помощью мостовой схемы разность изменений индуктивностей может быть преобразована в электрическое напряжение или ток, который вызовет отклонение стрелки на приборе, пропорциональное перемещению измерительного стержня датчика. Еще одним преимуществом дифференциальных схем является то, что многие влияющие факторы одновременно воздействуют на обе катушки и поэтому практически не оказывают влияния на значение измеряемого размера.Следует отметить, что с помощью индуктивных датчиков, как первичных преобразователей измеряются не только геометрические параметры, но и любые другие физические величины, которые могут вызвать малые линейные или угловые перемещения: например, силы, давления, и т.п.Наведение ЭДС индукции в одном проводнике под действием магнитного поля другого проводника, в котором течет переменный ток, называется явлением взаимной индукции: где Ф12 – магнитный поток поля тока I2 через поверхность, ограниченную контуром I1; L12 – коэффициент взаимной индукции (взаимоиндуктивность).Рассмотрим индуктивный преобразователь угла поворота.
Обмотка 2 поворачивается в кольцевом зазоре магнитной цепи. При крайних положениях рамки ЭДС индукции максимальна, в горизонтальном положении равна нулю. Например, в конструкции датчика поворота сельсина БС-155А обмотка возбуждения ω1 укрепляется в торцевой части статора, в пазах ротора проложены фазные обмотки ω2. Каждому угловому положению ротора соответствует определенное соотношение величин и фаз ЭДС.Если вращение на ротор передается с ходового винта станка с ЧПУ, то снимаемый с обмоток ротора измерительный сигнал является функцией угла поворота, а, следовательно, заданного перемещения. Для регистрации линейных перемещений исполнительных органов станков с ЧПУ применяется линейный индуктосин.
Он состоит из линейки и ползуна с печатными обмотками. С обмотки линейки снимается индуцируемое напряжение Uвых. Ползун имеет две печатные обмотки, сдвинутые на 1/4 шага (сдвиг фазы на 90°). На каждую из обмоток подается переменный ток, причем па 1-й обмотке: U1 = U0·sin αзад, а на 2-й: U2 = U0·cos αзад , где αзад – заданный угол смещения фаз ЭДС, отражающий заданную величину перемещения рабочего органа. При перемещении ползуна: Uвых = U0·sin αзад·cos αф – U0·cos αзад·sin αф, где αф – фактический угол смещения, отражающий фактическое перемещение рабочего органа. После преобразований получаем: Uвых = U0·sin(αзад – αф).
При αзад = αф Uвых = 0 и подается команда на остановку рабочего органа