Импульс что это такое
Перейти к содержимому

Импульс что это такое

  • автор:

Импульс что это такое

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Формула Импульс тела

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Формула Общий импульс системы тел

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

Формула Изменение импульса тела или системы тел

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Формула Второй закон Ньютона в импульсной форме

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Формула Закон сохранения импульса

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Формула Закон сохранения проекции импульса

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Закон сохранения импульса в векторной форме

В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

VEDAJ.BY - Архитектура и культура БеларусиDVERIDUB.BY - Двери, лестницы и мебель из массива дуба

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Значение слова «импульс»

1. Внутреннее побуждение, толчок к чему-л., обусловленные деятельностью нервных возбудителей. Не нужно бояться, что ребенок чего-то не поймет —, непонимание всегда есть импульс к творчеству. А. Н. Толстой, Книга для детей. Когда он [Брюсов] на другой день пришел позировать, — я схватила мокрую губку и смыла портрет. По какому импульсу я это сделала, до сих пор не могу объяснить. Остроумова-Лебедева, Автобиографические записки.

2. Физ. Количество движения, равное произведению массы тела на его скорость.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • И́мпульс (коли́чество движе́ния) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

И’МПУЛЬС, а, м. [латин. impulsus — толчок]. 1. Побудительный мотив, причина, вызывающая совершение каких-н. действий (книжн.). У него не было никаких импульсов к продолжению творческой работы. 2. Непроизвольное движение, обусловленное деятельностью нервных возбудителей (физиол.). Волевые импульсы. Автоматические импульсы.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

и́мпульс

1. внутреннее побуждение, интеллектуальный или эмоциональный толчок к какому-либо поступку

2. биол. сигнал, распространяющийся по нервному волокну

3. физ. количество движения, равное произведению массы тела на его скорость

4. физ. импульс силы — произведение среднего значения силы на время её действия

5. физ. однократное возмущение, распространяющееся в виде волн в пространстве или в среде

6. физ. кратковременное изменение напряжения или тока

Фразеологизмы и устойчивые сочетания

Делаем Карту слов лучше вместе

/>Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: биотоксин — это что-то нейтральное, положительное или отрицательное?

Масса, энергия, импульс и закон сохранения

image

Множество непонятных свойств мира связаны с природой массы и энергии (а также импульса). Все мы слышали эти слова и у многих из нас есть туманное представление об их значении. Конечно, значений у слов «масса» и «энергия» в английском и других языках довольно много. К сожалению, ни одно из них не совпадает с теми, что имеют в виду физики. Попробуйте отставить в сторону эти значения слов и поработать с точными физическими понятиями – иначе вы полностью запутаетесь.

Необходимо отметить, что не стоит при словосочетании «масса и энергия» вспоминать другую популярную пару, «вещество и энергия». Многие люди упоминают последнее словосочетания так, будто вещество и энергия – это две стороны одной медали. Но это не так. Вещество и энергия относятся к разным категориям, как яблоки и орангутанги. Вещество, не важно, как его определять – это класс объектов, существующих во Вселенной, а масса и энергия – это не объекты, а свойства, которыми эти объекты обладают. Масса и энергия глубоко переплетены друг с другом, и заслуживают общего объяснения.

Чтобы понять массу и энергию, необходимо добавить к ним импульс и обсудить различия и связи этих величин.

Энергия

У слова «энергия» есть множество значений. Когда мы заболеваем, то говорим о том, что у нас не осталось энергии, имея в виду силу и мотивацию. Когда мы говорим, что у кого-то полно энергии, мы имеем в виду его высокую активность. Мы жалуемся на рост цен на энергию, имея в виду топливо. Мы говорим о духовной энергии как о чём-то неизмеримом, но важном, возможно, о некоей форме харизмы. И все эти понятия перекликаются друг с другом, поэтому мы и выбираем одно слово для их описания. Но в физике энергия – это совсем другое. С точки зрения физики ошибочно будет смешивать одно из этих определений с физическим. В физике нужно придерживаться физического термина, чтобы не получить неправильные ответы и не запутаться вконец.

К несчастью, понятие «энергии» в физике очень сложно описать так, как это делают словари – короткой содержательной фразой. Но не подумайте плохого – всё дело в несовершенстве естественного языка, а не в том, что понятие энергии в физике расплывчато. В любой заданной физической системе совершенно понятно, какова её энергия, как в смысле её экспериментального измерения, так и в смысле расчётов (при наличии описывающих систему уравнений).

Одна из причин, по которым энергию так сложно описать – она может принимать множество форм, и не все из них просто понять. Вот три наиболее часто встречающихся разновидности:

1. Энергия может быть заключена в массе объекта. Здесь я называю такой вариант «энергией массы» (благодаря известному уравнению E=mc 2 энергия связывается с массой. Также она называется «энергия покоя», поскольку это энергия объекта, находящегося в покое, то есть, без движения).

2. Во-вторых, энергия бывает связанной с движением объекта. Здесь я называю её «энергией движения», а технический термин для этого – кинетическая энергия. Этот вариант интуитивно легко воспринять, поскольку у быстро движущихся объектов энергия больше, чем у медленно движущихся. Кроме того, у тяжёлого объекта энергия движения больше, чем у лёгкого, движущегося с той же скоростью.

3. Энергия может храниться во взаимоотношении объектов (и обычно называется «потенциальной»). Она хранится в растянутой пружине, в воде за дамбой, в гравитационном взаимодействии Земли и Солнца, во взаимодействиях атомов в молекуле. Существует множество способов хранения энергии. Звучит расплывчато, но в этом виноват язык. В любом из перечисленных случаев существуют точные формулы, описывающие сохранённую в системе энергию и хорошо определённые пути её измерения.

С третьим типом энергии связано то, что я буду называть энергией взаимодействия, и это наиболее запутанное понятие из всех. В отличие от энергии массы и энергии движения, которые всегда больше или равны нулю, энергия взаимодействий может быть положительной и отрицательной. Пока я оставлю эту тему, но мы к ней ещё вернёмся.

Энергия – это особая величина огромной важности для физики. Причина такой важности – в том, что она «сохраняется». Что же это означает?

Если вы начнёте наблюдение с объекта или с набора объектов – назовём их «системой объектов» – обладающих определённым количеством энергии в начальный момент (не забудьте подсчитать всю энергию – массы, движения, сохранённую энергию всех типов, и т.п.), а затем части системы будут взаимодействовать только друг с другом и более ни с чем, тогда в конце наблюдения общее количество энергии, которым обладают эти объекты, будет тем же, что и в начале. Общая энергия системы сохраняется – её общее количество не меняется. Она может менять форму, но если отслеживать все разновидности, то в конце её будет столько же, сколько и в начале.

Это правило работает, даже если некоторые объекты будут исчезать и уступать место другим, к примеру, если одна частица в системе распадётся на две других, вливающихся в систему.

Почему энергия сохраняется? Из-за математического принципа, соотносящего тот факт, что законы природы со временем не меняются, с существованием сохраняющейся величины, которую мы по определению называем «энергией».

Самым известным и общим определением этого принципа мы обязаны Эмми Нётер, одной из величайших математических физиков предыдущего столетия, современнице Эйнштейна. Некоторые члены физического и математического сообщества относились к ней с глубоким уважением, но в то время в своей родной Германии она страдала от дискриминации по половому и национальному признаку (там блокировали попытки присвоить ей звание профессора в Гёттингене, и оттуда ей пришлось бежать после того, как к власти пришли нацисты). Эмигрировав в США, всего после двух лет преподаваний в колледже Брин-Мар (который по сию пору принимает для обучения только женщин), она умерла от онкологического заболевания.

Знаменитая теорема Нётер (реально это две тесно связанных теоремы) говорит нам, что если в законах природы существует симметрия – в нашем случае это значит, что законы природы одинаковы в любой момент времени – то из этого следует сохранение некоей величины – в нашем случае, энергии.

Более того, теорема в точности сообщает нам, что это за величина – каковы различные формы энергии, для заданной системы объектов, которые необходимо сложить, чтобы получить общую энергию. Именно поэтому физики всегда точно знают, что такое энергия, и почему её легче получить при помощи уравнений, чем определить словами.

Импульс

С импульсом дело обстоит примерно таким же образом, что и с энергией. Законы природы везде одинаковые. Грубо говоря, эксперименты дают одни и те же ответы, проводите ли вы их к северу или к югу отсюда, к западу или востоку, на вершине здания или в глубокой шахте. Выберите любое направление в пространстве. Тогда, согласно Нётер, импульс вдоль этого направления сохраняется. Поскольку в пространстве есть три измерения, то можно двигаться в трёх разных независимых направлениях и существуют три независимых закона сохранения. Выбрать можно три любых направления, при условии, что они разные. К примеру, можно выбрать в качестве трёх законов сохранения импульсы в направлениях север-юг, запад-восток и вверх-вниз. Или можно выбрать три других – по направлению к и от Солнца, вдоль орбиты Земли в обе стороны, и вверх и вниз по отношению к плоскости Солнечной системы. Ваш выбор не имеет значения, ибо импульс сохраняется вдоль любого направления.

Простейшая форма импульса возникает благодаря простому движению объектов, и это примерно то, что можно представить себе интуитивно: если объект двигается в определённом направлении, то у него есть импульс в этом направлении, и чем быстрее он двигается, тем больше этот импульс. А у более тяжёлого объекта импульс больше, чем у лёгкого, если они двигаются с одинаковыми скоростями.

Одно из интересных следствий этого сохранения: если у вас имеется неподвижная система из объектов (то есть, система в целом не двигается, если усреднить все движения составляющих её объектов), тогда она будет оставаться неподвижной, если только ей не придаст движение какое-либо внешнее воздействие. Причина в том, что у неподвижной системы суммарный импульс равен нулю, и поскольку импульс сохраняется, он останется равным нулю навсегда, если только не вмешается что-либо извне системы.

Масса, и её связь с энергией и импульсом

Теперь обратимся к массе

К сожалению, с массой связано много путаницы – после выхода работы Эйнштейна по теории относительности некоторое время существовало два понятия массы. И только одно из них (то, на котором остановился сам Эйнштейн, и которое иногда называют «инвариантной массой» или «массой покоя», чтобы отличить её от уже ставшего архаичным термина «релятивистская масса»), до сих пор используют в физике частиц. В отдельной статье я поясню это более подробно.

image
Рис. 1

Под массой m, которую я использую в статьях, подразумевается та масса, что непосредственно связывает энергию и импульс. Для объекта, двигающегося без воздействия внешних сил (не взаимодействующего значительно с другими объектами), Эйнштейн предположил (и это было подтверждено экспериментами), что его энергия E, импульс p и масса m удовлетворяют простому пифагорову равенству:

Помните старика Пифагора, утверждавшего, что для прямоугольного треугольника со сторонами A и B и гипотенузой C выполняется равенство ? Это связь того же типа – см. рис. 1. У нас с – постоянная скорость, которая, как мы увидим, служит универсальным пределом скорости. Также мы увидим, почему её называют «скоростью света».

Согласно уравнениям Эйнштейна, скорость объекта, делённая на предел скорости с, это просто отношение pc к Е:

То есть отношение горизонтального катета к гипотенузе. Оно также равно синусу угла α на рис. 1. Вот так вот, граждане. А поскольку катеты прямоугольного треугольника всегда короче гипотенузы (синус любого угла всегда меньше или равен 1), скорость любого объекта не может превышать с, универсальный предел скорости. С увеличением скорости объекта фиксированной массы p и E становятся очень большими (рис. 2), но E всегда больше pc, поэтому v всегда меньше c!


Рис. 2

Теперь обратите внимание, что если объект не двигается, то его импульс p равен нулю, и отношение в уравнении 1 сводится к:

Знаменитая формула Эйнштейна, связь массы с фиксированным количеством энергии (то, что я называю энергией массы), это просто утверждение, соответствующее тому, что когда треугольник вырождается в вертикальную линию, как на рис. 3 слева, его гипотенуза становится такой же длины, как вертикальный катет. При этом оно не означает, что энергия всегда равна массе, помноженной на квадрат с. Это работает только для покоящегося объекта с нулевым импульсом.


Рис. 3

Ещё одно интересное наблюдение: для безмассовой частицы вертикальный катет треугольника нулевой, а гипотенуза и горизонтальный катет совпадают, как на рис. 3. В таком случае E равняется pc, что означает, что v/c = 1, или v = c. Видно, что безмассовая частица (к примеру, фотон, частица света) неизбежно перемещается со скоростью с. Поэтому скорость света такая же, как универсальный предел скорости, с.

С другой стороны, если взять обладающую массой частицу, как на рис. 4, то неважно, насколько большим вы делаете импульс и энергию, E всегда будет немного больше, чем p*c, поэтому скорость всегда будет меньше с. Безмассовые частицы обязаны перемещаться с максимальной скоростью. Скорость массивных частиц должна быть меньше.


Рис. 4. Здесь «>>» означает «гораздо больше»

Представьте себе другой пограничный случай, медленно (по сравнению со скоростью света) движущийся массивный объект, к примеру, автомобиль. Поскольку его скорость v гораздо меньше с, его импульс p умноженный на c будет гораздо меньше E, и, как видно из рис. 5, E будет немногим больше, чем mc 2 . Поэтому энергия движения медленного объекта E — mc 2 гораздо меньше, чем энергия его массы mc 2 , а у быстрого объекта энергию движения можно сделать сколь угодно большой, как мы видели на рис. 4.

Один тонкий момент: импульс – это не только число, но и вектор. У него есть величина и направление. Он направлен в сторону движения частицы. Когда я пишу «p», я указываю только величину. Во многих случаях необходимо отслеживать и направление импульса, хотя в уравнении №1, связывающем импульс с энергией и массой, этого делать не нужно.


Рис. 5

Ещё один тонкий момент: я использовал треугольники и простейшую тригонометрию, поскольку она известна всем из школы. Экспертам же нужно быть осторожнее – правильно понять уравнения Эйнштейна можно, используя гиперболические функции, обычно не встречающиеся дилетантам, но крайне важные для понимания структуры теории, и делающие более понятными такие вещи, как сложение скоростей, сжатие расстояний и т.п. Не претендующие на экспертизу люди могут это игнорировать.

Но скорость же относительна.

Если вы внимательно читали текст, вас уже может кое-что удивить. Вы знаете, что скорость частицы – или чего угодно, движущегося медленнее света – зависит от точки зрения.

Если вы сидите дома и читаете книгу, вы скажете, что скорость книги нулевая (и относительно вас она действительно покоится), следовательно, у неё нет импульса и энергии движения, только энергия массы. Но если бы я стоял на Луне, то я напомнил бы вам, что Земля вертится, поэтому это вращение увлекает и вас, и двигает вас относительно меня со скоростью в сотни километров в час. Так что вы с вашей книгой обладали бы импульсом с моей точки зрения.

Вариант относительности согласно Галилею – первый принцип относительности – утверждает, что правы мы оба. Вариант относительности Эйнштейна соглашается с точкой зрения Галилея в том, что правы оба, но вносит важные корректировки в то, как обозначили бы последователи Галилея энергию, импульс и массу книги, помещая эти величины в пифагорово соотношение уравнения №1.

Но если правы все, какую E и какой p мне нужно подставить в соотношение энергии/импульса/массы, ? Подставить E и p, измеренные вами, читающим книгу, то есть E = mc 2 и p = 0? Или подставить E и p, которыми обладает книга с моей точки зрения, когда вы двигаетесь вместе с Землёй?

В ответе на этот вопрос содержится вся суть уравнения Эйнштейна №1. Каждый наблюдатель измерит разные величины E и p для книги, в зависимости от того, как быстро книга будет двигаться относительно него. Но для всех наблюдателей уравнение будет верным!

Магия! А на самом деле, гениальность – мысль, пришедшая в 1905 году, о том, как можно заменить набор уравнений, предложенных Ньютоном и его последователями, новым удивительным набором уравнений, всё ещё совпадающим со всеми предыдущими экспериментами, но оказавшимся более точным представлением реальности. Сложно представить, как сильно нужно было изменить образ мышления, чтобы додуматься до этого, пока не разберёшься с тем, сколько всего во время формирования новой теории могло пойти не так, и сколько других различных уравнений, содержащих противоречия с математикой или с предыдущими экспериментами, можно было бы предложить (а люди их предлагали). Мне, к примеру, постоянно приходят работы начинающих физиков, пытающихся «исправить» уравнения Эйнштейна, но я никогда не видел, чтобы кто-нибудь из них проверил свои уравнения на внутреннюю непротиворечивость. Это очень сложная задача и причина неудачи большинства теорий.

Но как тогда могут сохраняться энергия и импульс?

Погодите-ка, – скажете вы, когда ваша голова уже готова будет взорваться и забрызгать всё вокруг мозгами (я и сам помню это ощущение), – но энергия и импульс должны сохраняться! Так как же могут разные наблюдатели не соглашаться с тем, что они собой представляют?

Тут есть ещё больше магии, которая, кстати, была ещё до Эйнштейна. Поверьте мне, Вселенная – очень, очень хитроумный бухгалтер, и, несмотря на то, что разные наблюдатели не будут соглашаться по поводу энергии, имеющейся у объекта или системы объектов, они все согласятся, что эта энергия не меняется со временем. То же касается и импульса.

А вот масса очень сильно отличается от энергии и импульса. Во-первых, масса не сохраняется. В природе есть множество процессов, изменяющих общую массу системы: к примеру, массивная частица Хиггса может распадаться на два безмассовых фотона. С массой не связана симметрия, и поэтому у Нётер нет для нас закона сохранения. Во-вторых, в отличие от энергии и импульса, чьи величины зависят от наблюдателя (в частности, от его скорости по отношению к измеряемым объектам), все наблюдатели согласятся с величиной массы m объекта. А это вовсе не очевидно, и происходит так оттого, как ужасно хитроумно работают уравнения Эйнштейна.

Итак, что мы имеем

На текущий момент у нас несколько, на первый взгляд, противоречивых знаний. Мы знаем, что:

• Энергия и импульс изолированной физической системы сохраняются (общая энергия и общий импульс изолированной системы не меняются со временем) с точки зрения любого наблюдателя.
• Разные наблюдатели, движущиеся относительно друг друга, по-разному оценят величины энергии и импульса системы!
• Сумма масс объектов, составляющих систему, не сохраняется, она может меняться.
• Но все наблюдатели согласятся с величиной массы объекта.

К этому списку нужно добавить ещё два факта и два вывода:

Масса физической системы объектов не равна сумме масс объектов, составляющих эту систему.

Вместо этого масса физической системы, по поводу которой согласятся все наблюдатели, определяется её энергией и импульсом, и удовлетворяет своему варианту уравнения №1:

Получается, что дополнительный закон сохранения не нужен, и что хотя сумма масс объектов, составляющих систему, не сохраняется, масса системы сохраняется, поскольку она связана через уравнение №1′ с энергией и импульсом системы, которые сохраняются.

Масса системы объектов – это единственный пункт нашего списка, одновременно и сохраняющийся, и не являющийся предметом споров наблюдателей.

Нужно лишь помнить, что масса системы объектов – это не сумма масс объектов, составляющих систему, а то, что задано уравнением №1′.

Чем пытаться объяснить это, просто посмотрим, как это работает. Яркий пример стоит тысячи слов. Давайте в качестве примера системы рассмотрим самую модную штуку, а именно, частицу Хиггса (обладающую массой в 126 ГэВ/с 2 ), и посмотрим, как различные утверждения, сделанные выше, работают при её распаде на два фотона.

Одна частица Хиггса, два фотона и три наблюдателя


Рис. 6. Три наблюдателя смотрят на частицу Хиггса. По отношению к ней Петя (Peter) не двигается, Маша (Marie) двигается вниз, а Костя (Chris) двигается влево.

Давайте посмотрим на то, как частица Хиггса распадается на два фотона, с точки зрения трёх разных наблюдателей. Они изображены на рис. 6 вместе с частицей Хиггса, на которую они смотрят. Конечно, они не могут увидеть её глазами, ибо она существует слишком малый отрезок времени и она слишком мала. Им необходимо использовать какое-либо научное оборудование. Для Пети частица Хиггса не двигается. Маша двигается вниз относительно Пети. Костя двигается влево относительно Пети. Значит, для Маши частица Хиггса двигается вверх, а для Кости – вправо. Три наблюдателя видят, как частица распадается согласно рис. 7. Петя видит, что Хиггс распадается на два фотона одинаковых энергий, один из которых двигается вверх, а другой – вниз. Маша видит, что Хиггс распадается на два фотона различных энергий, и у двигающегося вверх энергии больше, чем у двигающегося вниз. Костя видит, как Хиггс распадается на два фотона, направляющихся вправо вверх и вправо вниз. Давайте посчитаем, какие энергии и импульсы присвоят Хиггсу и двум фотонам наблюдатели, и как каждый из них придёт к выводу о сохранении энергии и импульса в процессе распада.

Распад неподвижной частицы Хиггса

Для начала разберём частицу Хиггса с точки зрения Пети. Петя смотрит (при помощи измерительных приборов) на частицу Хиггса, и что же он видит? (Я буду ставить чёрточку над всем, что видит Петя, и потом мы сравним это с наблюдениями Маши и Кости). Хиггс не двигается, значит, его импульс равен нулю, и согласно уравнению №1 у него, с его массой m = 126 ГэВ/c 2 энергия будет

Теперь, согласно сохранению энергии и импульса, система, состоящая из частицы Хиггса, сохранит всю энергию и импульс после распада. И это будет так, пока никакая внешняя сила не будет воздействовать на Хиггса. Вы можете спросить, нужно ли нам волноваться по поводу земного притяжения, ведь гравитация и будет внешним воздействием, способным менять импульс. Отвечу, что за то краткое время, которое нужно Хиггсу на распад, влияние гравитации будет столько малым, что если бы я рассказал вам, какое оно на самом деле мелкое, вы бы захихикали. Забудьте об этом.

Итак, когда Хиггс распадается, энергии частиц, составляющих его остатки, должны в сумме дать 126 ГэВ, а импульс частиц (учитывая, что импульс – это не только величина, но и направление — вектор) в сумме даст ноль.

Два безмассовых фотона, на которые распадается Хиггс, могут разлететься в любых направлениях, но чтобы упростить пример, представим, что они разлетятся вертикально – один вверх, а другой, отскочив от него, вниз. (Чуть позже обсудим, почему они должны разлетаться в противоположных направлениях).

Каким импульсом обладают фотоны? Это просто. Во-первых, общий импульс системы – сумма импульсов двух фотонов – должен быть нулевым, поскольку у Хиггса до распада был нулевой импульс (с точки зрения Пети). Теперь у каждого из фотонов есть импульс определённой величины и направления. В сумме они могут давать ноль только одним способом – если они равной величины и противоположного направления. Если один идёт вверх, другой должен идти вниз, и величина их должна быть одинаковой.


Рис. 8: что видит Петя

Во-вторых, общая энергия системы – это сумма энергий двух фотонов. Это происходит потому, что между ними нет никакой энергии взаимодействия (кроме крайне малого гравитационного притяжения, о котором можно забыть). Конечно, раз у них нет масс, то вся их энергия заключается в энергии движения. Кроме того, в случае для безмассовой частицы уравнение №1 говорит о том, что E = p c, где p – величина импульса. Из-за этого два фотона с одинаковыми импульсами должны обладать и одинаковыми энергиями. А поскольку две эти энергии в сумме должны дать энергию частицы Хиггса, то энергия каждого фотона должна равняться половине энергии частицы Хиггса.

А поскольку для безмассовой частицы p = E/c, то

И это отображено на рис. 8.

Энергия и импульс сохраняются, а масса – нет, поскольку у фотонов нет массы, а у Хиггса была. А что по поводу массы системы? Какова масса системы из двух фотонов? Ненулевая. Очевидно, какая она. Точно так же, как и для самого Хиггса (из которого и состояла изначально вся система), система из двух фотонов обладает той же энергией и импульсом, что были у Хиггса:

А поскольку для Пети ,

Что и есть масса Хиггса. Масса системы не изменилась за время распада, как и ожидалось.

Наблюдатель, для которого Хиггс движется вверх

Маша движется вниз по отношению к Пете, так что с её точки зрения Петя и Хиггс двигаются вверх. Допустим, что Хиггс двигается со скоростью v = 0,8 c, то есть 4/5 скорости света, относительно неё. В отличие от Пети, с точки зрения Маши Хиггс обладает ненулевым импульсом, а импульсы у фотонов оказываются разными по величине, но по-прежнему разнонаправленными – в результате чего сумма их импульсов будет ненулевой.


Рис. 9: как Маша видит распад частицы Хиггса

Как посчитать, какими импульсом и энергией обладает Хиггса и два фотона, на которые он распадается, с точки зрения Маши? Для этого нам понадобится ещё один набор простых уравнений Эйнштейна. Допустим, с точки зрения некоего наблюдателя объект обладает импульсом p и энергией E. Тогда с точки зрения другого наблюдателя, движущегося со скоростью v по направлению движения объекта (или против него), импульс и энергия объекта будут выражаться следующим образом:

Где γ удовлетворяет ещё одному пифагорову уравнению:

согласно Эйнштейну. Это позволяет нам выполнять преобразования между тем, что видит Петя, и тем, что видит Маша (или любой другой наблюдатель, двигающийся со скоростью v). То, что мы обнаружим, показано на рис. 9.

Чтобы сравнить наблюдения Маши с наблюдениями Пети, нам понадобятся v и γ. Я утверждаю, что если v=4/5 c, то γ = 5/3.

Проверим, используя уравнение №5: 1 = (4/5)2 + (3/5)2 = 16/25 + 9/25 = 25/25

Петя говорит, что у Хиггса . Что насчёт Маши? Она говорит, что:

Петя утверждает, что у двух фотонов , и для каждого из них E = p c. Теперь мы можем подсчитать, что видит Маша, используя уравнения №4 и №4.

Работает! Энергия сохраняется и с точки зрения Марии, ибо

Импульс тоже сохраняется:

Масса системы совпадает с массой Хиггса до и после распада, поскольку до и после распада

Что, согласно уравнению №1′, приводит массу системы вновь к , как и у Пети, поскольку

Наблюдатель, с точки зрения которого Хиггс движется вправо

Что у нас с Костей? Костя двигается влево относительно Пети, допустим, со скоростью v=4/5 c, так что относительно Кости Хиггс (и Петя) двигаются вправо со скоростью v=4/5 c. Те же расчёты, что мы делали для Маши, показывают, что энергия Хиггса , но, в отличие от Маши, для которой Хиггс двигается вверх, для Кости импульс Хиггса направлен вправо. Это изображено на рис. 10.

image
Рис. 10

Хиггс распадается на два фотона. Если с точки зрения Пети фотоны двигаются вверх и вниз, то для Кости, наблюдающего, как Хиггс и Петя двигаются вправо, один из фотонов двигается вправо вверх, а другой – вправо вниз. Какие у них тогда будут импульс и энергия?

Через уравнения №4 и №5 нам этого не узнать, поскольку они предназначаются для случаев, когда частица и наблюдатель двигаются в одном направлении. Для нашего случая уравнения будут такими:

Эти уравнения будут проще, чем кажутся, поскольку с точки зрения Пети, у p нет компоненты, двигающейся слева направо, и весь импульс идёт вверх или вниз. Так что Костя наблюдает следующие величины для Хиггса:

А у фотона, идущего вверх

Для второго фотона формулы те же, только его вертикальная составляющая направлена вниз. Заметьте, что для обоих фотонов E = p c, согласно теореме Пифагора для размера p у каждого из импульсов – согласно врезке на рис. 10

И вновь Костя наблюдает другие величины энергии и импульса, по сравнению с Петей и Машей. Но и для Кости энергия и импульс всё равно сохраняются. Также Костя наблюдает, что у системы с двумя фотонами масса совпадает с массой Хиггса. Почему? Общая вертикальная часть импульса системы нулевая, она взаимно уничтожается. Горизонтальная часть импульса системы равна 168 ГэВ/с. Общая энергия системы 210 ГэВ. Это то же, что наблюдала Маша, за исключением того, что у неё импульс системы шёл вверх, а не вправо. Но направление импульса не влияет на уравнение №1′. Там играет роль только его величина. Так что, как и Маша, Костя видит, что масса системы из двух протонов получается , равной массе первичной частицы Хиггса.

Итак, мы видим, что наблюдают три разных наблюдателя. Их наблюдения:

• разнятся по поводу того, какие у Хиггса энергия и импульс,
• разнятся в части энергии и импульса обоих фотонов,
• согласуются по поводу сохранения энергии и импульса при распаде,
• следовательно, они согласны, что при этом сохраняется масса системы,
• соглашаются, что масса системы равна 126 ГэВ/c 2 ,
• и более того, что сумма масс объектов системы не сохраняется, а уменьшается с 126 ГэВ/c 2 до нуля.

И это не случайно. Эйнштейн из предыдущих экспериментов знал, что энергия и импульс сохраняются, поэтому он искал и нашёл уравнения, сохраняющие эту особенность мира. Также в процессе он обнаружил, что масса системы должна удовлетворять уравнению №1′.

Бонус: как это используется в поисках частицы Хиггса

• наблюдают столкновения протонов, в результате которых рождается два фотона;
• подсчитывают массу системы из двух фотонов (на техническом жаргоне это называется инвариантная масса пары фотонов).

Когда в результате эксперимента получается частица Хиггса, распадающаяся на два фотона, то вне зависимости от того, в каком направлении и с какой скоростью двигается частица по отношению к лаборатории, система из двух фотонов, на которую она распадётся, всегда будет обладать массой, равной массе частицы Хиггса, произведшей их на свет! Поэтому, в отличие от случайных процессов, в результате которых получается система из двух фотонов случайной массы, частицы Хиггса всегда будут порождать систему из двух фотонов одной и той же массы. Поэтому, если в результатах эксперимента появятся частицы Хиггса, и если они иногда будут распадаться на два фотона, то мы увидим пик от распадов Хиггса, возвышающийся над гладким фоном из других случайных процессов. Так и произошло в эксперименте на БАК!

Закон cохранения импульса

Закон cохранения импульса

Физика — такая клевая наука, в которой ничего не исчезает бесследно. Вот и импульс не отстает. О том, что такое импульс, каким образом он сохраняется и при чем тут медузы — читайте в этой статье.

· Обновлено 23 июня 2023

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

p — импульс тела [кг · м/с]

m — масса тела [кг]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

pn — импульс тела [кг · м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

— это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

— это импульс мальчика после прыжка,

— это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

наглядный пример сохранения импульса

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид

Подставим формулу импульса.
, где:
— масса мальчика [кг]
— скорость мальчика после прыжка [м/с]
— масса лодки [кг]
— скорость лодки после прыжка [м/с]

Выразим скорость лодки :

Подставим значения:
м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:

решение задачи рис2

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью:

Отсюда находим скорость тела, образовавшегося после удара:

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a. Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор – это вектор изменения импульса .

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

vр — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *