В чем измеряется электрическое поле
Перейти к содержимому

В чем измеряется электрическое поле

  • автор:

Напряжённость электрического поля

Picture

Мы живём в океане магнитных и электрических полей. Подобно поведению океана в штиль эти поля могут быть более и менее стабильными, превращаясь в шторм в настоящие бури.

Нам с детства известно свойство магнитной стрелки компаса указывать на север под действием постоянного геомагнитного поля Земли. В своё время изобретение компаса сыграло огромную роль в истории человечества, особенно с развитием мореплавания.

В отличие от магнитного поля, электрическое поле Земли почти ничем не проявляет себя в обыденной жизни, и без специальных приборов мы выявить его, как правило, не можем. Хотя иногда мы наблюдаем проявление электрического поля, расчёсывая вымытые и высушенные волосы пластмассовой расчёской или проводя той же расчёской над кусочками целлофана или бумаги, которые, преодолевая земное притяжение, подпрыгивают со стола, прилипая к расчёске.

Но стоит прийти электрической буре, как мы чувствуем её приближение без всяких приборов. Мы видим сполохи далёких зарниц приближающейся грозы, и слышим далекие раскаты грома. Появляются помехи при приёме радио и телевизионных сигналов; разряды молний могут вывести из строя радио- и электронную аппаратуру, линии связи и электропередач.

Нью-Йорк

Примером может служить авария электроснабжения в Нью-Йорке в 1977 году, когда, после серии попаданий молний в различные ЛЭП, без электроснабжения остался почти весь восьмимиллионный город. Геомагнитные бури космических масштабов также могут привести к авариям электроснабжения городов и стран (Квебекская авария в 1989 году), или вызвать перебои в телеграфной связи на целых континентах (Событие Каррингтона в 1859 году). В то же время, возмущения магнитного поля на поверхности Земли во время геомагнитной бури составляют в среднем менее 1% от величины стационарного значения.

По современным представлениям, отдельные изменяющиеся во времени электрические и магнитные поля образуют единые электромагнитные поля, изменяющиеся с меньшей или большей частотой. Их спектр чрезвычайно широк — от инфранизких частот в доли герца до квантов гамма-излучения с частотой в эксагерцы.

Любопытный, но малоизвестный факт: в узком радиодиапазоне спектра, на котором ведётся телевизионное вещание и работают спутники связи, мощность излучаемого Землёй сигнала превосходит мощность излучения Солнца! Некоторые радиоастрономы предлагают вести поиск внеземных цивилизаций, сравнимых с нашей цивилизацией, по этому признаку. Правда, другие учёные считают его просто признаком нашей технологической отсталости и неумением разумно распорядиться энергетическими ресурсами.

Важнейшей характеристикой электрического (равно как и магнитного) поля является его напряжённость. Превышение этого параметра выше определённого значения для данной среды (для воздуха это 30 кВ/см) приводит к электрическому пробою — искровому разряду. В наших зажигалках мощность разряда настолько мала, что его энергии хватает только на нагрев газа до температуры возгорания.

Ионосфера и разряды молний

Мощность отдельной молнии при средних значениях напряжения в 20 млн. вольт и тока в 20 тысяч ампер может составлять 200 млн киловатт (учитывая, что при разряде молнии напряжение падает с максимального значения до нуля). А за одну мощную грозу выделяется столько же энергии, сколько потребляет всё население США за 20 минут.

Учитывая то обстоятельство, что на Земле ежесекундно гремят более 2000 гроз одновременно, освоение энергии атмосферного электричества представляется чрезвычайно заманчивым. Существуют множество проектов по перехвату молний специальными громоотводами или инициализации разряда молнии; в этом плане мы уже имеем технологии, позволяющие вызвать разряд запуском малых ракет или воздушных змеев, связанных проводниками с поверхностью Земли. Более перспективными представляются разработки на основе ионизации атмосферы лучами мощных лазеров или микроволнового излучения и создании таким образом проводящих каналов для разряда молний, что позволяет устранить необходимость материальных затрат, связанных с испарением проводников после удара молнии.

По сути дела нам не требуется генерации собственно электричества — остаётся только организовать его приём, хранение и преобразование в более удобную для практических целей форму — но пока эта задача возлагается на будущие технологии и устройства. Возможным решением проблем могут стать новые материалы вроде графена, и супермагниты на сверхпроводниках, либо создание ионисторов с невероятно высокой плотностью запасаемой энергии.

Физика полярного сияния та же, что свечение газоразрядных ламп в электромагнитном поле (см. иллюстрации ниже) — возбуждение атомов газов с последующим переходом в обычное состояние, при котором и происходит выделение энергии в форме свечения.

А может быть осуществится мечта гения от электричества — американца сербского происхождения Николы Теслы; и мы сумеем преобразовать энергию гроз в единое энергетическое поле, которое позволит получать электроэнергию в требуемом количестве в любом месте Земли и даже в её атмосфере. Ведь удалось же Тесле во время проведения экспериментов по получению искусственных молний в июне 1889 года в своей лаборатории, расположенной в Колорадо-Спрингс, добиться такой передачи электрической мощности без проводов, что лошади в округе валились с ног, получив электрический удар через металлические подковы! Бабочки летали в ореоле огоньков святого Эльма, меж ног пешеходов проскакивали искры, такие же искры сыпались из водопроводных кранов. Может быть, из-за таких вот опытов многие современники считали Теслу просто опасным безумцем.

Но, говорят же, что если опережаете человечество на один шаг — вы точно гений! Но если на два шага — вы безумец!

Историческая справка

Picture

Понятие напряжённости электрического поля непосредственно связано с понятием электрических зарядов и создаваемых этими зарядами электрических полей.

Визуализация силовых линий электрического поля с помощью перманганата калия; на фильтровальную бумагу, пропитанную слабым раствором хлористого натрия, поставлены два электрода, на которые подано постоянное напряжение 30 В

Открытый французским учёным Шарлем Кулоном в 1785 году закон взаимодействия электрических зарядов только дал в руки физиков инструмент для расчёта взаимодействия как такового. Этот закон был поразительно похож на закон всемирного тяготения Ньютона, открытый ранее, хотя и имел существенное отличие: он допускал наличие зарядов разных знаков, а масса в законе всемирного тяготения имеет только один знак, т.е. материальные тела могли только притягиваться.

Подобно Ньютону, который не раскрыл причин гравитационного взаимодействия, Кулон также не смог пояснить причин взаимодействия электрических зарядов.

Лучшие умы того времени предлагали различные теории происхождение этих сил, в их число входили теории близкодействия и дальнодействия. Первая предполагала наличие некоторого промежуточного агента — мирового эфира с совершенно экзотическими свойствами. Например, ему приписывалась огромная упругость с ничтожной плотностью и вязкостью. Это было связано с преобладающими на тот момент развития науки механистическими представлениями о среде передачи сил как о некоторой жидкости. Противоречивые результаты опытов по изучения свойств эфира окончательно были похоронены уже в 20-ом веке в результате экспериментов американского физика Альберта Майкельсона и специальной теорией относительности Альберта Эйнштейна.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы; манная крупа и масло являются диэлектриками; под действием напряжения 30 кВ крупинки постепенно выстраиваются вдоль силовых линий, направленных от центра к кольцевому электроду

Прорыв в этом направлении совершили выдающиеся английские физики Майкл Фарадей и Джеймс Клерк Максвелл в конце 19-го века. М. Фарадею удалось воедино связать магнитные и электрические поля посредством введения концепции физического поля и даже визуализировать его с помощью «электрических силовых линий». В современной физике для изображения векторных полей используют силовые линии векторного поля.

Подобно тому, как мы можем визуализировать силовые линии магнитного поля, размещая в поле магнита мелкие железные опилки, Фарадей визуализировал распространение электрического поля, размещая кристаллики диэлектрика хинина в вязкой жидкости — касторовом масле. При этом вблизи заряженных тел кристаллики выстраивались в цепочки причудливой формы в зависимости от распределения зарядов.

Но главная заслуга Фарадея состоит в том, что он ввёл в научный обиход понятие, что электрические заряды не действуют друг на друга непосредственно. Каждый из них создаёт в окружающем пространстве электрическое и магнитное (если он движется) поле, а проявление эффектов электромагнетизма суть простое изменение количества силовых линий, охватываемых каким-то контуром.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы для двух линейных электродов при напряжении 30 кВ

Под количеством силовых линий он подразумевал напряжённость электрического или магнитного поля.

Великий соотечественник Фарадея Дж. К. Максвелл сумел придать его идеям количественную математическую форму, столь необходимую в физике. Его система уравнений стала основой для изучения как теоретической, так и практической сторон электродинамики. Работа Максвелла поставила крест на концепции дальнодействия: полученный им фундаментальный результат предсказывал конечную скорость распространения электромагнитных взаимодействий в вакууме.

Позднее этот постулат о конечности скорости распространения света, как электромагнитного взаимодействия, был положен гениальным физиком 20-го века Альбертом Эйнштейном в качестве основополагающего постулата его специальной (СТО) и общей (ОТО) теориях относительности.

В современной физике в понятия дальнодействия и близкодействия вкладывается несколько иной смысл: силы, убывающие с расстоянием по законам обратной степени (r -n ), считаются дальнодействующими; к ним относятся гравитационное и кулоновское взаимодействия, убывающие пропорционально обратному квадрату расстояния и действующие между объектами в обычном мире.

В атомном мире действуют иные силы, быстро убывающие с расстоянием: к ним относят сильное и слабое взаимодействия. Эти силы действуют между объектами микромира.

Напряжённость электрического поля. Определение

Напряжённость электрического поля — это векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению величины силы, действующей на неподвижный точечный электрический заряд, помещённый в эту точку, к величине заряда. Она обозначается латинской буквой E (произносится как вектор Е) и рассчитывается исходя из формулы:

E = F/q

где E — вектор напряженности электрического поля, F — вектор силы, действующий на точечный заряд, q — заряд объекта.

В каждой точке пространства существует своё значение вектора напряженности, поскольку поле может изменяться с течением времени, поэтому в качестве аргументов функции, описывающей данное векторное поле напряжённости, входят не только пространственные координаты, но и время.

E = f (x, y, z, t)

Напряжённость электрического поля в Международной системе единиц СИ измеряется в вольтах на метр (В/м) или ньютонах на кулон (Н/Кл).

Помимо основной единицы напряжённости электрического поля используется дольная единица (В/см), в электротехнике применяются кратные единицы (кВ/м или кВ/см).

В странах, где не используются метрические единицы длин, напряжённость электрического поля измеряется в вольтах на дюйм (В/дюйм).

Напряжённость электрического поля. Физика явлений

Как уже было показано выше, расчёты векторных электрических полей (напряжённости поля) физических объектов ведутся с использованием уравнений электростатики Максвелла и теоремы Гаусса-Остроградского, как составной части общих уравнений Максвелла.

При этом необходимо учитывать особенности поведения электрических полей в различных средах, поскольку их проявления резко отличаются в зависимости от конкретного состояния вещества по отношению к электрической проводимости.

Особенности проявления электрического поля в диэлектриках

Конденсаторный электретный микрофон для iPhone

При подаче электрического поля высокой напряжённости на образец из твёрдого диэлектрика, в последнем, как правило, происходит переориентация хаотически расположенных полярных молекул в направлении электрического поля. Это явление называется поляризацией. Даже при снятии электрического поля, эта ориентация сохраняется. Для её устранения требуется приложить поле обратной направленности.

Это явление носит название диэлектрического гистерезиса. Возвращению в исходное состояние диэлектрика могут способствовать и иные методы физического воздействия на образец, чаще всего применяют простой нагрев, при этом тоже происходит фазовый переход диэлектрика в исходное состояние.

Такие материалы получили название сегнетоэлектриков или ферроэлектриков. Среди них особым классом можно выделить вещества, которые имеют очень широкую петлю диэлектрического гистерезиса и способные долгое время находиться в поляризованном состоянии — они называются электретами, по сути дела, играют роль постоянных магнитов в электрическом исполнении, создавая постоянное электрическое поле.

Явление гистерезиса в сегнетоэлектриках

Следует отметить, что название «ферроэлектрики» никак не связано с железом; оно появилось в связи с тем, что явление сегнетоэлектричества аналогично явлению ферромагнетизма. В английском языке явление сегнетоэлектричества так и называется: ferroelectricity.

Под действием переменного электрического поля молекулы диэлектрика ведут себя несколько по-иному, постоянно меняя пространственную ориентацию присущих им зарядов каждый полупериод приложенного поля. Понимание этих процессов заложил британский учёный Дж. К. Максвелл, который ввёл в обиход науки об электричестве понятие токов смещения.

Суть явления состоит в том, что под действием переменного тока связанные заряды — электроны и ядра — в молекулах диэлектрика колеблются относительно центра молекулы, реагируя на приложенное переменное электрическое поле.

Особенности проявления электрического поля на поверхности металлов

Совершенно иным является взаимодействие электрического поля с металлами. Из-за наличия в них свободных зарядов (электронов) по отношению к любому электрическому или электромагнитному полю, они ведут себя подобно оптическому зеркалу в отношении света.

Направленные параболические антенны спутниковой связи

На этом принципе построены многие направленные антенны для приёма радиосигналов — вне зависимости от конкретной конструкции антенны, в них обязательно присутствует один элемент — отражатель (или дефлектор), который позволяет значительно увеличить принимаемый радиосигнал и тем самым улучшить качество приёма. Он может выглядеть совершенно по-разному, вплоть до полного аналога обычному зеркалу в виде параболических отражателей антенн для приёма спутниковых сигналов. По сути дела дефлектор является просто концентратором напряжённости электромагнитного поля.

Поскольку металлы отражают электрические и электромагнитные поля, на этом же принципе построена клетка электростатической защиты — так называемая клетка или щит Фарадея — металлы полностью изолируют пространство в них от действия электрического, да и электромагнитного поля. Об этом прекрасно знал гений электричества Никола Тесла, и поражал непросвещённую публику появлением в такой клетке в ореоле электрических разрядов, создаваемых его резонансным трансформатором. Теперь мы называем его трансформатором (или катушкой) Тесла.

Катушка Тесла и беличье колесо для человека в Канадском музее науки и техники. Чтобы возникла искра, посетитель музея должен выработать примерно 100 Вт энергии.

В 1997 году физик из Калифорнии Остин Ричардс создал гибкий костюм электростатической защиты, который защищал его от разрядов катушки Тесла, и с 1998 года он выступает по всему миру под псевдонимом Доктор МегаВольт в шоу «Полыхающий человек ».

Между прочим, современные помещения для скрытых переговоров выполнены на том же принципе клетки Фарадея; правда, изобретателям из закрытых научно-исследовательских институтов КГБ СССР удалось при постройке здания посольства США в своё время обойти американских инженеров: подслушивающие устройства встраивались в виде изолированных конструкций в несущие стены здания. Предполагалось, что под действием внешнего облучения они будут генерировать ответный промодулированный сигнал, и выдавать секреты переговоров американских дипломатов.

Практические примеры приборов и установок, использующих электрическое поле

Помещение с электронным микроскопом должно иметь хорошую звукоизоляцию, поэтому оно похоже на студию звукозаписи — только окошка не хватает

Существует множество примеров как использования электрического поля, так и борьбы с ним.

Сканирующий туннельный микроскоп

Одним из принципов работы сканирующего туннельного микроскопа (СТМ) является создание такой напряженности электрического поля между исследуемым образцом и острой иглой-зондом, чтобы она превышала работу выхода электронов из образца. Это достигается приложением небольшой разности потенциала между образцом и зондом, и их сближением на расстояние менее одного нанометра. Затем, перемещая зонд над поверхностью, за счёт измерения протекающего туннельного тока можно получить профили образца и построить изображение его поверхности.

Сотни высотных зондов ежедневно запускаются с помощью наполненных водородом шаров метеостанциями по всему миру; такие зонды, как этот, находящийся в Канадском музее науки и техники, запускались в середине прошлого века

Учитывая чувствительность прибора к механическим вибрациям, к помещениям, в которых размещаются СТМ, предъявляются особые требования: в частности, поверхности стен, потолки и полы помещений оснащаются акустической защитой, поглощающей звуковые колебания.

Измерительные приборы и приборы оповещения

Согласно требованиям охраны труда, помещения классифицируются по уровню напряжённости электрического поля. В зависимости от этого уровня время пребывания технического персонала в таких помещениях строго регламентируется. Замеры напряжённости производится специальными приборами.

Метеоцентры разных стран контролируют электрическое поле Земли, измеряя его напряжённость как на поверхности, так и в различных слоях атмосферы с помощью высотных зондов.

Электромонтёры установок и линий высокого напряжения для сигнализации об опасном сближении с токоведущими частями, находящимися под напряжением, используют приборы оповещения, измеряющие напряжённость электрического поля.

Электростатическая и электромагнитная защита

Ёще сам Фарадей, при проведении химических опытов, для исключения влияния сторонних электрических полей на результаты экспериментов, применял изобретённое им в 1836 году устройство электростатической защиты, известное ныне как клетка Фарадея. Оно может быть выполнено в виде сплошной проводящей оболочки с отверстиями или в виде сетки из проводящих материалов.

Микроволновая печь, по сути, представляет собой клетку Фарадея, только в ней экранируется внутреннее излучение, а не внешнее; на нижнем снимке видно, что размер ячейки сетки примерно 3 мм, что значительно меньше длины волны электромагнитного излучения в печи, равной 12 см

Это же устройство может с успехом применяться для экранировки электромагнитных излучений с длиной волны, существенно превышающей размеры ячеек сетки или отверстий.

В современной технике клетками Фарадея оснащаются физические лаборатории и установки, лаборатории аналитической химии и измерительной техники, помещения для ведения секретных переговоров и даже помещения для заседания конклава кардиналов, на котором проводились последние выборы Папы римского.

Поскольку физические методы исследований широко применяются в современной медицине, помещения диагностических центров также оснащаются клетками Фарадея — примером могут служить кабинеты, в которых проводится магниторезонансная томография.

Даже в привычной всем бытовой микроволновой печи камера разогрева конструктивно выполнена в виде клетки Фарадея, а оптически прозрачное окошко в ней, сделанное по специальной технологии, не прозрачно для микроволнового излучения.

Экраны соединительных проводов и коаксиальных кабелей, широко применяющиеся в радиотехнике, компьютерной технике и технике связи для защиты от внешнего электромагнитного излучения и излучения внутреннего сигнала во внешнюю среду, тоже являются своеобразными клетками Фарадея.

Опыты по воздействию электрического поля на металлы и газы

Никуда не подключенные тонкие люминесцентные лампы от плоского дисплея можно зажечь с помощью плазменной лампы

Зажигание неоновой лампы с помощью плазменной лампы

Учитывая, что непосредственное точное измерение напряжённости электрического поля требует специальных приборов, ограничимся иллюстрацией его свойств.

Плазменная лампа

В качестве индикатора напряжённости электрического поля будем использовать неоновую, люминесцентную или любую другую газоразрядную лампу, заполненную каким-либо инертным газом при низком давлении. Генератором поля будет служить плазменная лампа Тесла, создающая переменное электрическое поле значительной напряжённости с частотой около 25 кГц.

Если коснуться поверхности плазменной лампы пальцами, происходит концентрация плазменных шнуров

Если поднести индикаторную лампу (даже неисправную, но с целым баллоном) к изолирующей сфере плазменной лампы, она начнёт светиться, регистрируя наличие поля.

Очевидно, что электромагнитное поле проникает сквозь стеклянные оболочки обеих ламп, поле возбуждает электроны верхних оболочек атомов газа, последние при возврате в исходное состояние генерируют свет.

Если поднести к поверхности лампы руку, то можно наблюдать утолщение плазменного шнура, поскольку мы создаём в точке соприкосновения повышенную напряжённость электрического поля.

Оценка напряжённости электрического поля с помощью осциллографа

Подключим к входу осциллографа зонд, изготовленный из куска проволоки длиной около 15 см, и поднесём его к лампе Тесла. На экране осциллографа наблюдаем индуцированные колебания с той же частотой 25 кГц и размахом 25 вольт. На электрод лампы подается переменное высокое напряжение, генерирующее в пространстве переменное электрическое поле. Увеличивая расстояние между лампой и проводом, будем наблюдать уменьшение размаха сигнала (рис. 1–3). По уменьшению амплитуды сигнала на осциллографе можно сделать вывод, что напряжённость поля убывает с расстоянием.

Picture

Экранировка электромагнитного поля

Подключим к входу осциллографа экранированный измерительный кабель (рис. 4). При этом размах сигнала, регистрируемый осциллографом, упадёт почти до нуля. Экран кабеля выполняет роль клетки Фарадея, защищая сигнальный провод от электромагнитных наводок, создаваемых плазменной лампой.

Что такое электрическое поле, его классификация и характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Определение понятия "электрическое поле"

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Пример однородности

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

Электрический диполь Рис. 3. Электрический диполь Вихревые поля Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Электрическое поле положительного и отрицательного вектора напряжённости

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Направление линий напряжённости положительных и отрицательных зарядов

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

общий случай распределения зарядов

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Напряженность электрического поля

Напряженность электрического поля

Если потереть ручку о синтетический свитер — к ней начнут притягиваться кусочки бумаги, причем без прямого контакта. Все дело в электрическом поле, которое позволяет заряженным телам взаимодействовать на расстоянии. Этот материал о том, что такое напряженность электрического поля и каковы взгляды на нее в современной физике.

15 сентября 2021

· Обновлено 23 июня 2023

Что такое электрическое поле

Долгое время ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает вокруг заряженных тел и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Тела, имеющие одноименные заряды, будут отталкиваться, а разноименные — притягиваться.

Майкл Фарадей и Джеймс Максвелл

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые заряженные объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые взаимодействуют. Вокруг каждого существует свое электрическое поле. Тогда существует некая точка или область, в которой одновременно существует электрическое поле нескольких зарядов. Чему равна общая напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав векторно напряженности, создаваемые каждым зарядом в отдельности в той же точке. Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

расстояние между зарядами очень мало — порядка 10 -15 м;

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.

Закон Кулона

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: формула силы электрического полягде q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

формула силы электрического поля

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

напряжение электрического поля

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

Линии напряженности

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Дайте определение напряженности электрического поля

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном [1] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора />(вообще говоря — разное [2] в разных точках пространства), таким образом, />- это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле [3] , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *