Тиристор и симистор в чем разница
Перейти к содержимому

Тиристор и симистор в чем разница

  • автор:

Тиристорные и симисторные стабилизаторы напряжения

Принципиальная разница между тиристорами и симисторами заключается в том, что тиристоры пропускают ток только в одну сторону, а симистор в обе. Поэтому для коммутации переменного напряжением требуется либо два тиристора (включенные встречно-параллельно) либо один симистор. Их применение в стабилизаторах в качестве силовых переключающих ключей даёт в основном только одни преимущества в сравнении с релейными или электромеханическими устройствами.

Однако тиристорные и симисторные стабилизаторы напряжения имеют один небольшой недостаток — это ступенчатая стабилизация. Правда, этот недостаток больше относится к принципу работы самого стабилизатора, нежели именно к тиристорам или симисторам. Например, при точности стабилизации 5% шаг напряжения на выходе составляет всего 11 вольт, что лишь немного заметно только на лампочках накаливания. При точности 3% и выше шаг напряжения уже совсем незначителен и составляет всего 6 вольт и менее.

Тиристорный стабилизатор напряжения

Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.

Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.

Встречно-параллельное включение тиристоров

Тиристорный стабилизатор напряжения

Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве.

Некоторые производители по-умолчанию проводят их климатическую обработку, чтобы обеспечить работоспособность при низких температурах (-40. -40°С) в неотапливаемых помещениях. При этом стоимость возрастает лишь на несколько процентов.

Симисторный стабилизатор напряжения

Симистор — это одна из разновидностей тиристора, и с точки зрения обычного пользователя симисторный стабилизатор напряжения полностью аналогичен тиристорному. Однако главным недостатком симистора является его низкая устойчивость к выбросам напряжения, например, при работе с индуктивной нагрузкой, и поэтому приходится предпринимать ряд дополнительных мер для обеспечения надёжности их работы.

Кроме вышесказанного в симисторных схемах управления при максимальных нагрузках необходимо тщательно контролировать и не допускать превышения тока и напряжение управляющего электрода, обеспечивать эффективное охлаждение корпуса прибора и учитывать рассеивание мощности.

Симисторный стабилизатор напряжения

Вследствие этих недостатков симисторные стабилизаторы напряжения ограничены в практическом применении, так как тиристорные более надёжны в работе и компактны в габаритах, например, один симистор занимает площадь 4-6 тиристоров.

Справедливости ради надо отметить, что для управления симистором требуется менее сложная электронная схема, чем для тиристора, но это преимущество блекнет в сравнении с основным недостатком.

Заключение

В последннее время (начиная с 2015 года) тиристорные стабилизаторы наряжения уступают свои лидирующие позции инверторным моделям, которые работают по принципу двойного преобразования сетевого напряжения, поэтому не содержат массивных автотрасформаторов, более компактны и легки. Их широкий входной диапазон напряжения 90

310 вольт и точность его стабилизации на выходе в 2% заведомо лучше, чем у большинства тиристорых устройств.

Кроме этого, тиристорные стабилизаторы не улучшают форму напряжения, они только стабилизируют его амплитуду до 220 В ± погрешность. У инверторных моделей сетевое напряжение сначала выпрямляется, а затем инвертором преобразуется обратно в переменное, тем самым обеспечивается его идеальная синусоидальная форма. Это очень благоприятно сказывается на работе подключенных электроприборов. А мгновенная реакция на изменения сетевого напряжения (т.е. время быстродействия равно 0 мс) вообще кладёт на обе лопатки любые тиристорные модели.

Практические рекомендации

Посмотрите каталоги тиристорных стабиилизаторов напряжения россйских производителей.

    ;
  • доставка и подключение стабилизатора; .

Посмотрите нашу ФОТОГАЛЕРЕЮ
установленных стабилизаторов напряжения!

В чем разница между тиристором и симистором

Тиристорами и симисторами называют твердотельные полупроводниковые устройства, способные регулировать включение/выключение электротока в полезной нагрузке, поэтому их используют в качестве электронных ключей (коммутаторов). Оба элемента являются альтернативой классическим контактным коммутаторам (контакторам, пускателям, электромеханическим реле). Разница между симистором и тиристором обусловлена разным количеством p-n-переходов и их структурной конфигурацией.

Внешний вид тиристора и симистора

Особенности p-n-перехода

Ключевым структурным «кирпичиком» большинства полупроводниковых элементов, используемых для проектирования электросхем, является p-n-переход.

Схема функционирования p-n-перехода

Базовым полупроводником чаще всего служит монокристаллический кремний — Si. Области с электронной и дырочной проводимостью формируются с помощью дополнительного внедрения примесей (легирования). Пограничный слой между p- и n-областями называется p-n-переходом. Его сопротивление ничтожно мало, когда к n-слою приложено напряжение отрицательной полярности («минус»), а к p-слою — «плюс». При смене полярности сопротивление перехода резко возрастает, проводимость падает, ток в цепи отсутствует.

Как устроен тиристор

У полупроводникового тиристора, состоящего из трёх p-n-переходов, имеется три контактных электрода: анод (А), катод (К) и управляющий электрод (У) — затвор. Четырёхслойный «сэндвич» состоит из чередующихся дырочных (p) и электронных (n) прослоек.

Структура тиристора и его обозначение на электросхемах

Тиристор работает подобно вентилю, пропускающему через себя ток исключительно в одном направлении от анода к катоду (фаза «открыто»). В этом случае анод подключается к плюсу, а катод — к минусу.

Ток через тиристор прекращает идти («фаза закрыто») когда:

  • Происходит отключение полезной нагрузки.
  • Величина рабочего тока становится меньше тока удержания IУ (минимальное значение тока, регистрируемое в фазе «открыто»).

Тиристор включается подачей на управляющий электрод импульсного сигнала небольшой величины. Таким образом, в состояние «открыто» устройство переходит с помощью активации напряжения на затворе, а в состояние «закрыто» при уменьшении рабочего тока ниже величины IУ.

Итак, тиристор представляет собой устройство, имеющее только два состояния: либо «открыто», либо «закрыто». Главная функция данного элемента — включение/выключение участков электроцепей, то есть, выполнение роли электронного ключа.

С помощью двух биполярных транзисторов можно реализовать аналогичное регулирующее устройство, но это более трудоёмкий и громоздкий вариант.

Тиристоры различной мощности

Устройство симистора

Симистор — сокращенное название полупроводникового элемента. Его полное название — симметричный триодный тиристор или на английском — symmetrical triod thyristor. Используется ещё одна аббревиатура на латинице — TRIAC (triod for alternating current), которая переводится как триод для переменного тока. По сути симистор является развитием идеи тиристора и используется также в качестве электронного ключа в цепях переменного напряжения. TRIAC способен пропускать электроток как в прямом, так и в обратном направлении.

Виды симисторов

На рисунке показана структура p-n-переходов, из которой следует, что благодаря наличию дополнительных p- и n-слоёв (не менее четырёх) в одном монокристалле сформировано два встречно-параллельных тиристора. Для основных, силовых электродов (МТ1 и МТ2, иногда обозначаются А1, А2) в данном случае названия анод-катод не подходят, так как и тот, и другой могут выступать в этой роли. Поэтому у симистора их называют «Вывод 1» и «Вывод 2». Есть также управляющий электрод G — затвор.

Конструкция симистора

Симистор подключается последовательно с полезной нагрузкой. В состоянии «закрыто» ток отсутствует, нагрузка отключена. При подаче на затвор отпирающего электронапряжения (фаза «открыто») начинает течь электроток, нагрузка подключается. В состоянии «открыто» симистор пропускает ток в обоих направлениях. Он способен оставаться в таком состоянии до тех пор, пока рабочий электроток, проходящий через МТ1 и МТ2, не станет меньше тока удержания. Данным свойством обладает и тиристор, и симистор. В этом их схожесть. То есть, отключение нагрузки в цепи переменного электронапряжения будет происходить в том случае, когда электроток, протекающий через электроды, изменит своё направление (в моменты смены полярности электронапряжения).

Любой симистор можно заменить двумя тиристорами, установленными по схеме встречно-параллельного включения. Такой способ включения позволяет электротоку проходить в двух направлениях. Следовательно, нивелируется недостаток тиристоров, заключающийся в их способности работать лишь с половиной мощности, присутствующей в электроцепи.

Замена симистора двумя тиристорами

Похожи, но не близнецы

Симисторы отличаются от тиристоров, несмотря на внешнюю схожесть, одинаковое количество выводов (три) и наличие в структуре некоторого количества p-n-переходов. Основные отличия этих устройств:

  • Тиристоры состоят из четырёх полупроводниковых слоёв, образующих три p-n-перехода. Для создания симистора необходимо, как минимум, пять p- и n-слоёв, с помощью которых получается четыре p-n-перехода.
  • Контакты тиристора — катод, анод и управляющий электрод. У симистора также есть управляющий электрод — затвор. А вот электроды МТ1 и МТ2 могут быть и анодом и катодом, что даёт возможность симистору пропускать ток в обоих направлениях.
  • Вольт-амперная характеристика (ВАХ) симистора отличается от ВАХ тиристора.
  • Тиристор является преобразователем однонаправленного действия.

ВАХ тиристора и симистора

Плюсы и минусы симисторов

К достоинствам следует отнести:

  • Небольшую стоимость.
  • Значительный эксплуатационный ресурс.
  • Отсутствие механических контактов, которые приводят к «дребезгу», генерирующему помехи.
  • Невысокая помехоустойчивость по отношению к шумам, сторонним помехам, переходным процессам.
  • Ограниченный (низкий) диапазон частот переключения.
  • Необходимость применения дополнительных радиаторов для отвода джоулева тепла. Зачастую один из выводов сделан в виде винта с резьбой для крепления к радиатору с помощью гайки.
  • Для регулирования мощности на нагрузке требуется блок управления тиристорами и симисторами, выходные параметры которого определяются разницей в работе этих полупроводниковых устройств.

Симистор КУ208

Области применения

Поскольку симисторы способны пропускать электроток в обоих направлениях, их применяют в цепях переменного электротока, где тиристор не «додаёт» мощности ввиду однонаправленности. Чаще всего этот полупроводниковый прибор применяется в следующих устройствах:

  • Приборы, регулирующие яркость источников света (диммерах).
  • Регуляторы скорости оборотов электроинструментов (шуруповёрты, дрели, лобзики и т. п.).
  • Электронные регуляторы температуры индукционных плит.
  • Холодильная аппаратура для плавного пуска.
  • Бытовая техника (швейные и стиральные машины, пылесосы).
  • Реверсивные выпрямители.

Схема тиристорного регулятора

Историческая справка

Интересно, что симистор был изобретен в СССР в далёком 1963 г. Официальную заявку на изобретение авторы из Мордовского электротехнического института подали всего на полгода раньше заявки инженеров из знаменитой американской фирмы «Дженерал электрик». Название симистор, предложенное нашими изобретателями, на западе не прижилось. Там предпочитают называть его TRIAC.

Заключение

Отличие структурных особенностей симистора от тиристора связано с разным количеством p-n-переходов в составе этих радиоэлементов. Оба они могут служить электронными ключами, используемыми для регулирования мощности, подаваемой на полезную нагрузку.

Симисторные и тиристорные стабилизаторы: что выбрать?

Тиристорные и симисторные стабилизаторы напряжения сегодня считаются наиболее совершенными устройствами среди аналогов, использующих автотрансформатор для коррекции сетевого напряжения.

Для лучшего понимания особенностей работы стабилизаторов этого типа в данной статье подробно рассмотрены их устройство, принцип действия, основные преимущества и недостатки.

  • Устройство и принцип действия тиристорных и симисторных стабилизаторов
  • Тиристоры и симисторы. В чём разница?
  • Схема работы, сильные и слабые стороны тиристорных стабилизаторов
  • Схема работы, преимущества и недостатки симисторных стабилизаторов
  • Подводим итог
  • Инверторные стабилизаторы как альтернатива тиристорным и симисторным
  • Где купить инверторные стабилизаторы нового поколения?

Устройство и принцип действия тиристорных и симисторных стабилизаторов

Основными узлами этих стабилизаторов напряжения являются:

  • силовой автотрансформатор – используется для коррекции сетевого напряжения;
  • электронная схема управления (как правило, реализованная на базе микропроцессора) – управляет всеми функциями стабилизатора в соответствии с сигналами датчиков параметров сети и мощности потребления нагрузки;
  • блок коммутирующих силовых полупроводниковых ключей (тиристоров или симисторов) – используются для коммутирования отводов обмоток силового автотрансформатора;
  • устройства фильтрации сетевых помех – подавляют импульсные и высокочастотные помехи.

На корпусе электронных стабилизаторов, как правило, располагаются ЖК-дисплей и светодиодные индикаторы, которые отображают значения рабочих параметров устройства: величины напряжения на входе и выход, мощность подключенной нагрузки.

Принцип действия тиристорных и симисторных стабилизаторов одинаков. Входное переменное сетевое напряжение поступает на преобразующий автотрансформатор – разновидность трансформатора, первичная и вторичная обмотки которого соединены, то есть имеют не только электромагнитную связь, но также и электрически связаны. Вторичное напряжение снимается с одного из нескольких выводов обмотки автотрансформатора. Подключение к каждому выводу задействует разное количество витков катушки трансформатора, чем и будет определяться коэффициент трансформации и, соответственно, выходное напряжение. Наиболее похожим по принципу работы можно назвать релейный тип стабилизаторов.

Параметры входного и выходного напряжения автотрансформатора постоянно контролируются микропроцессором платы управления. Если они отклоняются от нормы в любую сторону, микропроцессор подает управляющий сигнал на включение определенного силового коммутационного устройства – полупроводникового ключа. В зависимости от типа используемых силовых ключей различают тиристорные (с применением тиристоров) и симисторные (соответственно, с применением симисторов) устройства.

Тиристоры и симисторы. В чём разница?

Тиристоры и симисторы – полупроводниковые элементы, управление которыми (изменение их коммутационного состояния) осуществляется подачей положительного потенциала на управляющий электрод. Их отличие заключается в количестве слоев с различной проводимостью в пластине элемента.

Тиристор является преобразователем переменного тока однонаправленного действия. В своей структуре элемент имеет управляющий электрод, анод и катод.

Симистор представляет собой два встречно включенных тиристора, которые располагаются параллельно друг другу. У симистора каждый электрод является анодом и катодом одновременно, благодаря чему этот полупроводниковый переключатель способен проводить ток в двух направлениях.

Схема тиристора и симистора картинка

Далее рассмотрим особенности и отличия устройств с коммутацией, реализованной на тиристорных и симисторных ключах.

Схема работы, сильные и слабые стороны тиристорных стабилизаторов

Рассмотрим подробнее алгоритм работы тиристорного стабилизатора:

  1. При изменении параметров входного тока фаза задержки (длительностью до 20 мс) используется для измерения значения входного напряжения сети.
  2. Сравнив фактические и допустимые токовые характеристики, при необходимости процессор платы управления подает команду на коррекцию напряжения на выходе:
  • в случаях, когда отклонения входного напряжения находятся в рамках допустимого диапазона, происходит его коррекция до необходимого значения;
  • при скачках напряжения, выходящих за рамки допустимого диапазона, система защиты обеспечивает аварийное отключение устройства.

Схема тиристорного стабилизатора картинка

Тиристорные стабилизаторы напряжения обладают следующими преимуществами:

  • относительно высокое быстродействие – 20 мс (в сравнении с релейными приборами);
  • высокий КПД, который достигается благодаря отсутствию реле и подвижных элементов;
  • возможность функционирования во внешней среде с высокими или низкими температурами;
  • долговечность и надежность за счёт отсутствия механических деталей;
  • бесшумное функционирование;
  • устойчивость к перегрузкам.

Преимущества и недостатки тиристорного стабилизатора картинка

Тиристорные приборы также отличаются достаточно высокой точностью стабилизации напряжения на выходе (от 5 до 10 %) по сравнению с релейными моделями, а также относительно широким диапазоном напряжения на входе, который позволяет их использовать в сетях с крайне некачественным напряжением.

Серьезным недостатком тиристорных стабилизаторов является дискретность (ступенчатость) коррекции напряжения. Ступенчатые скачки напряжения, которые появляются при переключении трансформаторных обмоток, ухудшают точность стабилизации и снижают скорость работы прибора.

Из-за указанных недостатков тиристорные стабилизаторы нельзя использовать для питания нагрузок, особо чувствительных к перепадам напряжения (например, ПК и периферийных устройств, профессиональных аудио- и видеоприборов, а также приборов с электронным управлением).

Кроме того, выходное напряжение тиристорных стабилизаторов имеет форму, отличную от синусоидальной (трапециевидную или с другими искажениями, в зависимости от конкретной модели), что делает нежелательным их использование для питания нагрузок с электродвигателями (например, насосов, систем отопления).

Сферы применения тиристорных стабилизаторов картинка

Схема работы, преимущества и недостатки симисторных стабилизаторов

Симисторные стабилизаторы напряжения имеют принцип работы, схожий с тиристорными устройствами.

Схема симисторного стабилизатора картинка

К их очевидным преимуществам, безусловно, можно отнести перечисленные выше достоинства, которыми отличаются тиристорные устройства:

  • скорость и точность регулирования напряжения;
  • высокое значение КПД;
  • бесшумная работа (что особенно важно при установке в жилых помещениях);
  • многолетний срок эксплуатации;
  • надежность работы, обусловленная полным отсутствием механических движущихся частей.

Современные симисторные стабилизаторы напряжения, как и тиристорные аналоги, отличаются широким диапазоном входного напряжения и возможностью работы при достаточно низкой температуре.

Преимущества и недостатки симисторного стабилизатора картинка

Существенными их недостатками являются высокая стоимость в сравнении с релейными моделями и ступенчатое регулирование выходного напряжения. К минусам также следует отнести большую громоздкость силовых ключей по сравнению с тиристорными аналогами: один симистор занимает площадь, достаточную для размещения нескольких тиристоров. Разумеется, это не в лучшую сторону отражается на габаритных размерах и массе устройств.

Сравнивая используемые типы полупроводниковых ключей, добавим, что симисторы менее стойки к токовым перегрузкам и в процессе работы могут нагреваться значительно сильнее, что увеличивает риск их выхода из строя.

Симисторные стабилизаторы имеют такие же ограничения по применению, что и тиристорные. Их нельзя назвать удачным решением для организации защиты электродвигателей или нагрузки с электроприводом из-за искажения формы сигнала на выходе: как правило, это модифицированная синусоида. Говоря об ограничениях в использовании, стоит добавить и их низкую стойкость при работе с индуктивной нагрузкой.

Подводим итог

Сравнивая симисторные и тиристорные стабилизаторы напряжения между собой и с другими видами устройств, можно прийти к следующим выводам:

  • оба типа приборов имеют как схожие возможности по стабилизации напряжения, так и почти одинаковые недостатки, одним из которых является ступенчатая корректировка и, как следствие, несинусоидальная форма выходного сигнала;
  • данные стабилизаторы не справляются с защитой чувствительного к качеству сети оборудования, а также приборов с электродвигателями;
  • оба устройства по своим рабочим параметрам ненамного превосходят релейные стабилизаторы напряжения, но стоимость их гораздо выше;
  • при поломке тиристорных и симисторных устройств ремонт их электронных компонентов обойдется дороже, чем стабилизаторов напряжения предыдущих поколений, работающих по аналогичному принципу.

Инверторные стабилизаторы как альтернатива тиристорным и симисторным

Несмотря на то, что симисторные и тиристорные стабилизаторы пока пользуются достаточной популярностью, их постепенно, но уверенно вытесняет с рынка новый тип устройств – инверторные стабилизаторы напряжения. Данные устройства разработаны на заводе ГК «Штиль» в 2015 году и по праву считаются изделиями нового поколения.

Инверторные модели, в отличие от симисторных и тиристорных, функционируют совершенно по другому принципу. В схеме их работы отсутствует автотрансформатор и какие-либо коммутационные элементы. Коррекция напряжения выполняется за счет выпрямителя, конденсатора и инвертора. Сначала входное переменное напряжение трансформируется в постоянное, а затем снова в переменное, но уже имеющее эталонные характеристики. Благодаря технологии двойного преобразования данные устройства могут:

  • мгновенно срабатывать на сетевые отклонения в диапазоне 90-310 В;
  • стабилизировать напряжение с высокой точностью (2%);
  • подавать на нагрузку напряжение идеальной синусоидальной формы;
  • бесперебойно питать электроприборы при кратковременных пропаданиях сети (до 200 мс).

Высокие технические характеристики инверторных стабилизаторов позволяют их использовать для самых требовательных к качеству питания потребителей в сетях со значительными колебаниями напряжения.

В настоящее время российский производитель систем электропитания «Штиль» предлагает следующие модели инверторных стабилизаторов напряжения:

  • однофазные устройства настенной и напольной/стоечной установки с выходной мощностью 0,35-20 кВА;
  • модели конфигурации 3 в 1 напольной/стоечной установки с выходной мощностью 6-20 кВА, рассчитанные на работу в трехфазной сети для электропитания однофазной нагрузки;
  • трехфазные устройства напольной/стоечной установки с выходной мощностью 6-20 кВА.

Больше информации об инверторных стабилизаторах напряжения нового поколения можно узнать, перейдя по ссылке:
Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

Где купить инверторные стабилизаторы нового поколения?

Купить инверторные стабилизаторы напряжения «Штиль» можно в нашем официальном интернет-магазине российского производителя «Штиль». На сайте представлена информация по основным техническим характеристикам, особенностям работы и сферам применения данных устройств. Для скачивания доступны инструкции по эксплуатации, брошюры и презентации, в которых представлен весь модельный ряд инверторных стабилизаторов и дополнительных аксессуаров к ним.

Заказать изделия могут физические и юридические лица, независимо от того, в каком регионе они находятся. Доставка оборудования осуществляется ведущими транспортными компаниями в любой город России. При оформлении заказа покупатель может выбрать удобный способ оплаты или оформить кредит на покупку техники через сервис Сбербанка. Консультации по подбору и эксплуатации оборудования оказывают специалисты компании в онлайн-чате сайта, по электронной почте или телефону.

Чем отличается симистор от тиристора?

Симистор действительно, симметричный полупроводниковый управляемый вентиль, как правило имеет управляющий электрод.
По структуре, это четырехслойный полупроводниковый прибор, p-n-p-n-p структуры.
Другое название симистора — триак.
Прибор не запираемый по управляющему электроду, в отличии от некоторых видов тиристоров.
Как и тиристоры, симисторы могут быть лавинными.
Основное применение в цепях переменного тока с коммутацией при переходе тока через ноль.
На счет выводов Т1 и Т2 не спорю, но все-же структура симистора с управляющим электродом, внутренне не совсем симметрична, не смотря на название, так как управляющий электрод расположен ближе к одной из крайних областей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *