Что такое токовая петля
Перейти к содержимому

Что такое токовая петля

  • автор:

Как работает токовая петля 4-20 мА

«Токовая петля» начала применяться в качестве интерфейса передачи данных еще в 50-е годы. Сначала рабочий ток интерфейса составлял 60 мА, а позже, начиная с 1962 года, широкое распространение в телетайпе получил 20 миллиамперный интерфейс токовой петли.

В 80-е, когда началось обширное внедрение в технологическое оборудование разнообразных датчиков, средств автоматики и исполнительных устройств, интерфейс «токовая петля» сузил диапазон своих рабочих токов, — он стал составлять от 4 до 20 мА.

Шкаф автоматизации с контроллером

Дальнейшее распространение «токовой петли» стало замедляться начиная с 1983 года, с появлением интерфейсного стандарта RS-485, и на сегодняшний день «токовая петля» почти нигде в новом оборудовании как таковая не применяется.

Передатчик «токовой петли» отличается от передатчика интерфейса RS-485 тем, что в нем используется источник тока, а не источник напряжения.

Ток, в отличие от напряжения, двигаясь из источника по цепи не меняет своего текущего значения в зависимости от параметров нагрузки. Вот почему «токовая петля» не чувствительна ни к сопротивлению кабеля, ни к сопротивлению нагрузки, ни даже к ЭДС индуктивной помехи.

Кроме того ток петли не зависит от напряжения питания самого источника тока, а может изменяться лишь вследствие утечек через кабель, которые обычно пренебрежимо малы. Данная особенность токовой петли полностью определяет способы ее применения.

Стоит отметить, что ЭДС емкостной наводки приложена здесь параллельно источнику тока, и для ослабления ее паразитного действия применяют экранирование.

По этой причине линией передачи сигнала обычно выступает экранированная витая пара, которая, работая совместно с дифференциальным приемником, сама ослабляет синфазную и индуктивную помехи.

На стороне приема сигнала, ток токовой петли при помощи калиброванного резистора преобразуется в напряжение. И при токе в 20 мА получается напряжение из стандартного ряда 2,5 В; 5 В; 10 В; — достаточно лишь использовать резистор с сопротивлением соответственно 125, 250 или 500 Ом.

Первый и главный недостаток интерфейса «токовая петля» заключается в его низком быстродействии, ограниченном скоростью зарядки емкости самого передающего кабеля от упомянутого выше источника тока, расположенного на передающей стороне.

Так, при использовании кабеля длиной в 2 км, с погонной емкостью 75 пФ/м, его емкость составит 150 нФ, а это значит что для зарядки данной емкости до 5 вольт при токе 20 мА потребуется 38 мкс, что соответствует скорости передачи данных 4,5 кбит/с.

Ниже приведена графическая зависимость максимально доступной скорости передачи данных по «токовой петле» от длины применяемого кабеля при различных уровнях искажений (дрожания) и при разных напряжениях, оценка проводилась так же как для интерфейса RS-485.

Еще один недостаток «токовой петли» заключается в отсутствии определенного стандарта на конструктивное исполнение разъемов и на электрические параметры кабелей, что тоже ограничивает практическое применение данного интерфейса. Но справедливости ради можно отметить, что фактически общеприняты диапазоны от 0 до 20 мА и от 4 до 20 мА. Диапазон 0 — 60 мА применяется значительно реже.

Наиболее перспективные разработки, требующие применения интерфейса «токовая петля», в большинстве своем используют сегодня только 4. 20 мА интерфейс, позволяющий легко диагностировать обрыв линии. Кроме того, «токовая петля» может быть цифровой или аналоговой, в зависимости от требований разработчика (об этом — далее).

Практически низкая скорость передачи данных по «токовой петле» любого типа (аналоговой или цифровой) позволяет использовать ее одновременно с несколькими приемниками соединенными последовательно, причем согласование длинной линии не потребуется.

Промышленная автоматизация

Аналоговая версия «токовой петли»

Аналоговая «токовая петля» нашла применение в технике, где необходимо например передавать сигналы от датчиков к контроллерам или между контроллерами и исполнительными устройствами. Здесь токовая петля обеспечивает некоторые преимущества.

Прежде всего диапазон варьирования измеряемой величины будучи приведен к стандартному диапазону позволяет изменять компоненты системы. Примечательна и возможность высокоточной (не более +-0,05% погрешности) передачи сигнала на значительное расстояние. Наконец, стандарт «токовая петля» поддерживается большинством поставщиков устройств промышленной автоматизации.

Токовая петля 4. 20 мА имеет минимальный ток 4 мА в качестве начала отсчета сигнала. Таким образом при обрыве кабеля ток будет равен нулю. Тогда как при использовании токовой петли 0. 20 мА диагностировать обрыв кабеля будет сложнее, ибо 0 мА может просто обозначать минимальное значение передаваемого сигнала. Еще одно достоинство диапазона 4. 20 мА заключается в том, что уже при уровне 4 мА можно без проблем подводить питание к датчику.

Ниже приведены две схемы аналоговой токовой петли. В первом варианте источник питания встроен в передатчик, тогда как во втором варианте источник питания внешний.

Встроенный источник питания удобен в плане монтажа, а внешний позволяет варьировать его параметры в зависимости от назначения и условий работы устройства, с которым применяется токовая петля.

Принцип действия токовой петли одинаков для обеих схем. Операционный усилитель имеет в идеале бесконечно большое внутреннее сопротивление и нулевой ток входов, и значит напряжение между его входами также изначально равно нулю.

Таким образом, ток через резистор в передатчике будет зависеть только от величины входного напряжения и будет равен току во всей петле, при этом он не будет зависеть от сопротивления нагрузки. Напряжение на входе приемника может быть поэтому легко определено.

Схема с операционным усилителем отличается тем преимуществом, что позволяет калибровать передатчик без необходимости подключать к нему кабель с приемником, ибо погрешность, вносимая приемником и кабелем, очень незначительна.

Напряжение источника выбирается исходя из потребности транзистора передатчика для его нормальной работы в активном режиме, а также с условием компенсации падения напряжения на проводах, на самом транзисторе, и на резисторах.

Допустим, резисторы имеют сопротивления по 500 Ом, а кабель — 100 Ом. Тогда для получения тока в 20 мА потребуется напряжение источника 22 В. Выбирают ближайшее стандартное — 24 В. Избыток мощности от запаса по напряжению будет как раз рассеян на транзисторе.

Обратите внимание, что на обеих схемах изображена гальваническая развязка между передающим каскадом и входом передатчика. Это нужно для того чтобы избежать любых паразитных связей между передатчиком и приемником.

NL-4AO

В качестве примера передатчика для построения аналоговой токовой петли можно привести готовое изделие NL-4AO с четырьмя аналоговыми каналами вывода для связи компьютера с исполнительным устройством посредством протокола «токовая петля» 4. 20 мА или 0. 20 мА.

Связь модуля с компьютером осуществляется по протоколу RS-485. Устройство калибруется по току для компенсации погрешностей преобразования и исполняет подаваемые с компьютера команды. Калибровочные коэффициенты хранятся в памяти устройства. Цифровые данные преобразуются в аналоговые при помощи ЦАП.

Цифровая версия «токовой петли»

Цифровая токовая петля работает, как правило, в режиме 0. 20 мА, поскольку цифровой сигнал проще воспроизвести именно в таком виде. Точность логических уровней здесь не так важна, поэтому источник тока петли может обладать не очень большим внутренним сопротивлением и сравнительно низкой точностью.

На приведенной схеме при напряжении питания 24 В на входе приемника падает 0,8 В, значит при сопротивлении резистора 1,2 кОм ток будет равен 20 мА. Падением напряжения на кабеле, даже при его сопротивлении в 10% от общего сопротивления петли, можно пренебречь, как и падением напряжения на оптроне. Практически в данных условиях можно считать передатчик источником тока.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

2.4. Интерфейс "токовая петля"

Интерфейс "токовая петля" используется для передачи информации с 1950-х годов. Первоначально в нем использовался ток 60 мА [Current]; позже, с 1962 года, получил распространение интерфейс с током 20 мА, преимущественно в телетайпных аппаратах. В 1980-х годах начала широко применяться "токовая петля" 4. 20 мА в разнообразном технологическом оборудовании, датчиках и исполнительных устройствах средств автоматики. Популярность "токовой петли" начала падать после появления стандарта на интерфейс RS-485 (1983 г.) и в настоящее время в новом оборудовании она практически не применяется.

В передатчике "токовой петли" используется не источник напряжения, как в интерфейсе RS-485, а источник тока. По определению, ток, вытекающий из источника тока, не зависит от параметров нагрузки. Поэтому в "токовой петле" протекает ток, не зависящий от сопротивления кабеля , сопротивления нагрузки и э. д. с. индуктивной помехи (рис. 2.10), а также от напряжения питания источника тока (см рис. 2.11). Ток в петле может измениться только вследствие утечек кабеля, которые очень малы.

Это свойство токовой петли является основным и определяет все варианты ее применения. Емкостная наводка , э. д. с. которой приложена не последовательно с источником тока, а параллельно ему, не может быть ослаблена в "токовой петле" и для ее подавления следует использовать экранирование (подробнее о борьбе с помехами см. раздел 3).

Рис. 2.10. Принцип действия "токовой петли"

В качестве линии передачи обычно используется экранированная витая пара, которая совместно с дифференциальным приемником позволяет ослабить индуктивную и синфазную помеху.

На приемном конце ток петли преобразуется в напряжение с помощью калиброванного сопротивления . При токе 20 мА для получения стандартного напряжения 2,5 В, 5 В или 10 В используют резистор сопротивлением 125 Ом, 250 Ом или 500 Ом соответственно.

Основным недостатком "токовой петли" является ее принципиально низкое быстродействие, которое ограничивается скоростью заряда емкости кабеля от источника тока. Например, при типовой погонной емкости кабеля 75 пФ/м и длине 1 км емкость кабеля составит 75 нФ. Для заряда такой емкости от источника тока 20 мА до напряжения 5 В необходимо время 19 мкс, что соответствует скорости передачи около 9 кбит/с. На рис. 2.12 приведены зависимости максимальной скорости передачи от длины кабеля при разных уровнях искажений (дрожания), который оценивался также, как и для интерфейса RS-485 [Optically].

Вторым недостатком "токовой петли", ограничивающим ее практическое применение, является отсутствие стандарта на конструктивное исполнение разъемов и электрические параметры, хотя фактически стали общепринятыми диапазоны токовых сигналов 0. 20 мА и 4. 20 мА; гораздо реже используют 0. 60 мА. В перспективных разработках рекомендуется использовать только диапазон 4. 20 мА, как обеспечивающий возможность диагностики обрыва линии (см. раздел "Аппаратное резервирование").

Интерфейс "токовая петля" распространен в двух версиях: цифровой и аналоговой.

Аналоговая "токовая петля"

Рис. 2.11. Два варианта построения аналоговой "токовой петли": со встроенным в передатчик источником питания (а) и выносным (б)

Аналоговая версия "токовой петли" используется, как правило, для передачи сигналов от разнообразных датчиков к контроллеру или от контроллера к исполнительным устройствам. Применение "токовой петли" в данном случае дает два преимущества. Во-первых, приведение диапазона изменения измеряемой величины к стандартному диапазону обеспечивает взаимозаменяемость компонентов. Во-вторых, становится возможным передать сигнал на большое расстояние с высокой точностью (погрешность "токовой петли" может быть снижена до ±0,05%). Кроме того, стандарт "токовая петля" поддерживается подавляющим большинством производителей средств промышленной автоматизации.

В варианте "4. 20 мА" в качестве начала отсчета принят ток 4 мА. Это позволяет производить диагностику целостности кабеля (кабель имеет разрыв, если ток равен нулю) в отличие от варианта "0. 20 мА", где величина "0 мА" может означать не только нулевую величину сигнала, но и обрыв кабеля. Вторым преимуществом уровня отсчета 4 мА является возможность подачи энергии датчику для его питания.

На рис. 2.11 показаны два варианта построения аналоговой "токовой петли". В варианте а) используется встроенный незаземленный источник питания , в варианте б) источник питания — внешний. Встроенный источник удобен при монтаже системы, а внешний удобен тем, что его можно выбрать с любыми параметрами в зависимости от поставленной задачи.

Принцип действия обоих вариантов состоит в том, что при бесконечно большом коэффициенте усиления операционного усилителя (ОУ) напряжение между его входами равно нулю и поэтому ток через резистор равен , а поскольку у идеального ОУ ток входов равен нулю, то ток через резистор строго равен току в петле и, как следует из этой формулы, не зависит от сопротивления нагрузки. Поэтому напряжение на выходе приемника определяется как .

Достоинством схемы с операционным усилителем является возможность калибровки передатчика без подключенного к нему кабеля и приемника, поскольку вносимая ими погрешность пренебрежимо мала.

Рис. 2.12. Зависимость максимальной скорости передачи "токовой петли" от длины неэкранированной витой пары 22 AWG при токе петли 20 мА

Напряжение источника выбирается такой, чтобы обеспечить работу транзистора передатчика в активном (ненасыщенном) режиме и скомпенсировать падение напряжения на проводах кабеля и сопротивлениях , . Для этого выбирают , где — напряжение насыщения транзистора (1. 2 В). Например, при типовых значениях 500 Ом и сопротивлении кабеля 100 Ом (при длине 1 км) получим напряжение источника питания петли 22 В; ближайшее стандартное значение равно 24 В. Отметим, что мощность, связанная с избыточным напряжением источника питания по сравнению с рассчитанным значением, будет рассеиваться на транзисторе, что особенно существенно для интегральных передатчиков, не имеющих теплоотвода.

В схемах на рис. 2.11 используется гальваническая развязка между входом передатчика и передающим каскадом. Она необходима для исключения паразитных связей между передатчиком и приемником, подробнее см. раздел "Защита от помех".

Примером передатчика для аналоговой токовой петли является модуль NL-4AO фирмы Reallab!, имеющий 4 канала вывода аналоговых сигналов, гальваническую развязку и предназначенный для вывода из компьютера и передачи на исполнительные устройства тока в стандарте 0. 20 мА или 4. 20 мА. Структура модуля приведена в разделе "Контроллеры для систем автоматизации". Модуль содержит микроконтроллер, который осуществляет связь с компьютером по интерфейсу RS-485, исполняет команды компьютера и выполняет компенсацию погрешностей преобразования с помощью коэффициентов, полученных при калибровке источников тока и хранимых в запоминающем устройстве ЭППЗУ (электрически программируемое постоянное запоминающее устройство). Преобразование цифровых данных в аналоговый сигнал выполняется с помощью 4-канального цифро-аналогового преобразователя (ЦАП). Для расширения функциональных возможностей модуль имеет также выходы напряжения (которые не имеют отношения к рассматриваемой теме).

Цифровая "токовая тепля"

Цифровая "токовая петля" используется обычно в версии "0. 20 мА", поскольку она реализуется гораздо проще, чем "4. 20 мА" (рис. 2.13). Поскольку при цифровой передаче данных точность передачи логических уровней роли не играет, можно использовать источник тока с не очень большим внутренним сопротивлением и низкой точностью. Так, на рис. 2.13 при стандартном значении напряжения питания =24 В и падении напряжения на входе приемника 0,8 В для получения тока 20 мА сопротивление должно быть равно примерно 1,2 кОм. Сопротивление кабеля сечением 0,35 кв. мм и длиной 1 км равно 97 Ом, что составит всего 10% от общего сопротивления петли и им можно пренебречь. Падение напряжения на диоде оптрона составляет 3,3% от напряжения источника питания, и его влиянием на ток в петле также можно пренебречь. Поэтому с достаточной для практики точностью можно считать, что передатчик в этой схеме является источником тока.

Рис. 2.13. Принцип реализации цифровой "токовой петли"

Как аналоговая, так и цифровая "токовая петля" может использоваться для передачи информации нескольким приемникам одновременно (рис. 2.14). Вследствие низкой скорости передачи информации по "токовой петле" согласование длинной линии с передатчиком и приемником не требуется.

"Токовая петля" нашла свое "второе рождение" в протоколе HART.

Рис. 2.14. Токовая петля может быть использована для передачи информации нескольким приемникам

2.3. интнрфейс rs-485, rs-422 и rs-232

2.5. hart-протокол

Располагается на площади 8900 м², оснащено самым современным технологическим оборудованием, имеет научно-исследовательское и конструкторское подразделение, использующие передовые средства автоматизации проектирования.

Токовая петля

Токовая петля – это двухпроводной интерфейс передачи информации, где данные закладываются в значение тока.

Благодарности

Большое спасибо Михаилу Гуку за интересные книги. Некогда авторы начинали изучение современной электроники с энциклопедией и изданий этого замечательного человека. Без интернета учебники приходилось терпеливо перелистывать руками, а мышки бегали преимущественно в подполе.

Компания muRata постоянно снабжает читателей свежей информацией, значит, теперь в курсе новостей окажутся и читатели. Рассматриваемая продукция уже упоминается в разделе про герконовые датчики. Речь о новейшей разработке – RedRock.

Необходимость токовой петли

Токовая петля 4-20 мА считается распространённым протоколом передачи информации датчиков. В индустрии часто возникает необходимость измерения физических параметров, к примеру:

  • Давление;
  • Температура;
  • Поток жидкости.

Потребность возникает постоянно, когда информацию нужно передать на расстояния в сотни метров и более. Токовая петля считается медленным цифровым интерфейсом, и обусловлено это зарядом ёмкости кабеля от источника (что проявляется с ростом частоты), для аналоговых или дискретных устройств возможностей вполне хватает. Передатчики снабжаются аккумуляторами на 12 (реже) либо 24 В (чаще). Последние позволяют дальше передать информацию, значащим параметром становится ток, а не напряжение. Чем длиннее линия, тем ощутимее падение потенциала.

У приведённого технического решения есть пара недостатков. Во-первых, приходится использовать экранированные провода, во-вторых, увеличение дальности приводит к резкому снижению КПД. Типичная токовая петля состоит из четырёх компонентов:

  1. Источник питания. Месторасположение произвольное.
  2. Приёмник или монитор.
  3. Передатчик (сенсор).
  4. Преобразователь напряжения в ток.

Сенсоры выдают информацию, пропорциональную измеряемому параметру, представленному напряжением. Следовательно, нужно заняться преобразованием в ток. Потом информация кодируется либо по уровню тока, либо в двоичный вид: 4 мА – нуль, 20 мА – единичка. На стороне приёмника информация расшифровывается.

Поклонники цифровых технологий заявляют о низком быстродействии токовой петли. Действительно, при погонной ёмкости в 75 пФ/м километровый отрез провода образует конденсатор с номиналом 75 нФ. С ростом частоты сопротивление падает, эффект сглаживания и фильтрации не даёт правильно работать с информацией. За 19 мкс конденсатор наполняется полностью от напряжения 5 В, обусловливая замеченное ограничение в 9,6 кбит/сек.

Собственно токовая петля считается отжившим протоколом, на её место готовы прийти прочие, массово используемые, к примеру, MIDI и малоизвестный средь широкой публики промышленный интерфейс HART.

Общая информация

Первым сюрпризом становится отсутствие единых стандартов. Доминирующими стали протоколы 4-20 мА, 0-20 мА и 0-60 мА, жёстких правил нет. В токовой петле может передаваться любая информация. Если это двоичный код, единице соответствует наличие тока в размере 20 мА в зависимости от настроек системы, а нулю – отсутствие сигнала либо наличие 4 мА. Если при передаче пакета происходит разрыв линии, это непременно опознаётся через стоп-байт.

Интерфейс применялся с 50-х годов, первоначально единица кодировалась как 60 мА постоянного тока. Следовательно, КПД системы оказывался намного ниже. Петля на 20 мА появилась в 1962 году как сигнал для телетайпов – для дистанционной печати сообщений (соединяла две электрические печатные машинки). С началом 80-х ток попытались уменьшить, не всегда успешно. Решили сделать компромисс:

  1. 4 мА означает «живой» нуль. Чтобы система точно знала, не произошёл ли в сети обрыв.
  2. Единицей остаётся 20 мА.

Основным ограничением служит расстояние передачи информации. На параметр влияет битрейт: на километровых дистанциях допустимая скорость передачи информации составляет 9600 бит/сек. Выше 19,2 кбит/сек линию не используют. В итоге на дальность влияют электрические параметры линии и уровень помех. Токовую петлю предполагалось заменить по задумкам Fieldbus, в действительности в обиход вошёл стандартный сегодня RS-485 (1983 год) – вариант COM-порта. И поныне терминалы по протоколу RS-232 присоединяются при помощи токовой петли, а на приёмной стороне производится нужное преобразование. Иногда по протоколу работают избранные принтеры. Пусть теоретический предел здесь составляет 115 кбис/с, на практике применяется 9600.

Особенность токовой петли – в передатчике не обращают внимание на напряжение. Мощность бывает разной. Главное – выдержать значение тока, 20 мА. Следовательно, чем линия длиннее, тем меньше КПД. Это неукоснительно исполняемое правило. Периодически встречается токовая петля с гальванической развязкой. Для этого используются оптопары и подобные полупроводниковые конструкции.

Как правило, кабель используется экранированный, чтобы избежать параллельных ёмкостных помех, которые не удаётся компенсировать или отследить. Для создания сети неплохо подходит экранированная витая пара. Благодаря тесному переплетению проводов, она избавляет от внешних наводок в виде индуктивных и синфазных помех. Для создания дуплексного канала используют две витые пары, программно интерфейс управляется через методы XON/XOFF. Достойные специализированные приложения обходят затруднение созданием предварительных запросов на передачу и ответов.

На приёмнике ток преобразуют в напряжение при помощи резистивного делителя. В зависимости от вольтажа применяются сопротивления 125 – 500 Ом. Иногда на стороне передатчика или приёмника ставится адаптер (преобразователь сигнала) к последовательному интерфейсу COM-порта. Падение напряжения на резисторе высчитывается по закону Ома, к примеру, для номинала 250 Ом это составит 250 х 0,02 = 5 В. Соответственно, приёмник возможно откалибровать при необходимости на нужный уровень.

Где применяется токовая петля

  1. Контроль технологических процессов. На производстве токовая петля 4-20 мА считается главным аналоговым интерфейсом. Используется «живой» нуль, когда полное отсутствие сигнала означает обрыв линии. Ток в 4 мА иногда используется как питание для передатчика либо входящий сигнал модулируется датчиком и возвращается в виде информации. Встречаются цепи, где батарея стоит отдельно, тогда модулируется её сигнал. Ни приёмник, ни передатчик не тратят собственную энергию.
  2. Во времена аналоговой телефонии токовая петля оставалась излюбленным интерфейсом для подключения. И сегодня ещё находятся бьющиеся током провода в квартирах. Здесь телефон питается от станции и модулирует сигнал для вызова абонента. Как в случае с датчиком, описанным выше. Эти линии остались в качестве наследия былых времён. К примеру, компания Система Белла применяет питание постоянным током до 125 В.
  3. Токовая петля иногда используется для передачи информации уровнем сигнала. К примеру, 15 мА означает «горим!», 6 мА – «все в порядке», 0 мА — обрыв линии. Любой местечковый производитель устанавливает собственные правила и пользуется протоколом.
  4. В телефонии через токовую петлю может контролироваться базовая станция. Это называется «дистанционный контроль постоянным током». К примеру, Motorola MSF-5000 использует постоянные токи для 4 мА для передачи сервисных сигналов. Пример подобного протокола:
  • Нет тока – вести приём на 1 канале.
  • +6 мА – передавать на 1 канале.
  • -6 мА – принять информацию на 2 канале.
  • -12 мА – передать на 2 канале.

Интерфейс MIDI

MIDI формат популярен среди музыкантов, это специализированный протокол цифровой звукозаписи. На физическом уровне он организован по схеме токовой петли 5 мА. Разумеется, из-за разницы уровней единиц напрямую два стандарта передачи не совместимы. Согласно Михаилу Гуку, MIDI разработан в 1983 году и стал правилом де-факто подключения синтезаторов.

Википедия сообщает, что в июне 1981 года корпорация Роланд подала крупному производителю синтезаторов – Обергейм Электроникс – идею стандартного интерфейса. Уже в октябре Смит, Обергейм и Какихаши обсудили это с правлением Ямаха, Корг и Каваи, а в ноябре на выставке общества AES продемонстрировали первый работоспособный вариант.

Два года интерфейс находился на доработке, и в январе 1983-го Смит объединил через MIDI два аналоговых синтезатора. Это позволило напрямую перекачивать аранжировки и создавать новые музыкальные композиции. Позднее файлы MIDI введены в поддержку операционной системы Windows, позволяя авторам напрямую заниматься обработкой мелодий, насыщая их новыми спецэффектами, отсутствующими в оригинальных синтезаторах. Внедрение сэмплов различных инструментов позволяло исполнителю воспроизводить музыкальное сопровождение любой сложности.

Применение MIDI

В MIDI используются физические линии на 5 мА. Редко встречается 10. Гальваническая развязка осуществляется через оптрон. Характерной чертой признано инвертирование сигнала:

  1. Есть ток.
  2. Нет тока.

Поэтому MIDI напрямую не совместим с обычной токовой петлёй. Физический интерфейс видели многие, но не знали название. Визуально розетка представляет собой диск диэлектрика с боковым вырезом, по периметру расположены 5 отверстий (DIN). Конструкция охвачена по кругу экраном. Музыканты насчитывают три вида интерфейса:

  1. MIDI-In.
  2. MIDI-Out.
  3. MIDI-Thru.

Порт MIDI иногда стоит на материнской плате персонального компьютера. Физически задействуются в нормальном режиме не используемые контакты 12 и 15 порта игрового адаптера DB-15S. Используемая здесь логика ТТЛ требует наличия адаптера для стыковки со стандартными синтезаторами по протоколу токовой петли. Микросхема преобразователя не слишком сложная, включает оптрон, диод, ряд логических элементов.

Порт MIDI программируется через UART как последовательный COM-порт. В продаже есть звуковые карты с MIDI либо отдельные платы расширения на свободные слоты.

Протокол HART

Это развитие протокола Fieldbus, массово применяемое в промышленности. Подосновой становится токовая петля 4-20 мА, а значит, может использовать витые пары, оставшиеся от морально устаревших протоколов. Поначалу стандарт считался укзоспециализированным связным интерфейсом, но в 1986 году вышел на всеобщее обозрение. Передача по HART идёт полными пакетами, имеющими состав:

  1. Преамбула – 5-20 байт. Служит для синхронизации и определения несущей.
  2. Старт-байт – 1 байт. Указывает номер хозяина шины.
  3. Адрес – от 1 до 5 байт. Присваивается хозяину, слуге и служит специальным признаком пакетного режима.
  4. Расширение – от 0 до 3 байт. Его длина указывается в старт-байте.
  5. Команда – 1 байт. То, что слуга должен исполнить.
  6. Число байтов данных – 1 байт. Размер поля данных в байтах.
  7. Данные – от 0 до 255 байтов. Данные, помогающие расшифровать порядок действий.
  8. Проверочная сумма – 1 байт. Содержит результат логической операции XOR для всех байтов, кроме стартового и заключительного в блоке данных.

Разумеется, пакетная структура характерна для цифровых устройств, нуждается в расшифровке для правильного исполнения команды.

  • alt=»Токовая отсечка» width=»120″ height=»120″ />Токовая отсечка

Преимущества использования унифицированного токового сигнала 4 — 20 мА в цепях управления

Несмотря на развитие беспроводных сетей для связи между центральным устройством и периферией в системах автоматики и телемеханики, традиционные интерфейсы широко применяются, и ещё долго будут применяться в подобных устройствах. В этой области уже несколько десятилетий используется интерфейс типа «токовая петля», снискавший популярность благодаря простоте и надежности.

Как работает токовая петля 4…20 мА

Токовая петля 4-20 мА, от источника к приёмнику.

Работает токовая петля следующим образом. Сигнал кодируется в виде аналогового сигнала, минимальное значение которого составляет 4 мА, а максимальное – 20 мА. Например, есть датчик для измерения температуры воды. Температуре 0 градусов соответствует уровень 4 мА, а 100 градусов – 20 мА. Тогда промежуточные значения будут лежать в этом диапазоне. Например, 50 градусам будет соответствовать ток 12 мА. Центральное устройство (ЦУ) на приёмной стороне измеряет ток и обрабатывает принятое входное от датчиков значение.

Другой вариант – когда с центральным устройством связан не датчик, а исполнительный механизм (актуатор). Это может быть позиционер клапана, дроссельная заслонка и т.п. Актуатор служит приёмником, а центральное устройство – передатчиком. Генерируя выходной сигнал от 4 до 20 мА, ЦУ управляет положением исполнительного механизма.

Чаще всего уровень тока в 4 мА принят за нулевой, а 20 мА — за полный диапазон. Например, если датчик положения пневматического клапана выдаёт сигнал в 4 мА, обычно, это означает, что клапан полностью закрыт, а если 20 мА – то полностью открыт. При промежуточных значениях, соответственно, клапан принимает соответствующие промежуточные значения. Но нет никаких ограничений, чтобы сделать наоборот – вопрос только в обработке сигнала на приёмной стороне. Если сигнал дискретный, то за уровень логического нуля обычно принимают 4 мА, а за единицу – 20 мА (но можно и наоборот).

На первый взгляд, здесь присутствует усложнение. Зачем преобразовывать напряжение в ток, а потом обратно, если можно сразу подать сигнал напряжения, например, в пределах 0…5 вольт, и на приемной стороне также обойтись без дополнительного преобразования? При малом (например, в несколько сантиметров) расстоянии между приёмником и передатчиком, это действительно так. При увеличении расстояния у токовой схемы есть серьёзное преимущество.

Потери напряжения в цепи от источника к приёмнику.

При подаче сигнала, кодируемого уровнем напряжения, часть напряжения упадёт на проводах соединительной линии. Приемной части «достанется» лишь оставшаяся часть. Это сузит диапазон измерения или регулирования, но главное – такая линия требует калибровки, причём не только во время пусконаладки, но и в процессе эксплуатации. Ведь сопротивление линии со временем может измениться (например, из-за окисления клеммных контактов).

Преобразователь сигнала в ток «подстраивается» под сопротивление линии, сохраняя ток стабильным при неизменном задающем сигнале (конечно, в определенных пределах). Кроме того, значение тока не зависит от входного сопротивления приёмной части (тоже в определенных пределах). Это свойство позволяет в теории делать линию связи бесконечной, лишь следя за тем, чтобы ее сопротивление не вышло за определенную границу.

Ещё одним преимуществом такого интерфейса является его высокая помехозащищённость. В нормальном режиме в одном проводе линии связи ток течёт к приёмнику, а в другом – к передатчику (в разные стороны). Помеха же наводит ЭДС сразу в двух проводах (является синфазной), поэтому токовая петля поглощает такой всплеск без искажения сигнала. Этому же способствует низкое входное сопротивление приёмника.

И ещё один плюс токовой петли – врождённая возможность самодиагностики линии связи. Если ток в цепи упал ниже 4 мА, скорее всего, произошел обрыв измерительной линии. Если превысил 20 мА – есть повод подозревать в цепи короткое замыкание.

Существуют конечно, и недостатки. Главный из них – возможность передачи по одному каналу только одного сигнала. Это заставляет использовать для передачи большого количества сигналов кабели с большим количеством жил, что ведёт к снижению помехоустойчивости. Другой врожденный минус – низкая скорость передачи данных, связанная с наличием собственной ёмкости линии связи, которая с ростом длины линии будет увеличиваться (стандарт разрабатывался в 50-х годах прошлого века, тогда это не имело значения).

Интересно, что наряду с токовой петлей 4…20 мА существовал стандарт, в котором наибольший ток мог достигать 60 мА (использовался для телетайпных линий связи). Но это требовало применения более мощных источников питания, поэтому соображения экономичности взяли верх, и этот стандарт потихоньку прекратил своё существование. Также применялся стандарт в 40 мА, но и он сошел со сцены. При этом не существует никаких принципиальных ограничений на применение любого другого значения максимального тока в линии.

Аналоговый вход (AI)

На входе приёмной части установлен преобразователь входного тока в напряжение, например, искробезопасный барьер. Обычно это просто резистор определенного сопротивления. В большинстве случаев его номинал равен 250 Ом. При токе в 4 мА на нём падает напряжение в 1 вольт, а при токе в 20 мА – 5 вольт, что довольно удобно для дальнейших преобразований.

Если выбрать в качестве входных резисторы 125 или 500 Ом, можно получить уровни напряжения 0,5…2,5 или 2…10 вольт. Измеряется входное напряжение обычно с помощью операционного усилителя – резистор подключается между инвертирующим и неинвертирующим входами, а дальше разность напряжений можно масштабировать так, как необходимо и преобразовать в цифровой вид.

Схема аналогового входа токовой петли.

Если приёмником служит периферийное устройство (актуатор), то, в зависимости от входного тока, изменяется положение задвижки, частота вращения электродвигателя, степень открытия пневматических клапанов и происходят другие действия с исполнительными механизмами. Если же приёмником служит центральное устройство, например, контроллер, он обрабатывает сигнал датчика (о положении заслонки, о температуре или давлении, о скорости вращения вала и т.п) и предпринимает действия, заложенные в алгоритме.

Аналоговый выход (AO)

В настоящее время передающая часть токовой петли строится на интегральных преобразователях, выполняемых в виде одной микросхемы. Таков, например, преобразователь MAX12900. Эта микросхема разработана для работы под управлением микроконтроллера путем использования широтно-импульсной модуляции. ШИМ-сигнал с контроллера обрабатывается микросхемой и преобразуется в напряжение. Для конвертации напряжения в ток необходимы внешние транзисторы. Такое решение применяется на стороне передатчика, если им служит центральное устройство (компьютер).

Преобразование в напряжение ШИМ-сигнала с контроллера, обработанного микросхемой.

Если передатчиком служит датчик (температуры, оборотов двигателя, давления, расхода, уровня и т.д.), то такое решение часто является излишним. В этом случае бывает рациональнее построить передающую часть на дискретных элементах. Сигнал с датчика преобразовывается в напряжение, которое затем конвертируется в ток с помощью операционного усилителя.

Сигнал с датчика преобразовывается в напряжение, которое затем конвертируется в ток с помощью операционного усилителя.

С появлением в 80-х годах прошлого столетия интерфейса RS-485 и общей тенденцией перехода на цифровые линии связи, популярность токовой петли стала падать. Тем не менее, она не сошла со сцены, применяется в новых разработках, под неё выпускаются электронные компоненты и готовые устройства. В современных системах автоматизации на промышленных объектах сигнал 4…20 мА применяется достаточно широко для приёма данных от датчиков и управления исполнительными механизмами или задания частоты вращения для частотного привода.

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Что такое петля фаза-ноль простым языком — методика проведения измерения

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Чем отличаются аналоговый сигнал от цифрового — примеры использования

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Что такое оптрон, как работает, основные характеристики и где применяется

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Преобразователи напряжения с 12 на 220 вольт

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Что такое оптоволоконный кабель

Преимущества использования унифицированного токового сигнала 4 - 20 мА в цепях управления

Что такое частотный преобразователь, основные виды и какой принцип работы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *