Что такое сдвиг фаз
Перейти к содержимому

Что такое сдвиг фаз

  • автор:

Что такое фаза, фазовый угол и сдвиг фаз

Фаза, фазовый угол и сдвиг фаз — это важные понятия в электротехнике и электроэнергетике. Понимание этих понятий является необходимым условием для квалифицированных инженеров-электриков и других специалистов, работающих в этой области.

Они играют ключевую роль в понимании работы электроэнергетических систем и позволяют выполнять качественный анализ и диагностику возможных неисправностей.

В этой статье мы рассмотрим основные понятия, связанные с фазами, фазовыми углами и сдвигом фаз, а также их применение в электротехнике и электроэнергетике.

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс, то и функция, описывающая данный процесс, — гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Что такое фаза, фазовый угол и сдвиг фаз

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

Что такое фаза

Напряжение в однофазной сети

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Фазовый угол

Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Фазовый сдвиг

Фазовый сдвиг

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Фазовый сдвиг на осциллографе

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Применение на практике

Понимание концепции фазы, фазового угла и сдвига фазы является ключевым для решения многих практических задач в электротехнике. Они используются в различных областях, таких как электроэнергетика, автоматизация и электроника.

В электроэнергетике, фазы, фазовый угол и сдвиг фазы используются для определения характеристик электрической сети, в том числе для оценки ее надежности и эффективности. Фазовый угол позволяет определять синхронность токов в разных фазах и корректировать их, чтобы обеспечить стабильную работу системы.

В автоматизации, фазовый угол и сдвиг фазы используются для синхронизации и контроля процессов, в том числе для управления двигателями и другими механическими устройствами.

В электронике, фазы, фазовый угол и сдвиг фазы используются для определения характеристик электрического сигнала и его обработки. Они играют важную роль в многих электронных приложениях, таких как управление двигателями, системы аудио и видео кодирования, регулирование напряжения и многое другое.

В системах управления двигателем, фазы используются для управления положением ротора и обеспечения правильной работы двигателя. В системах аудио и видео кодирования, фазовый угол и сдвиг фазы используются для компрессии и декомпрессии сигналов.

В области освещения фазы, фазовый угол и сдвиг фазы используются для определения характеристик источников света и для подбора необходимых элементов освещения. Например, в случае использования электронных блоков питания для светодиодных ламп, фазовый сдвиг может влиять на качество и яркость света.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Сдвиг фаз между током и напряжением в цепи переменного тока

При транспортировке электрической энергии от мест её генерации (тепловые, атомные и гидроэлектростанции) до конечных потребителей необходимо неоднократно варьировать величину напряжения (понижать или повышать). С наибольшей эффективностью эти преобразования удаётся сделать, когда в линиях электропередачи используется переменное напряжение. При этом электрический ток, возникающий в результате действия переменного электрического поля, будет также переменным, изменяясь во времени периодически с такой же частотой. Если в сети присутствуют реактивные элементы (ёмкости, индуктивности), то возникает сдвиг фаз между переменным током и напряжением.

Определения и основные формулы

Переменным принято называть ток, изменяющийся с течением времени как по величине, так и по амплитуде. В английской технической литературе используется термин alternating current (AC). Он переводится как «чередующийся ток» или ток, изменяющий свою полярность.

Определение переменного электротока

Периодический переменный ток (ПТ) — это ток, который через идентичные интервалы времени принимает исходную величину, совершая таким образом циклический процесс, аналогичный гармоническому колебанию маятника. Гармонические колебания описываются с помощью синусоидальной функции:

Общая формула синусоидального тока

Величина, которая определяется как произведение ω на t и имеет размерность угла (в радианах угол 90 градусов соответствует π/2 радиан), называется фазой синусоидальной переменной. В данном случае тока. Формула справедлива для случая, когда измерение тока стартует с точки отсчёта t = 0. В общем случае рабочая формула выглядит так:

Рабочая формула синусоидального электротока

Используя специальный измерительный прибор — осциллограф, можно наблюдать синусоиду напряжения на экране и определять её параметры.

Особенности переменного напряжения

ПТ и активная нагрузка

Если к источнику переменного тока подключено обычное сопротивление (резистор), то согласно закону Ома ток на резисторе, равен:

Определение тока на резисторе

В приведенной выше формуле величина I0 = U0 / R — амплитуда ПТ. Видно, что ток в цепи с активным сопротивлением изменяется с течением времени абсолютно синхронно с напряжением.

Графическое отображение напряжения и тока на участке с активным сопротивлением

Таким образом, на активной нагрузке угол сдвига фаз между током и напряжением равен нулю.

Конденсатор в цепи ПТ

Конструкция конденсатора препятствует протеканию постоянного тока, полностью его блокируя. Поочерёдно заряжаясь и разряжаясь конденсаторные пластины поддерживают ток в цепи, поскольку по определению ток I — это изменение заряда Q за единицу времени:

Формула электротока

Ниже представлена картинка, объясняющая подключение конденсатора С к источнику переменного напряжения U.

Емкость в цепи ПТ

Напряжение на конденсаторе в любой момент времени равно напряжению:

Напряжение на конденсаторе

Тогда заряд Q(t) на обкладках конденсатора определим, используя выражение:

Формула для определения электрозаряда

Пользуясь формулой для тока, получим первую производную от заряда по времени, которая равна ёмкостному току Ic(t):

Формула емкостного тока

Из графиков, представленных на картинке ниже, видно, что максимальная амплитуда тока наступает на четверть периода раньше, чем напряжения. Из этого следует, что фаза напряжения на π/2 радиан меньше фазы электротока. То есть, в цепи синусоидального тока существует отставание напряжения по фазе (фазовый сдвиг) на π/2.

Графики тока и напряжения для конденсатора

Данное явление может быть объяснено по-другому. Из курса тригонометрии известно, что:

Тригонометрическая функция

С помощью формул, приведенных выше, можно получить такое выражение:

Определение электротока на конденсаторе

Данное соотношение в явном виде показывает, что фазовый сдвиг равен π/2.

Индуктивность в цепи ПТ

Катушка индуктивности в цепях СПТ является реактивным элементом, поскольку ее активное сопротивление практически равно нулю. При подключении катушки также возникает фазовый сдвиг, но его причина несколько иная, чем в цепи с емкостью.

Индуктивность в цепи ПТ

При практически нулевом омическом сопротивлении не может возникнуть короткое замыкание (резкий рост тока), поскольку переменный характер напряжения включает иной механизм сопротивления. Согласно закону, открытому британским учёным Майклом Фарадеем, в катушке появляется переменное магнитное поле, которое создает магнитный поток F, инициирующий появление электродвижущей силы (ЭДС самоиндукции) на концах катушки индуктивности:

Определение ЭДС

В соответствии с законом Фарадея:

Выражение для ЭДС самоиндукции

Откуда следует, что:

Напряжение на индуктивности

Используя данную формулу, находим определение для тока на индуктивности:

Электроток на индуктивности

Тригонометрическое преобразование

Следовательно, в идеальном индуктивном элементе угол сдвига фаз между напряжением и током равен π/2, причём ток отстаёт по фазе от напряжения.

График напряжения и тока в катушке индуктивности

Из графика видно, что максимум силы тока достигается на четверть периода позже, чем максимум напряжения, что соответствует отставанию по фазе на π/2.

От угла сдвига фаз зависит, какова будет реактивная мощность и, следовательно, коэффициент мощности, который выражается через cosφ и является очень важной характеристикой для оценки эффективности работы электрооборудования. Его значение может находиться в диапазоне от нуля до единицы. Если cosφ = 0, это означает, что в электроцепи присутствуют лишь реактивные токи. На практике такая ситуация невозможна, но чтобы потери мощности, связанные с реактивными токами, были меньше, используют компенсационные устройства.

Принцип действия таких устройств основывается на свойстве конденсаторов и катушек сдвигать фазу в противоположных направлениях. Компенсаторы зачастую используют в производственных цехах, где работает большое количество электрооборудования. Это приводит к ощутимым потерям электроэнергии и ухудшению качества электротока. Устройство компенсации решает подобные проблемы. Им успешно силу тока изменяют, если что-то сдвигают. Обычно такое устройство состоит из блоков конденсаторов довольно большой емкости, которые помещаются в отдельных шкафах.

Сдвиг фаз

Сдвиг фаз — разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой. Сдвиг фаз является величиной безразмерной и может измеряться в градусах, радианах или долях периода. В электротехнике сдвиг фаз между напряжением и током определяет коэффициент мощности в цепях переменного тока.

В радиотехнике широко применяются RC-цепочки, сдвигающие фазу приблизительно на 60°. Чтобы сдвинуть фазу на 180° нужно включить последовательно три RC-цепочки. Применяется в RC-генераторах.

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмоток трансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

См. также

  • Исправить статью согласно стилистическим правилам Википедии.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Радиотехника
  • Электроника
  • Электротехника

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Сдвиг фаз» в других словарях:

сдвиг фаз — разность начальных фаз переменных физических величин, изменяющихся по синусоидальному закону с одинаковой частотой. Измеряется в градусах, радианах и долях периода. * * * СДВИГ ФАЗ СДВИГ ФАЗ, разность начальных фаз переменных физических величин,… … Энциклопедический словарь

сдвиг фаз — гармонических колебаний; сдвиг фаз Разность фаз двух гармонических колебаний с одинаковыми частотами … Политехнический терминологический толковый словарь

СДВИГ ФАЗ — разность начальных фаз переменных физических величин, изменяющихся по синусоидальному закону с одинаковой частотой (напр., напряжения в цепи синусоидального тока). Измеряется в градусах, радианах и долях периода … Большой Энциклопедический словарь

сдвиг фаз — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN phase shiftinglag … Справочник технического переводчика

сдвиг фаз — fazių skirtumas statusas T sritis automatika atitikmenys: angl. phase difference vok. Gangunterschied, m; Phasendifferenz, f; Phasenunterschied, m; Phasenverschiebung, f rus. разность фаз, f; сдвиг фаз, m pranc. différence des phases, f;… … Automatikos terminų žodynas

сдвиг фаз — fazių skirtumas statusas T sritis fizika atitikmenys: angl. phase difference vok. Phasendifferenz, f; Phaseunterschied, m rus. разность фаз, f; сдвиг фаз, m pranc. différence de phase, f; différence des phases, f; déphasage, m … Fizikos terminų žodynas

сдвиг фаз гармонических колебаний — сдвиг фаз Разность фаз двух гармонических колебаний с одинаковыми частотами. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической терминологии. 1987 г.] Тематики механические… … Справочник технического переводчика

сдвиг фаз двух синхронных гармонических колебаний (вибрации) — сдвиг фаз Разность фаз двух синхронных гармонических колебаний (вибрации) в любой момент времени. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]… … Справочник технического переводчика

сдвиг фаз синхронных гармонических колебаний (вибраций) — сдвиг фаз Разность фаз двух синхронных гармонических колебаний (вибраций) в любой момент времени. Пояснения 1)Некоторые величины и зависимости, характеризующие вибрацию, могут относиться к перемещению, скорости, ускорению, силе и другим… … Справочник технического переводчика

сдвиг фаз гармонических колебаний — сдвиг фаз гармонических колебаний; сдвиг фаз Разность фаз двух гармонических колебаний с одинаковыми частотами … Политехнический терминологический толковый словарь

Понятие сдвига фазы в аналоговых цепях

В данной статье рассказывается о сдвиге фазы, о влиянии схемы, вызывающем опережение или отставание напряжения или тока на выходе схемы относительно входа. В частности, нам будет интересно то, как реактивные нагрузки и цепи будут влиять на сдвиг фазы в схеме. Сдвиг фазы может иметь всевозможные последствия, независимо от того, работаете ли вы с генераторами, усилителями, петлями обратной связи, фильтрами и т.п. Например, вы ожидаете, что ваша инвертирующая схема на операционном усилителе будет давать сдвиг фазы на 180°, но вместо этого она возвращает синфазный сигнал и вызывает проблемы с автоколебаниями. Или, например, подключение измерительных щупов для анализа цепи может внести свое влияние. Или, возможно, у вас есть резонансный контур, который используется в петле обратной связи автогенератора, но контур обеспечивает сдвиг фазы только 90°, тогда как вам нужно 180°. Вы должны изменить контур, но как?

Сдвиг фазы для реактивных нагрузок

Частотно-зависимый сдвиг фазы происходит из-за влияния реактивных компонентов: конденсаторов и катушек индуктивности. Это относительная величина, и поэтому она должна быть задана как разность фаз между двумя точками. В данной статье «сдвиг фазы» будет означать разницу по фазе между выходом и входом. Говорят, что конденсатор вызывает отставание напряжения от тока на 90°, в то время как индуктивность вызывает отставание тока от напряжения на 90°. В векторной форме это обозначается +j или -j в индуктивном и емкостном реактивном сопротивлении соответственно. Но емкость и индуктивность в некоторой степени существуют во всех проводниках. Так почему же они не вызывают сдвиги фаз на 90°?

Все наши эффекты сдвига фазы будут моделироваться цепями RC и RL. Все схемы могут быть смоделированы как источник с некоторым внутренним сопротивлением, рассматриваемая схема и нагрузка, следующая за схемой. Внутренний импеданс источника также называется его выходным сопротивлением. Я считаю, что проще всего говорить о входном и выходном импедансе и о каскадах, поэтому позвольте мне перефразировать: все схемы могут быть смоделированы как выход одного каскада с некоторым выходным импедансом, питающий следующий каскад, который нагружен входным импедансом следующего каскада. Это важно, потому что это уменьшает сложность цепей до гораздо более простых RLC-цепей, фильтров и делителей напряжения.

Взгляните на следующую схему.

Рисунок 1 Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм Рисунок 1 – Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм

Это будет моделировать некоторую цепь источника (например, усилитель) с выходным сопротивлением 50 Ом, который имеет нагрузку 10 кОм и шунтируется конденсатором 10 нФ. Здесь должно быть понятно, что схема, по сути, является RC-фильтром нижних частот, выполненным из R1 и C1. Из базового анализа цепей мы знаем, что сдвиг фазы напряжения в RC-цепи будет изменяться от 0° до -90°, и моделирование подтверждает это.

Рисунок 2 Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором Рисунок 2 – Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором

Для низких частот фаза выходного сигнала не зависит от конденсатора. Когда мы доберемся до частоты среза (fср) RC-фильтра, фаза падает до -45°. Для частот выше частоты среза фаза приближается к своему асимптотическому значению -90°.

Эта фазо-частотная характеристика моделирует сдвиг фазы, вызванный любым шунтирующим конденсатором. Шунтирующий конденсатор вызовет сдвиг фазы на резистивной нагрузке между 0° и -90°. Конечно, также важно помнить и об ослаблении.

Аналогичный взгляд на последовательный конденсатор (например, конденсатор емкостной связи по переменному току) показывает типовой эффект подобной схемы.

Рисунок 3 Схема с последовательным конденсатором. Рисунок 3 – Схема с последовательным конденсатором. Рисунок 4 . и графики ее амплитудно-частотной и фазо-частотной характеристик Рисунок 4 – . и графики ее амплитудно-частотной и фазо-частотной характеристик

В этом случае сдвиг фазы начинается с +90°, а фильтр является фильтром верхних частот. За пределами частоты среза, в конечном итоге, устанавливается значение 0°. Итак, мы видим, что последовательный конденсатор всегда будет вносить сдвиг фазы между +90° и 0°.

Усилитель с общим эмиттером

Имея в распоряжении эту информацию, мы можем применить RC-модель к любой цепи, к какой захотим. Например, этот усилитель с общим эмиттером.

Рисунок 5 Усилитель с общим эмиттером с сопротивлением обратной связи в цепи эмиттера (смещение не показано) Рисунок 5 – Усилитель с общим эмиттером с сопротивлением обратной связи в цепи эмиттера (смещение не показано)

Частотные характеристики данного усилителя будут плоскими примерно до 10 МГц.

Рисунок 6 Логарифмические амплитудно-частотная и фазо-частотная характеристики усилителя с общим эмиттером Рисунок 6 – Логарифмические амплитудно-частотная и фазо-частотная характеристики усилителя с общим эмиттером

Только после примерно 10 МГц мы видим изменения сдвига фазы – ниже 180°, что мы и ожидаем, поскольку схема с общим эмиттером представляет собой инвертирующий усилитель. Выходной импеданс усилителя, пренебрегая эффектом Эрли, равен R2 = 3 кОм, что довольно высоко.

Теперь мы поставили на выходе шунтирующий конденсатор. Что мы можем ожидать от фазы?

Рисунок 7 Усилитель с общим эмиттером с шунтирующим конденсатором на выходе Рисунок 7 – Усилитель с общим эмиттером с шунтирующим конденсатором на выходе

Исходя из нашего опыта, мы ожидаем, что частота среза будет составлять 53 Гц, ниже которой сдвиг фазы должен быть 180° (без влияния конденсатора), и выше которой сдвиг фазы будет равен 180° — 90° = 90° (а также большие потери). Моделирование подтверждает наши подозрения:

Рисунок 8 Графики АЧХ и ФЧХ для усилителя с общим эмиттером с емкостной нагрузкой Рисунок 8 – Графики АЧХ и ФЧХ для усилителя с общим эмиттером с емкостной нагрузкой

Обратите внимание, что это эквивалентно тому, если бы фаза изменялась от -180° до -270°. Теперь мы начинаем понимать, что питание емкостной нагрузки может привести к неожиданным изменениям фазы, что может нанести ущерб усилителю с неожиданной обратной связью.

В более распространенном сценарии на выходе используется последовательно включенный конденсатор связи, как показано на следующей схеме.

Рисунок 9 Усилитель с общим эмиттером с последовательно включенным на выходе конденсатором Рисунок 9 – Усилитель с общим эмиттером с последовательно включенным на выходе конденсатором

Я изменил номиналы элементов схемы и добавил резистивную нагрузку 100 кОм. Теперь мы имеем фильтр верхних частот, состоящий из C1 и R3, с частотой среза всего 1,6 Гц. Мы ожидаем, что сдвиг фазы будет равен -90° на частотах ниже 1,6 Гц и -180° на частотах выше частоты среза, что подтверждается моделированием.

Рисунок 10 Графики АЧХ и ФЧХ для усилителя с общим эмиттером с конденсатором связи по переменному току Рисунок 10 – Графики АЧХ и ФЧХ для усилителя с общим эмиттером с конденсатором связи по переменному току

Конденсатор связи с таким номиналом подошел бы для сигналов звуковой частоты, поскольку область сдвига фазы -90° (и, следовательно, затухания) значительно ниже 10 Гц.

Конечно, такого рода эффекты не ограничиваются конденсаторами. Индуктивности будут оказывать противоположное влияние: шунтирующие катушки индуктивности вызывают сдвиг фазы от 0° (ниже fср) до +90° (значительно выше fср), в то время как последовательно включенные катушки индуктивности вызывают сдвиг фазы от 0° (выше fср) до -90° (ниже fср) , Однако в этом случае необходимо быть осторожным, чтобы не создавать проблемных замыканий на землю, поскольку катушки индуктивности для постоянного тока будут представлять собой короткое замыкание.

Рисунок 11 Усилитель с общим эмиттером с катушкой индуктивности на выходе. Эта последовательно включенная индуктивность будет оказывать очень малое влияние на схему на низких частотах. На высоких частотах всё будет по-другому. Рисунок 11 – Усилитель с общим эмиттером с катушкой индуктивности на выходе. Эта последовательно включенная индуктивность будет оказывать очень малое влияние на схему на низких частотах. На высоких частотах всё будет по-другому.

Заключение

Мы заложили основу для понимания сдвига фазы в аналоговых схемах. Рассматривая выход схемы как источник с выходным сопротивлением, мы можем эффективно моделировать влияние реактивных нагрузок на фазу схемы. Таким образом, можно моделировать как пассивные, так и активные схемы, что дает нам полезные инструменты для простого анализа и проектирования. В следующей статье мы проверим эти концепции, применив их к схемам на операционных усилителях и к резонансным контурам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *