Как заряжать свинцово кислотный аккумулятор на 4 вольта
Перейти к содержимому

Как заряжать свинцово кислотный аккумулятор на 4 вольта

  • автор:

Почему свинцово-кислотные аккумуляторы так сложно заряжать?

Особенно глубоко разряженные, как в сегодняшнем опыте на видео. Особенно находившиеся какое-то время в состоянии частичной заряженности (PSoC), вследствие чего, сульфатированные. Учитывая неизбежный саморазряд при хранении и недозаряд под капотом, рано или поздно это судьба почти каждой АКБ.

Особенно изношенные AGM, склонные к сильному нагреву. Особенно, как ни странно, самые надёжные и долговечные АКБ премиум-сегмента, плотные сепараторы которых препятствуют как разрушению пластин, так и перемешиванию электролита. Особенно когда нет пробок для доступа к электролиту, как в большинстве современных аккумуляторов.

Всё потому, что АКБ, — аккумуляторные батареи наших транспортных средств, источников бесперебойного питания и систем возобновляемой энергетики, — имеют специфические особенности вольтамперной характеристики (ВАХ), обусловленные физико-химическими свойствами.

Об этом и пойдёт речь, на примере глубоко разряженной гибридной (Sb/Ca) Тюмень Стандарт 6СТ-60L.

Несколько полезных ссылок:

  • Яркий пример последствий саморазряда при хранении новой аккумуляторной батареи детально рассмотрен в первой части большого теста 6 отечественных АКБ.
  • Цикл рекомбинации кислорода, вызывающий «терморазгон» изношенных AGM, описан в статье про первый отечественный AGM.
  • Способ определения индивидуального напряжения завершения заряда конкретной АКБ с использованием адаптивного ЗУ при отсутствии доступа к электролиту приведён в первой части большого теста 6 АКБ иностранных брендов.
  • Как убивает аккумуляторы прогрессирующий недозаряд, и можно ли их после этого восстановить, а также феномен мнимого, или поверхностного, заряда описан здесь. о «тайном», «высоковольтном» этапе заряда, в том числе, для AGM, известном профессионалам и указанном в инструкциях от производителей АКБ в явном или неявном виде.

В лабораторию поступил аккумулятор Тюмень Стандарт 6СТ-60L. 12 В 60 А*ч, паспортный ток холодной прокрутки (ТХП) 520 А в стандарте EN. АКБ эксплуатировалась полтора года.

Уровень электролита настолько низкий, что не покрывает пластины. Видны белые кристаллы сульфата свинца. Автомобиль простаивал 2 месяца по причине поломки КПП. Для гибридного Ca+ аккумулятора, в отличие от Ca/Ca, это немалый срок сам по себе. Кроме саморазряда, присутствовал ток покоя охранной сигнализации порядка 30 мА. За 2 месяца разряд таким током составляет 43 А*ч. Это практически вся ёмкость бывшей в употреблении батареи.

АКБ отогревается. Напряжение разомкнутой цепи (НРЦ) составляет 10.53 В. На холоде 2 часа назад оно было 8 В. Оставим отогреваться у тепловой пушки ещё 2 часа.

Перед зарядом свинцово-кислотной АКБ «мокрого» (WET) типа, то есть, со свободно плещущимся электролитом, необходимо удостовериться, что электролит покрывает пластины. В противном случае, долить дистиллированную воду, (не водопроводную, не питьевую, не электролит!) до кромок пластин. (Не до нормального уровня!)

Уровень электролита будет расти в процессе заряда. Если долить слишком много, при заряде электролит может политься через верх горловин банок, создавая ненужные проблемы.

АКБ отогрелась, недостающую воду долили. Заряжать будем отечественным программируемым ЗУ Кулон-912.

▍ Вольтамперная характеристика

Коль скоро применяем зарядное устройство с классическим CC/CV режимом заряда на базе стабилизированного источника питания, просто необходимо вспомнить один важный момент, изо дня в день становящийся камнем преткновения. О стабилизации тока и напряжения при заряде аккумуляторной батареи или питании того или иного потребителя постоянно задают вопросы одного и того же рода, похожие как капли воды.

«Почему я устанавливаю 15 вольт 3 ампера, а получается ток ниже 3 ампер? 3 ампера ЗУ выдаёт только на 17 вольтах, оно бракованное?». «Почему устанавливаю 15.5 вольт 6 ампер, а напряжение всего лишь 14 вольт?»

Допустим, у нас есть стабилизированный блок питания 100+ Вт, настроенный на 10 вольт 10 ампер. Если подключить на его выход резистор 1 Ом, ток при напряжении 10 В составит как раз 10 А, и по закону Джоуля-Ленца будет выделяться мощность 100 Вт. Такая ситуация называется согласованием сопротивлений, когда и ток, и напряжение, и мощность максимальны.

Если сопротивление резистора 10 Ом, сила тока составит всего 1 А, мощность 10 Вт. У источника питания будет активна обратная связь (ОС) по напряжению, а до срабатывания ОС по току дело не дойдёт. Это не неисправность блока питания, а логика его работы и природа резистора.

При сопротивлении 10 миллиом и токе 10 ампер, например, на токоизмерительном шунте, напряжение составит всего 0.1 вольта, тепловыделение 1 Вт. Здесь работает ОС по току, а ОС по напряжению не срабатывает.

Идеальный резистор — простейший случай, у него линейная вольтамперная характеристика (ВАХ), и она неизменна во времени и не зависит от температуры. Но если взять нить накаливания лампочки, то в момент включения холодная нить имеет малое сопротивление, идёт ток выше рабочего, так называемый пусковой ток. Пусть это будет 10 ампер, максимум, который выдаст блок питания (БП), при 8 вольтах. Далее нить нагреется, её сопротивление повысится, ток снизится, например, до 7 А, а напряжение возрастёт до заданных 10 вольт.

Это не неисправность лампочки или БП, а физика их работы. Получается, лампа накаливания имеет вольтамперную характеристику во времени, обусловленную температурным коэффициентом сопротивления (ТКС) металла (сплава) её нити.

Кстати, именно по этой причине лампочки часто перегорают именно в момент включения, когда нить холодная, и у неё низкое сопротивление. Чтобы при перегорании спирали не поддерживался дуговой разряд, который может вызвать перегрузку электросети, взрыв колбы и пожар, внутри многих лампочек есть плавкий предохранитель в виде участка более тонкой проволоки, идущего от цоколя внутри колбы. В перегоревшей лампочке часто наблюдаем прилипшие изнутри к стеклу шарики расплавленного металла в зоне, где проходил этот участок.

Чтобы запустить электромотор, особенно нагруженный каким-либо механизмом на валу, (например, компрессором холодильника), необходимы бо́льшие ток и мощность, чем для поддержания его вращения даже при отборе уже запущенным механизмом крутящего момента и энергии с вала.

Причём обмотки двигателя не рассчитаны на долговременную работу в пусковом режиме. Потому уже много десятилетий используются пусковые конденсаторы более высокого номинала, чем рабочие, и тепловые пускозащитные реле, препятствующие не только продолжительной работе при повышенном токе, (например, при заклинивании механизма), но и нескольким пускам подряд в течение короткого времени, (при перебоях электроснабжения).

Распределение ионов, (то есть, носителей заряда), в объёме банки (ячейки) аккумулятора, (где действует электрическое поле), создаёт ЭДС, прибавляющуюся к напряжению на клеммах при заряде и отнимающуюся при разряде. Это явление можно назвать «паразитным ионистором», или «суперконденсатором».

Плотная структура сепараторов современных аккумуляторных батарей, особенно премиум вариантов, (SSB — батареи для систем старт-стоп, EFB — улучшенные наливные батареи), препятствует дрейфу ионов в электролите и создаёт тем самым эффект «паразитного электрета», — стойкого перенапряжения, удерживающегося длительное время.

Также дополнительную ЭДС создают газы, — водород и кислород, — в порах активных масс. Это уже «паразитный топливный элемент».

Паразитные «суперконденсатор» и «топливный элемент» в кислотном аккумуляторе имеют довольно значительную электрическую ёмкость, заряд которой растянут во времени. Потому при заряде АКБ напряжение на её клеммах растёт не только по сумме термодинамической ЭДС банок и падения напряжения на внутреннем сопротивлении, но и по ходу заряда паразитных ёмкостей.

То есть, при подаче зарядного тока 5% ёмкости, (3 ампера для 60 А*ч) на разряженную АКБ с НРЦ, (термин, не тождественный ЭДС по вышеописанным причинам), 12 вольт, он создаст перенапряжение всего 100-200 милливольт, или даже ниже.

Этот же ток, подаваемый на клеммы заряженной АКБ с НРЦ 12.9 вольт, что всего на 900 милливольт выше разряженной, вскоре создаст перенапряжение, например, до 16.7 В, то есть, на 3.8 вольта, что в 25 раз выше случая из предыдущего абзаца.

Потому ЗУ, настроенное на 15 вольт 6 ампер, в первом случае будет подавать 6А 12.3 В, во втором напряжение быстро подскочит до 15В, а ток будет снижаться до 1 А и ещё ниже. Это не неисправность ЗУ или АКБ, а физика и химия свинцового аккумулятора, и работа обратных связей стабилизированного источника питания.

Предугадать правильные напряжения, токи и время для каждого этапа заряда при данном состоянии конкретного экземпляра АКБ бывает непросто. В одних случаях, производители ограничиваются общими рекомендациями, в других предписывают сложные многоступенчатые профили заряда, как, например, этот от Tianneng.

Разные зарядные устройства предоставляют разную степень автоматизации процесса и средств мониторинга и управления. Также при обслуживании свинцовых аккумуляторов используются такие приборы, как нагрузочные вилки, экспресс-тестеры, разрядные нагрузки, средства определения плотности электролита — ареометры и рефрактометры. Последние неактуальны при отсутствии доступа к пробкам у популярных MF (maintenance free) аккумуляторов.

image

Цель стационарного заряда — преобразовать все сульфаты в намазках пластин АКБ в заряженные активные массы (АМ), — губчатый свинец отрицательной и оксид свинца положительной, и перемешать электролит до равномерной концентрации кислоты, т.е. плотности раствора, по всему объёму банок.

Это восстанавливает эксплуатационные характеристики, в том числе, способность оперативно и эффективно восполнять заряд от генератора транспортного средства после пуска двигателя, штатного ЗУ после поездки на электромотоцикле, или контроллера заряда источника бесперебойного питания после возобновления внешнего питания.

Десульфатацией называется процесс электролитической диссоциации застарелых труднорастворимых сульфатов. Это необходимая часть полного выравнивающего стационарного заряда, восстанавливающего ёмкость, токоотдачу, и продлевающего срок службы АКБ.

▍ Капельный предзаряд пульсирующим током

Начнём восстановление нашей АКБ. Кулон-912 снабжён функцией импульсного предзаряда. Целесообразность этого этапа обусловлена тем, что глубоко разряженная, т.е. разбалансированная АКБ при подаче стандартного тока 10% ёмкости может сильно нагреваться, так как разным участкам пластин достанется разная плотность тока, а разным банкам — разное перенапряжение.

Чтобы этого избежать, установим ток 5% номинальной ёмкости, для 60 А*ч это 3 А. Длительности импульса и паузы сделаем равными, по 5 секунд. Завершение этапа по достижении напряжения в паузе, т.е. НРЦ 12 вольт.

▍ Этап основного заряда

Разрядные импульсы при асимметричном (реверсивном) заряде частично снимают поляризацию, благодаря чему, повышают эффективность заряда и десульфатации. Некоторые адаптивные ЗУ, в отличие от классических, в т. ч. программируемых, используют разрядный импульс и для анализа отклика электрохимической системы. Разрядные импульсы, как и зарядные, могут быть модулированными, т.е. являться пачками более коротких импульсов и пауз, что позволяет исследовать внутреннее сопротивление АКБ на другой частоте.

Окончание этапа по прошествии 6 часов при достигнутом установленном напряжении. Каким будет ток в конце основного заряда, трудно предугадать. Потому хорошо, что ЗУ предоставляет такую опцию автоматики. Этапы дозаряда и хранения пока не активируем. Сначала проконтролируем, к чему приведут предзаряд и основной заряд с такими настройками.

Плотность электролита по банкам от 1.23 до 1.25, что явно недостаточно. Присутствует расслоение электролита, требуется дозаряд.

▍ Этап дозаряда

Дозаряд будем производить током 2.2А, это чуть выше 1/30 ёмкости, без ограничения напряжения, до тех пор, пока напряжение не перестанет расти в течение 2 часов. К сожалению, такой опции автоматизации ZDV, (zero delta voltage, нулевое приращение напряжения), у Кулона-912 нет, зато есть удалённые мониторинг и управление, а также запись лога. Потому будем наблюдать за процессом, и завершим его вручную.

Прошло почти два часа, напряжение снизилось до 14.84 В. Это происходит по причине снижения внутреннего сопротивления АКБ, в частности, из-за её нагрева. Аккумулятор слегка тёплый. Отдано суммарно 5.92 А*ч.

Прошло более суток, НРЦ 12.92 В. Плотность электролита по банкам 1.25 — 1.29. Более низкая плотность в тех банках, куда не доливалась вода.

▍ Kонтрольный разряд и итог

Разряд завершён, ёмкость составила 19.48 А*ч, как и ожидалось. Ставим на заряд, повторив 3 вышеописанных этапа.

После заряда и отстоя НРЦ 13.03 В, внутреннее сопротивление 5.78 мОм, ТХП 537 из 520 А по EN. SoH 100%. Прекрасный результат! Аккумулятор восстановился полностью. Теперь измерим и при необходимости скорректируем плотность электролита.

Плотность во всех банках составила 1.27-1.28, коррекция не требуется. Восстановление АКБ завершено, возвращаем владельцу.

Видео-версия:

Статья написана в сотрудничестве с автором экспериментов и видео — Аккумуляторщиком Виктором VECTOR.

Алгоритмы заряда свинцово-кислотных батарей

Целью сего является обсуждение способов использования зарядных устройств для зарядки свинцово-кислотных батарей (далее — АКБ). Существует большое количество разнообразных зарядных устройств (далее — ЗУ) для различных типов аккумуляторов (далее — АКБ). Параметры, которые определяют использование (эксплуатацию) АКБ, включают в себя не только требования к электрическому заряду и разряду, ограничения по амплитуде и току, но также условия окружающей среды и условия хранения.

Что происходит с АКБ, когда она заряжается и разряжается?

Химические реакции во время разряда преобразуют свинец, оксиды свинца и кислоту (электролит) в свободные электроны (электрический заряд, который уходит на нагрузку), воду и сульфаты свинца. Химические реакции во время зарядки полностью прекращают этот процесс. ЗУ расщепляет сульфаты свинца для соединения их с водой, повторно образуя кислоту без газообразования и потери водорода и кислорода, которые составляют воду. Кроме того, большая часть свинца будет возвращена в исходное состояние до разряда. Первичная идея создания и производства AGM-батарей (Absorbed Glass Mat) заключалась как раз в том, чтобы минимизировать потери кислорода и водорода, которые образуются при зарядных напряжениях начиная от 13,8 V (2,30 V на ячейку) и 14,2 V (2,37 V/с) (напряжения начала газообразования). Этот диапазон напряжения применим к 12 V АКБ, которые содержат по 6 ячеек с номинальным напряжением по 2,15 V каждой. Большинство ЗУ на некоторых участках алгоритма в процессе заряда имеют выходное напряжение превышающее напряжение газообразования.

Основы и алгоритмы заряда АКБ смарт-("умным") автоматическим зарядным устройством.

Существует несколько различных методов (этапов или шагов) в алгоритме заряда АКБ. Не все эти этапы необходимы при каждой зарядке или для какого-то конкретного типа АКБ. Кроме того, учитывая оптимизацию зарядки, многие автоматические "умные" ЗУ в процессе заряда контролируют, корректируют и регулируют процесс заряда. Другими словами, не все этапы зарядки осуществимы и применимы для исполнения "всё и сразу".

Итак, давайте детально поговорим о этапах алгоритма заряда и постараемся избежать ненужных технических терминов. Нумерация этапов (шагов) зарядки и порядок их представления просто указывают на типичную последовательность, в которой они обычно происходят по ходу исполнения алгоритма. Опять же, не все эти этапы (шаги) могут быть доступны и не все нужны во всех алгоритмах ЗУ.

Первый этап (вспомогательный): Инициализация (Initialization).

По сути, этот этап непосредственно не относится к зарядке и не выполняет зарядку АКБ, это не основной, а подготовительный этап. Практически все ЗУ при подключении измеряют состояние электрического соединения между АКБ и выходом ЗУ. Конкретные пределы параметров могут отличаться, но первоначальные напряжение и ток, измеренные на выходе ЗУ дают достаточно чёткое представление о том, всё ли нормально с соединением, какая степень разряженности АКБ и т.п. Например, если выходное напряжение ЗУ присутствует, но выходной ток равен нулю, то это индикация того, что между ЗУ и АКБ отсутствует соединение или оно плохое. С технической точки зрения, это разомкнутая цепь или очень высокое сопротивление на выходе. Этот этап — возможность показать пользователю, что что-то не так, например, перепутана полярность подключения и т.п.

Второй этап (вспомогательный): Восстановление (Recovery).

Этот этап необходим для решения ситуаций, связанных с глубоким разрядом АКБ. Если вы забудете выключить фары в автомобиле, то можно полностью разрядить АКБ за короткое время. Принцип этапа восстановления заключается в том, чтобы использовать постоянный ток очень низкой амплитуды при постепенно увеличивающимся невысоком напряжении. Даже при небольшом токе должно быть минимальное напряжение. Для 12 V АКБ (и литиевых батарей) это значение составляет около 4 V. В зарядных устройствах данный этап восстановления является вспомогательным, функцией по требованию. Данная функция востребована в основном при зарядке литий-ионных аккумуляторов, поскольку они более подвержены повреждению, если этап восстановления не использовался.

Примечание:
В ЗУ Ctek этот этап называется Плавный старт (Soft Start) — проверяется способность АКБ воспринимать заряд. Обозначен как этап 2 (см. рис. ниже).
На схеме обобщённого 5-этапного алгоритма заряда (см. рис. ниже) соответствует этапу 1.

Третий этап (основной): Основной заряд (Bulk).

Этот этап самый важный и главный этап в алгоритме заряда. На этом этапе на АКБ подаётся ток такой силы, сколько позволяет зарядное устройство или может принять АКБ, но не превышающий 10% от номинальной ёмкости АКБ (Ah), до тех пор, пока напряжение батареи не достигнет заданного максимального уровня. Когда напряжение достигает максимального уровня (и больше не растёт), зарядное устройство можно отключить. Пока напряжение будет расти и достигнет заданного максимального уровня, ток при этом должен оставаться постоянным и близким к его максимальному значению. Заряжать на данном этапе необходимо контролируя температуру АКБ, которая для обычных (обслуживаемых) АКБ не должна превышать 51,5°C, а батарей VRLA (необслуживаемых) — не выше 37,8°C.
Обычно производители ЗУ называют этот этап как "режим зарядки постоянным током": ток ЗУ является постоянным, а напряжение аккумулятора постепенно увеличивается. В большинстве случаев, по окончанию данного этапа АКБ заряжается примерно до 80%. Этого достаточно, чтобы можно было пользоваться АКБ, не производя дальнейших этапов зарядки.

Примечание:
В ЗУ Ctek этот этап называется Основной заряд (Bulk) — зарядка максимальным током примерно до 80% ёмкости батареи. Обозначен как этап 3.
На схеме обобщенного 5-этапного алгоритма заряда соответствует этапу 2.
При использовании 3-х фазного метода режима зарядки IUoU этот этап называется I-фаза.

Четвертый этап (основной): Поглощение (Absorption).

На этом этапе поведение напряжения и тока зарядки меняются на противоположное по сравнению с тем, которое было на предыдущем этапе. Теперь напряжение поддерживается постоянным, а ток постепенно уменьшается.
Этап зарядки Absorption является эффективным только в том случае, если он длится достаточно долго, не менее 4 часов, до тех пор, что кажется батарея практически не потребляет ток. Обычно производители ЗУ называют этот этап как "режим зарядки постоянным напряжением".

На этапе Absorption в зависимости от типа АКБ постоянное напряжение зарядного устройства устанавливается в диапазоне от 14,1 до 14,8 V (при температуре 25°C), а ток постепенно уменьшается "добивая" оставшиеся 20% до полной зарядки АКБ. Для обычных АКБ газовыделение (звук шипения или шума, исходящий из АКБ) обычно начинается в диапазоне от 80 до 90% полной зарядки и является нормальным. Полная зарядка обычно наступает когда зарядный ток падает до 2% от номинальной ёмкости Ah АКБ. Например, конечный ток для АКБ 50 Ah (C/20) составляет приблизительно 1 А (1000 мА) или даже менее. Если АКБ не может "удержать" заряд, то ток не уменьшается после расчётного времени зарядки, а АКБ нагревается выше 51,5°C, это говорит о том, что АКБ может быть сильно засульфатирована. Ручные двухступенчатые ЗУ по окончании данного этапа (цикла) зарядки в целях предотвращения перезарядки должны быть отключены.

Примечание:
В ЗУ Ctek этот этап называется Поглощение (Absorption) — зарядка плавно уменьшающимся током до 100% ёмкости батареи. Обозначен как этап 4.
На схеме обобщенного 5-этапного алгоритма заряда соответствует этапу 3.
При использовании 3-х фазного метода режима зарядки IUoU этот этап называется Uo-фаза.

Пятый этап (дополнительный): Выравнивание (Equalization).

Режим выравнивания является дополнительным и обычно выбирается пользователем отдельно или дополнительно. Для АКБ этот шаг важен в основном в случае нескольких последовательно подключенных батарей, заряжаемых одним ЗУ. Алгоритм этапа выравнивания графически подобен комбинации этапов основного заряда (3-й) и этапа поглощения (4-й). Разница заключается в том, что ток начинается с очень низкого уровня, примерно 2-5% от Ah АКБ или на очень низком фиксированном уровне, например 0,5 или 1 А. Такой зарядный ток будет оставаться постоянным в течение очень короткого времени и затем напряжение и ток будут вести себя так же, как и во время 4-го этапа Absorption, однако амплитуда напряжения и тока будут различны.
На этапе выравнивания достигается теоретическое значение 100% SoC (SоC (State оf Charge) — это степень заряженности АКБ). Помните, что каждая 12 V АКБ состоит из 6 отдельных ячеек, но все ячейки не работают одинаково и их напряжения могут меняться до такой степени, когда их суммарное значение может составлять от 12,85 до 13,05 V. На данном этапе зарядки фактически уравниваются напряжения в каждой ячейке.

Фактически этап Equalization представляет собой контролируемую "перегрузку". Это помогает удалять сульфатные кристаллы, которые могли образоваться на поверхности и в порах пластин.

Рекомендуется производить этап выравнивания при возникновении одного или нескольких из следующих событий:
— Когда разница плотности электролита между ячейками составляет 0,03 (или 30 "точек") и больше.
— Когда при полностью заряженном АКБ разница плотности электролита в одной из ячеек ниже на 0,01 (или 10 "точек") и более ниже показаний плотности для полностью заряженной ячейки.
— Когда в одну из ячеек требуется доливка воды больше, чем в другие.
— Когда в одну из ячеек требуется долить столько воды, сколько во все остальные ячейки.
— Когда SoC, измеренный ареометром, существенно отличается от SoC, измеренным цифровым вольтметром.

Примечание:
В ЗУ Ctek этот этап называется Восстановление (Recond) — в ходе этого этапа напряжение увеличивается с целью появления контролируемого газовыделения в батарее. Обозначен как этап 6.
На схеме обобщенного 5-этапного алгоритма заряда соответствует этапу 4.

Шестой этап (дополнительный): Буферный/Поддерживающий (Float).

Цель буферного этапа — поддержание полностью заряженного АКБ в состоянии 100% SoC. В большинстве случаев 12 V АКБ со 100% SoC будет иметь напряжение покоя от 12,8 до 13,1 V. Это означает, что эффективное значение напряжения, выдаваемого ЗУ в Float режиме должно составлять от 12,9 до 13,2 V. Однако большинство ЗУ выдают буферное напряжение от 13,3 до 13,6 V: на этом этапе важно, чтобы поддерживающее напряжение было выше, чем напряжение полностью заряженного АКБ, но ниже, чем напряжение начала газообразования (которое составляет около 13,8 V).
В данном режиме зарядки в целях поддержания полностью заряженного АКБ и преодоления естественного саморазряда АКБ можно держать практически неограниченно долго. На этом этапе ток зарядки уменьшается примерно до 1% (C/100) или ещё меньше.

Примечание:
В ЗУ Ctek этот этап называется Буферный (Float) — поддержание напряжения батареи на максимальном уровне за счёт подачи постоянного напряжения зарядки. Обозначен как этап 7.
На схеме обобщенного 5-этапного алгоритма заряда соответствует этапу 5.
При использовании 3-х фазного метода режима зарядки IUoU этот этап называется U-фаза.

На следующем рисунке текстовые поля над графиками напряжения и тока содержат детальное описание этапов зарядки. Шкала времени не пропорциональна реальному времени, указана в соответствии текстовым полям и служит только для отображения информации.

5-этапный алгоритм зарядки:

Фото в бортжурнале Volvo XC60 (1G) Первым реальным этапом зарядки является этап 2 (Bulk)

3-х фазный алгоритм IUoU зарядки:

Фото в бортжурнале Volvo XC60 (1G) Слева размерность приведена относительно одной ячейки, справа — для всего АКБ в целом

Данный алгоритм хорошо расписан на сайте Varta (англ. или русский).

Фото в бортжурнале Volvo XC60 (1G)

Особо обращаю внимание на следующие моменты:
— На графике обратите внимание на относительную размерность по времени проведения циклов: сумма циклов Bulk + Absorption по времени равны циклу Float (это говорит о важности проведения цикла Float).
— "После каждого разряда следует как можно скорее полностью зарядить аккумулятор" — эта рекомендация дана в целях недопущения сульфатации (т.е. что бы потом не пришлось "кипятить").
— "Используйте зарядное устройство с возможностью регулировки напряжения и тока и высоким зарядным напряжением (2,6 V на ячейку). Этот "перезаряд" должен использоваться только в течение короткого периода времени, чтобы избежать потери воды" — данное напряжение может быть необходимо на короткое время в режиме восстановления или "выравнивания" Equalization (4-й этап в 5-этапном алгоритме) при очень низком уровне тока до появления контролируемого газовыделения. Так же, это нужно для корректировки напряжения при температурной компенсации.
— На графиках обратите внимание на максимальное напряжение при зарядке, которое составляет 14,8 V для AGM и 14,4 V для обычных АКБ.

Так же, дополнительный пример, американская компания Deltran Battery Tender в инструкциях к своим автоматическим зарядным устройствам указывает, что использует 3-х этапный режим: режим Bulk (основной заряд, постоянный ток, АКБ заряжается до 85%), режим поглощения (Absorption) (высокое постоянное напряжение, батарея заряжается от 85 до 100%) и буферный режим (Float) (низкое постоянное напряжение, батарея заряжается от 100 до 103%). По сути, это минимальный эталон (3-х режимный алгоритм IUoU) при выборе автоматического зарядного устройства.

Наиболее универсальным и современным я считаю алгоритм, реализованный в зарядных устройствах шведской компании Ctek:

Фото в бортжурнале Volvo XC60 (1G)

Дополнительная информация:
1. Используйте при зарядке температурную компенсацию (подробнее я излагал здесь).
2. Для зарядки Ca/Ca VRLA АКБ очень важно соблюдать зарядное напряжение рекомендованное производителем. Возможно, понадобится специальное зарядное устройство. В большинстве случаев стандартные зарядные устройства для обычных АКБ не могут использоваться для правильной зарядки Gel (Ca/Ca) или AGM (Ca/Ca) VRLA АКБ из-за их более высоких напряжений или профилей зарядки.
3. До наступления этапа Absorption заряд батареи обычно составляет 80% от полной зарядки. Полная зарядка обычно происходит, когда зарядный ток падает ниже 2% (C/50) от ёмкости Ah и АКБ умеренно выделяет газ (появляются отдельные "редкие" пузырьки). Например, конечный ток заряда для хорошей батареи 50 Ah (C/20) составляет приблизительно 1 А (1000 мА) или менее в зависимости от типа батареи.

Основы и алгоритмы зарядки АКБ ручным зарядным устройством.

АКБ следует заряжать в три этапа, которые представляют собой [1] — заряд постоянным током, [2] — заряд постоянным напряжением и [3] — поддерживающий (буферный) заряд. Заряд с постоянным током даёт основную часть заряда; заряд с постоянным напряжением продолжается с постепенно снижающимся током и обеспечивает насыщение заряда, а поддерживающий заряд компенсирует потери, вызванные саморазрядом.

Во время зарядки постоянным током АКБ заряжается примерно до 80% за 5-8 часов; оставшиеся 20% "добиваются" более медленным зарядом с постоянным напряжением, который длится еще примерно 7-10 часов. Дозарядка с "добивкой" необходима для поддержания батареи в хорошем состоянии, если его постоянно не производить, то АКБ в конечном итоге потеряет способность принимать полный заряд и ёмкость будет уменьшаться из-за сульфатирования. Поддерживающий заряд на третьем этапе поддерживает полностью заряженную батарею в состоянии 100% SoC.

Запчасти на фото: 25162012. Фото в бортжурнале Volvo XC60 (1G)Это и есть тот самый 3-х фазный алгоритм IUoU зарядки

АКБ считается полностью заряженной, когда ток падает до минимально низкого уровня и постоянное напряжение начинает уменьшаться.

Определить завершение этапа [1] и начало этапа [2] достаточно легко — переход на этап [2] происходит когда АКБ достигает предела по напряжению (т.е. напряжение больше не растёт). В этот момент ток начинает падать и заряд АКБ начинает насыщаться, а полная зарядка достигается когда ток уменьшится до 3-5% от номинальной ёмкости Ah вашего АКБ.

Правильная предварительная настройка предела напряжения заряда — величина очень важная и достаточно критичная и эта величина составляет от 2,30 до 2,45 V на ячейку (13,8-14,7 V на АКБ). Установка порога напряжения является компромиссом и эксперты называют это "танец на острие иглы". Компромисс заключается в том, что с одной стороны, батарея хочет полностью зарядиться, чтобы получить максимальную ёмкость и избежать сульфатации на отрицательной пластине; с другой стороны, чрезмерное насыщение, не переключаясь на поддерживающий заряд, вызывает коррозию положительной пластины. Это также приводит к газообразованию и потере воды. Начало газообразования при переходе с этапа [2] на этап [3] и есть завершение полной зарядки АКБ.

Не забываем, что в соответствии с температурой АКБ (и внешней температурой) необходимо корректировать напряжение заряда. Более высокая температура окружающей среды требует уменьшения напряжения, а более низкая температура требует увеличить напряжение зарядки. Некоторые ЗУ используют датчики температуры для регулировки напряжения заряда для оптимальной эффективности заряда. Например, это мой шведский Ctek MXS 10, о котором я подробно писал здесь. Если ЗУ не имеет внешнего или встроенного датчика и не способно автоматически производить температурную компенсациею, то вы должны произвести корректировку зарядного напряжения, используя рекомендованные температурные компенсационные напряжения. Если температура электролита не может быть измерена и батарея не была недавно перемещена из более теплого или холодного места, точку отсчёта можно использовать температуру окружающего воздуха. Например, если температура электролита составляет -6,7°C, увеличьте зарядное напряжение до 15,408 V для Low Maintenance (Sb/Ca) АКБ относительно требуемого зарядного напряжения 14,4 V при 25°С. Если температура электролита составляет 43,3°C, то уменьшите зарядное напряжение до 14,064 V для той же АКБ.
Коэффициент корректировки должен составлять 2,8 mV (0,028 V) на каждый градус изменения температуры относительно 25°C:

Фото в бортжурнале Volvo XC60 (1G)

После полной зарядки в конце этапа [2] АКБ не должна оставаться на подаче максимального постоянного напряжения более 48 часов и напряжение обязательно должно быть уменьшено до уровня поддерживающего напряжения. Т.е. переход с этапа [2] на этап [3] не должен превышать 48 часов. Это особенно важно для герметичных необслуживаемых АКБ, которые плохо переносят перезарядку. Зарядка сверх указанных пределов превращает избыточную энергию в тепло и АКБ начинает активно выделять газ.
Рекомендуемое напряжение большинства АКБ на этапе [3] (поддерживающий заряд) составляет от 2,25 до 2,27 V/ячейка.

Рисунок ниже иллюстрирует срок службы АКБ, которая заряжается при поддерживающем напряжении от 2,25 до 2,30V/ячейка при температуре от 20 до 25°C. По прошествии 4 лет работы становится заметной потеря мощности (ёмкости), снижающаяся ниже 80% линии.

Фото в бортжурнале Volvo XC60 (1G)

Для полностью разряженных батарей в следующей таблице приведены рекомендуемые нормы зарядки АКБ и время для зарядки с помощью ручного ЗУ методом постоянного тока:

Фото в бортжурнале Volvo XC60 (1G)

Рекомендуемый способ зарядки методом постоянного напряжения состоит в том, чтобы медленно заряжать АКБ в течение примерно десяти часов (C/10). Во избежание повреждения полностью разряженной батареи ток должен составлять менее 1% от CCA (ток холодной прокрутки) в течение первых 30 минут заряда. ЗУ должно быть настроено на рекомендованное изготовителем АКБ напряжение зарядки. Типичные напряжения зарядки приведены в таблице ниже (при температуре 25°C):

Фото в бортжурнале Volvo XC60 (1G)

Кратко о штатной автомобильной системе зарядки.

Система зарядки автомобиля состоит из трех компонентов: генератора, регулятора напряжения и аккумулятора. Продолжительность полной зарядки АКБ зависит от количества разряда, количества избыточного тока, который отводится на батарею, продолжительности работы двигателя, частоты вращения двигателя (RPM) и температуры окружающей среды. Мощность генератора рассчитывается производителем автомобиля исходя из обеспечения максимальной бортовой нагрузки, нагрузки дополнительных устройств и поддержания заряженности батареи, но НЕ для зарядки разряженной батареи (т.е. авторы имеют ввиду — для поддержания заряженности, но не производства полной зарядки). Например, если для запуска автомобиля из полностью заряженной батареи в течение двух секунд потребовалось 300 А, то чтобы восполнить заряд системе зарядки автомобиля потребуется выдать 80 А за 10 сек при 3000 об/мин. Если для зарядки аккумулятора от генератора доступно 25 А, то это займёт уже 30 сек при 1100 об/мин и не менее 10 мин при 750 об/мин. При разряженной батарее на 60 Аh потребуется 80 А около 90 мин при 3000 об/мин и не менее пяти часов при 1100 об/мин при 25 А для полной 100% зарядки.

Более подробную информацию о системах зарядки транспортных средств можно найти на сайте автомобильных аккумуляторов Dan Landiss. Кстати, там же, с ссылкой на первоисточник, указано, что Bosch признает влияние кальция на химию батареи. Так, в справочнике "Automotive Electric/Electronic Systems" Second Edition, Robert Bosch 1995 года они рекомендуют, чтобы при использовании внешних ЗУ свинцово-кальциевые и гибридные батареи заряжались напряжением не более чем 14,4 V, а ЗУ умело заряжать по типу, известному как "Тип IU".

В идеале комбинированная нагрузка всех аксессуаров (полная для бортовой сети и дополнительных устройств) должна составлять менее 75% от максимальной расчётной мощности бортовой зарядной системы, так что бы для зарядки аккумулятора всегда оставалось не менее 25%.

Как продлить срок службы АКБ

Для поддержания АКБ в хорошем состоянии производите полную зарядку АКБ продолжительностью от 14 до 16 часов один раз в несколько недель, не реже 1 раз в квартал. Если у вас нет возможности периодически так длительно заряжать АКБ, то старайтесь использовать АКБ при умеренной температуре и избегайте глубоких разрядов. Не оставляйте АКБ в полу-разряженном состоянии, уезжая в отпуск на несколько недель — во избежания возникновения обильной сульфатации перед длительной парковкой желательно зарядить АКБ.

Высокая температура и система старт-стоп сокращает срок службы стартерной батареи.
В качестве ориентира: при повышении температуры на каждые 8°C срок службы герметичной АКБ сокращается наполовину. Это означает, что батарея VRLA рассчитанная на 10 лет службы при температуре 25°C, будет работать только 5 лет, если она эксплуатируется при температуре 33°C и 30 месяцев, если она эксплуатируется при температуре 41°C. После того, как батарея была перегрета первоначальная ёмкость уже не может быть восстановлена.

Срок службы АКБ также зависит от активности использования, он значительно сокращается, если АКБ часто глубоко разряжается. Несколько раз в день запуск двигателя даёт небольшую нагрузку стартерной батарее, но эта нагрузка сильно возрастает при использовании в режиме старт-стоп. Автомобиль отключает двигатель на красных светофорах и перезапускает его при начале движения, в результате чего происходит около 2000 циклов в год. Данные, полученные от производителей автомобилей, говорят о снижении производительности АКБ примерно до 60% после двух лет использования и чтобы увеличить срок службы автопроизводители используют AGM аккумуляторы.

Даже при кратковременном задействовании небольших мыслительных участков головного мозга позволит, например, владельцам Volvo XC60 (и других авто тоже) добиться значительного увеличения срока эксплуатации АКБ. Для этого будет вполне достаточно внимательно изучить руководство для владельца и немного подумать. Для владельца с пытливым умом обладание автомобилем Volvo не доставляет неприятностей. Например, с наступлением похолодания многие владельцы очень часто используют штатный дополнительный топливный обогреватель (Webasto) до начала поездки, в результате перед поездкой прогревается двигатель и салон, а во время поездки снижается износ и энергопотребление. Но многократное использование обогревателя в сочетании с поездками на короткие расстояния приводит к разрядке аккумулятора и последующим проблемам при запуске. Чтобы быть уверенным, что при подзарядке аккумулятор автомобиля получит столько же энергии, сколько было использовано отопителем, при регулярном использовании отопителя нужно вести автомобиль столько же времени, сколько времени использовался отопитель. При каждом включении максимальное время работы обогревателя составляет 50 минут и минимум 15 минут перед запланированным временем отправления (запуск отопителя по таймеру). Если подойти с умом к использованию топливного обогревателя, то никаких проблем с АКБ не будет:
Предназначение обогревателя — осуществить предварительный нагрев охлаждающей жидкости (ОЖ) без запуска двигателя. Циркулирующая нагретая ОЖ прогревает двигатель, а достигнув температуры прим. 50°C — вентилятор осуществляет прогрев салона автомобиля тёплым воздухом. В процессе этого расходуется примерно 0,6-0,7 л топлива в час и достаточно сильно подсаживается АКБ (обеспечение циркуляции ОЖ насосом (примерно 14 Ватт) плюс работа вентилятора салона автомобиля). Зачем так бездарно тратить энергию АКБ? Предварительный прогрев двигателя необходим для легкого пуска в сильный мороз, а до температуры примерно -25°C помогать двигателю предварительно прогреться нет нужды — вы же используете масло 0W-/5W-. При умеренных температурах достаточно осуществить предварительный запуск двигателя. Для получения дополнительного тепла отопитель запускается автоматически, когда двигатель работает, а если наружная температура превышает 15°C, обогреватель не запускается. Максимальное время работы двигателя при дистанционном пуске составляет максимум 15 минут — за это время прогреется всё, даже руль, сидения и зеркала (устанавливается в настройках), а АКБ даже подзарядится. При запущенном двигателе прогрев происходит значительно быстрее, а расход топлива будет примерно одинаковым: без запуска ДВС отопителю нужно примерно 30 минут (т.е. 0,3 л топлива + разрядка АКБ), с предварительным дистанционным запуском ДВС за 15 минут (это максимально доступное время) израсходуется примерно столько же топлива — 0,3 литра, но АКБ при этом даже подзарядится. И это только один из примеров как достаточно просто можно поддерживать АКБ в рабочем состоянии, есть ещё масса способов, таких как оптимизация стиля движения в условиях городского трафика, своевременные подзарядки АКБ и т.п.

Кроме того, в Руководстве для владельца Volvo XC60 производителем напрямую особо выделена сноской важная информация следующего содержания:
"Срок службы аккумуляторной батареи зависит от ряда факторов, к которым относятся стиль вождения и климат. Емкость аккумуляторной батареи запуска со временем снижается, и поэтому аккумулятор необходимо подзаряжать, если автомобиль не используется в течение длительного времени или если используется для поездок на короткие расстояния. В сильный мороз способность запуска снижается еще больше.
Для поддержания аккумулятора в хорошем состоянии рекомендуется не менее 15 минут в неделю ездить на автомобиле или подключать аккумулятор к зарядному устройству с автоматическим поддержанием уровня зарядки. Максимальный срок службы имеет аккумулятор, который постоянно находится в полностью заряженном состоянии."

Информация для размышления:

После внимательного изучения даже такого поверхностного и упрощённого представления этапов процесса зарядки и особенностей процессов, пытливый ум читателя поймёт, что многие популярные дешевые так называемые автоматические ЗУ не обеспечивают оптимальный алгоритм зарядки АКБ, т.к. такие зарядные устройства либо не способны протестировать (проанализировать) исходную первоначальную степень заряженности АКБ и с учётом этого в дальнейшем выдержать зарядный ток необходимое определённое количество времени, либо при достижении определенной величины напряжения преждевременно отключают ток заряда, что приводит к недозаряду АКБ. Поэтому, используя такие автоматические устройства нужно обязательно: во-первых, знать и понимать основные процессы и алгоритмы при зарядке АКБ; во-вторых, контролировать процесс, и, если это возможно, своевременно вручную вносить необходимые коррективы.

В Руководстве для владельца Volvo XC60 даже особо выделено пометкой "Важно" следующая информация (опрометчиво пропускаемая мимо своего внимания почти всеми владельцами):
"Для зарядки пускового аккумулятора или вспомогательного аккумулятора можно использовать только современное зарядное устройство с контролируемым током зарядки. Функцию быстрой подзарядки запрещается использовать, так как это может повредить аккумулятор."

Маломощное ЗУ (относительно ёмкости АКБ) имеет преимущество, т.к. аккуратно заряжает АКБ (что обеспечивает длительный срок службы АКБ) и обеспечивает полную зарядку, а не "поверхностный заряд". Недостаток заключается в том, что для зарядки батареи требуется очень много времени. Пользователи, имеющие ЗУ менее 10% от ёмкости АКБ, обычно жалуются на чрезмерно длительное время зарядки, поэтому решение о требуемой мощности ЗУ представляет собой ряд компромиссов.

Хорошее зарядное устройство, используемое на дешевой батарее, лучше, чем зарядное устройство плохого качества, используемое на хорошей батарее. (это не мои слова, эту умную мысль я почерпнул с сайта www.jgdarden.com).

Выборочная информация с указанных ресурсов специально для вас была переведена мной на русский и адаптирована для удобного чтения/восприятия.

Фото в бортжурнале Volvo XC60 (1G) Таблицы нормальной степени заряженности (SoC) разных типов аккумуляторов при различной температуре окружающей среды (с температурной коррекцией)

Всё это не панацея, не догма, не практическое пособие и не прямое руководство к действию, а лишь информация к повышению своих знаний, к размышлению, восприятию и запоминанию всего или отдельных моментов из. Каждый из нас воспринимает информацию ангажировано через призму уже имеющихся и накопленных знаний, опыта, навыков, точки зрения.

Как правильно зарядить свинцово-кислотный аккумулятор

Свинцово-кислотная аккумуляторная батарея фото

Среди обслуживаемых SLA числятся, преимущественно, классические автомобильные аккумуляторы. Основная масса свинцово-кислотных источников тока, используемых в индивидуальном электротранспорте (вроде велобайков) принадлежит к герметичным, необслуживаемым, буферным и гелевым.

Как заряжать свинцово-кислотную батарею↑

Процесс зарядки SLA-аккумуляторов предполагает пополнение запаса энергии устройства за счет внешних источников. Важно, чтобы батарея получала заряд, который соответствует ее емкости. Оптимальные условия, при которых происходит зарядка: температура окружающей среды в пределах +20 – +25 градусов Цельсия, иначе потребуется выполнять температурную компенсацию.

Наиболее популярный способ зарядки свинцово-кислотного аккумулятора базируется на контроле параметров «ток» и «напряжение». На первой стадии АКБ заряжают постоянным током, а когда напряжение достигнет заданного значения (указывается на лицевой панели устройства), переводят агрегат в режим поддержания постоянного напряжения.

Чтобы понять, сколько времени потребуется держать аккумулятор на зарядке, нужно знать степень разряженности АКБ, ее емкость, а также силу тока зарядного устройства.

Если устройство разряжено полностью, а ток используется по всем правилам (то есть, порядка 10-20% от емкости батареи), то на зарядку должно уйти около 10-12 часов. При снижении зарядного тока, время может возрасти, при увеличении – останется прежним. Ни в коем случае нельзя увеличивать ток на более чем 30% от емкости аккумулятора — это небезопасно для него.

Свинцово-кислотная АКБ фото

Технология скоростной зарядки↑

Существует быстрый способ зарядки аккумулятора, в рамках которого можно за 6 часов добиться полного восстановления заряда. Это актуально для батарей, использующихся в циклическом режиме, в том числе, на электровелосипедах и прочей технике.

Данная технология предполагает, 2 этапа:

  • сначала нужно заряжать изделие постоянным током, пока напряжение не достигнет 14,5 (плюс-минус 0,2) вольта (параметры указаны для батарей, чье номинальное напряжение равно 12 В);
  • затем нужно отсоединить зарядное или перевести его в режим функционирования, когда поддерживается напряжение 13,8 (плюс-минус 0,15) вольт.

Как заряжать герметичные свинцово кислотные аккумуляторы↑

Первые герметичные АКБ, не позволяющие электролиту испаряться, но и не доступные для дозаливки содержимого, стали массово производиться около 40 лет тому назад. Их эволюция привела к тому, что возникли так называемые гелевые батареи AGM, тоже принадлежащие к классу свинцово-кислотных, но считающиеся модернизированными, обладающими намного более универсальными характеристиками. Внутри этих приспособлений (по-прежнему герметичных) электролит представлен в загущенном виде, имеет желевидную консистенцию. Заменить его невозможно, однако он не проливается при повреждении оболочки, не испаряется, не несет угрозы окружающей среде. Кроме того, эксплуатировать такую батарею можно в любом положении и даже в условиях высоких вибраций. Глубокий разряд такие разработки также способны переносить без проблем.

Зарядка таких устройств имеет ряд особенностей:

  • восстановить уровень заряда возможно только применяя специально для этого созданные зарядные устройства, никакими универсальными или самопальными средствами зарядить гелевый герметичный аккумулятор нельзя; Герметичная свинцово-кислотная батарея фото
  • температура электролита в ходе зарядки не должна подниматься выше 45 градусов по Цельсию, иначе это чревато выходом изделия из строя;
  • перезаряд таких АКБ крайне вреден, если ток заряда превысит 30% емкости батареи, она вспучится и, скорее всего, перестанет быть пригодной к использованию.

Как и в ситуации со стандартными свинцово-кислотными решениями, запрещено хранить батареи AGM в разряженном виде, особенно, если напряжение каждого из компонентов, входящих в ее структуру, падает до 1,8 Вольта или ниже.

Зачастую АКБ 12 вольт принадлежат к классу AGM и, как и все представители этой категории, допускают максимальный разряд до 30% (без деформаций и рисков для работоспособности изделия).

Для этих батарей актуально целых 3 стратегии зарядки:

  • одноступенчатая или быстрая выполняется в пределах плавающего заряда при напряжении в пределах 13,2-13,8 вольт, токе от 0,1 до 0,3С (под «С» понимается емкость конкретного аккумулятора в ампер-часах);
  • двухступенчатая – наиболее часто используемая и рекомендуемая большинством производителей, осуществляется сначала в рамках основного цикла (восстановление 80%) при 14,2-14,8В и 0,1-0,3С, а затем в рамках плавающего заряда при 13,2-13,8В;
  • трехступенчатая – позиционируется как самая эффективная, производится в 3 этапа: основной заряд при 14,2-14,8 В, накопительный – при 14,2-14,8 вольтах, плавающий – при 13,2-13,8 вольта.

Крайне важно выполнять заряду устройством, имеющим индикацию по обоим параметрам: напряжению и току. Оптимальным вариантом может стать зарядное с так называемой интеллектуальной системой управления.

Как правильно заряжать свинцово-кислотный аккумулятор

Данная заметка посвящена вопросу заряда аккумуляторов. И правильному подбору зарядного устройства для стационарных необслуживаемых свинцово-кислотных аккумуляторов.

Сразу должно оговориться, что есть соответствующие ГОСТы, такие, как МЭК 60896, ГОСТ 26881-86, которыми руководствуются специалисты на предприятиях в телекоммуникационных, инженерных компаниях и где все подробно описано: как проводить заряд, какие правила эксплуатации и плановой замены аккумуляторов.

Я же расскажу самые основы для частных покупателей аккумуляторных батарей как правильно их заряжать.

1. Определение режима использования аккумуляторной батареи

Параметры заряда определяются режимом использования аккумуляторной батареи. Вы, наверное, замечали, что в документации на аккумулятор и на самом корпусе аккумулятора всегда указываются константы для двух разных режимов работы.

Буферный режим

Буферный режим (STANDBY USE) – аккумулятор находится в режиме постоянного подзаряда в составе оборудования. Примеры систем с буферным режимом работы АКБ:

  • источники бесперебойного питания (ИБП)
  • пожарные и охранные системы
  • системы аварийного освещения
  • лифты

В такое оборудование уже встроена система автоматического подзаряда с оптимально настроенными параметрами. Обычно, ток заряда составляет

10 % от емкости аккумулятора. Например, для аккумулятора ETALON FORS 1207 (12 В 7 Ач) оптимальный ток заряда 0,7 А. Аккумулятор при таком режиме никогда не доводится до состояния глубокого разряда и прослужит максимально долго — при разряде аккумулятора до разумного низкого уровня, устройство отключиться и завершит аварийное питание нагрузки. АКБ ETALON FORS 1207 в таком режиме будет работать до 5 лет.

Циклический режим

Второй режим — циклический (CYCLE USE), наиболее стрессовый для аккумуляторной батареи. Это режим работы аккумуляторов в электромобилях, электролодках, электропогрузчиках и т.д. В этом режиме аккумуляторы используются и в детских электромобилях, электромотоциклах, квадроциклах, самокатах и т.д. При работе в циклическом режиме аккумулятор разряжается, потом ставится на заряд и снова разряжается. Срок службы в таком случае будет определяться не рекомендованным сроком использования, а допустимым количеством циклов заряда-разряда аккумулятора.

Свинцово-кислотные AGM аккумуляторы ETALON FORS имеют циклический ресурс до 250 циклов при разряде 100 %, и до 1200 циклов при разряде 30 %.

Именно в этом режиме актуален вопрос своевременного заряда и правильного хранения.

2. Выбор зарядного устройства для АКБ

Существует много правил и методов заряда аккумулятора, те же ГОСТы в помощь, в том числе одноступенчатые постоянным током, двухступенчатые (сначала постоянное напряжение и затем постоянный ток), комбинированные, с дозарядом и т.д. Но если вы не увлеченный инженер и речь идет о циклическом режиме использования АКБ, лучше всего заряжать аккумуляторы современными зарядными устройствами для AGM аккумуляторов, со встроенным «умным» процессором. Такие ЗУ способны самомтоятельно подбирать опримальные токи заряда и контролируют процесс заряда.

Зарядное устройство подбираем по следующим параметрам:

  • подходит для стационарных аккумуляторов
  • диапазон заряжаемых емкостей соответствует емкости аккумулятора (оптимальный зарядный ток 10–20 % от емкости аккумулятора. Технический максимум 30 % емкости, но не больше)
  • соответствует напряжению аккумулятора (12 В или 6 В)
  • наличие в комплекте поставки коннекторов для подключения к АКБ
  • наличие встроенных индикаторов состояния заряда
  • наличие защиты от короткого замыкания, переполюсовки, перезаряда аккумулятора
  • наличие инструкции на русском языке

Примечание 1000 ВА: Подробно мы рассматривали зарядные устройства в нашей статье Как мы выбирали зарядное устройство для продаж через интернет-магазин.

3. Проверка параметров зарядного устройства

Общее правило – ток заряда и напряжение должны соответствовать указанным на корпусе аккумулятора и в техническом описании конкретной модели.

Интервал напряжений заряда в циклическом режиме всегда приводится на лицевой стороне АКБ. Для приведенного на иллюстрации аккумулятора, оно составляет 14,5–15 В. В аккумуляторах 6 В интервал напряжений этого производителя будет 7,25–7,5 В.

При выборе зарядного устройства обязательно обращайте на это внимание!

4. Периодичность заряда АКБ

Когда может возникнуть необходимость в заряде аккумулятора?

1) Перед началом использования. Введение аккумуляторов в работу должно производиться при достижении ими номинальной емкости. Приборов для определения заряда аккумулятора много, в том числе они встроены в зарядные устройства. Если аккумулятор перед началом использования разряжен, его нужно подзарядить.

Важно! Чтобы аккумулятор служил долго, его не рекомендуется разряжать более чем на 80 % номинальной емкости. Глубокий разряд, ниже 1,6 В на элемент, приводит к сульфатации и деградации пластин. Рекомендую не допускать в разряженных 12-вольтных аккумуляторах напряжения ниже 10,5 В.

2) После использования и перед хранением разряженный аккумулятор также нужно зарядить. Нельзя оставлять разряженный аккумулятор надолго, он должен храниться полностью заряженным.

3) Регулярно производить полный заряд аккумулятора в течение срока хранения, не реже 1 раза в 6 месяцев. Не забываем о естественном саморазряде 3 % в месяц! При низких или слишком высоких температурах хранения аккумулятор «садится» еще быстрее. При этом крайне желательно, чтобы за весь период хранения проводилось не более двух таких обслуживающих подзарядов.

5. Не забывайте про температурные условия заряда аккумулятора

  • Параметры напряжения в технических условиях указаны для температуры в 20–25 °C.

Если заряжать аккумулятор приходится при другой температуры, то желательно вводить поправку в зарядное напряжение: учет термокомпенсации напряжения повышает срок службы аккумулятора. В бытовых условиях учесть это правило трудно, поэтому, при вожножности, заряд АКБ переносится в помещение с комнатной температурой.

  • Не заряжайте принесенные с мороза аккумуляторы, дайте им отогреться в помещении несколько часов. Также нельзя заряжать и слишком нагретые АКБ.
  • Практически бесполезно заряжать сильно разряженный аккумулятор — меньше 5 В для 12-тивольтового аккумулятора. При напряжении в 7 В аккуулятор иногда удается «вытянуть», но, в таком случае, не стоит рассчитывать на гарантированное восстановление емкости аккумулятора. Для 6-тивольтовых аккумуляторов приведенные значения, соответственно, делим на два.

Сколько времени нужно заряжать аккумулятор

Время заряда зависит от степени разряженности аккумулятора, напряжения и тока заряда.

Если погрузиться в теорию и расписать, какие параметры нужно учесть, чтобы правильно определить время заряда, то получится вполне качественная диссертация. Которая еще и вызовет ожесточенные споры среди профессионалов.

Поэтому, как было рекомендовано выше, выбирайте зарядное устройство по следующим правилам:

  1. Напряжение зарядного устройства должно попадать в интервал напряжения циклического режима, приведенного на лицевой стороне аккумулятора.
  2. Ток заряда ЗУ должен попадать в интервал от 10 до 20 % от емкости аккумулятора.
  3. Зарядное устройство должно быть автоматическим.

и можете считать, что вне зависимости от разряженности аккумулятора, за ночь он зарядится полностью. При этом, если аккумулятор разряжен не полностью, то автоматическое зарядное устройство дозарядит его и перейдет в режим компенсации саморазряда без вреда для аккумулятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *