Что такое красная граница фотоэффекта
Перейти к содержимому

Что такое красная граница фотоэффекта

  • автор:

1. Фотоэффект. Уравнение Энштейна для фотоэффекта.

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где hпостоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода Aout, покидает металл: где — кинетическая энергия, которую имеет электрон при вылете из металла.

Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

где — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), кинетическая энергия вылетающего электрона, — частота падающего фотона с энергией , hпостоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

2. Понятие красной границы фотоэффекта

«Красная» грани́ца фотоэффе́кта — минимальная частота или максимальная длина волны света, при которой еще возможен внешний фотоэффект, то есть начальная кинетическая энергия фотоэлектронов больше нуля. Частота зависит только от работы выхода электрона:

где — работа выхода для конкретного фотокатода, hпостоянная Планка, а сскорость света . Работа выхода зависит от материала фотокатода и состояния его поверхности. Испускание фотоэлектронов начинается сразу же, как только на фотокатод падает свет с частотой или с длиной волны .

3. Эффект Комптона

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами. При рассеянии фотона на покоящемся электроне частоты фотона и (до и после рассеяния соответственно) связаны соотношением:

где — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Перейдя к длинам волн:

где комптоновская длина волны электрона.

Для электрона м. Уменьшение энергии фотона после комптоновского рассеяния называется комптоновским сдвигом. В классической электродинамике рассеяние электромагнитной волны на заряде (томсоновское рассеяние) не сопровождается уменьшением её частоты.

Объяснить эффект Комптона в рамках классической электродинамики невозможно. С точки зрения классической физики электромагнитная волна является непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. Эффект Комптона является прямым доказательством квантования электромагнитной волны, другими словами подтверждает существование фотонов. Эффект Комптона является ещё одним доказательством справедливости корпускулярно-волнового дуализма микрочастиц.

Красная граница фотоэффекта

Фотоэффект — это выбивание из атомов вещества электронов под действием электромагнитного излучения. Как показывают опыты, излучение, необходимое для этого явления должно отвечать важному условию, называемому «красной границей фотоэффекта».

Явление фотоэффекта

Свет, хотя и является электромагнитной волной, существует только в виде порций-квантов (фотонов). Испускание или поглощение фотонов происходит только целиком. Каждый фотон несет некоторую энергию, зависящую от его частоты, равную ($h$ — постоянная Планка):

Явление фотоэффекта состоит в том, что электроны в атоме поглощают кванты электромагнитного излучения и приобретают дополнительную энергию, достаточную для разрыва связей с ядром. В результате электрон покидает свою орбиту и либо становится свободным электроном в веществе (внутренний фотоэффект), либо выходит из вещества в окружающее пространство (внешний фотоэффект).

Фотоэффект

Рис. 1. Фотоэффект.

Энергия, которую нужно сообщить электрону для разрыва связей с ядром, называется работой выхода $A_<вых>$. Остаток энергии фотона перейдет в кинетическую энергию выбитого электрона. Этот механизм описывается уравнением, выведенным в 1905 г. А. Эйнштейном:

Красная граница фотоэффекта

Получим из приведенной формулы частоту, необходимую для наблюдения фотоэффекта:

Важно отметить, что, поскольку работа выхода $A_<вых>$ и масса электрона $m_e$ имеют некоторое положительное значение, а скорость электрона $v$ не может быть отрицательной, то и частота $\nu$ будет иметь некоторое значение больше нуля. Минимальное значение будет достигаться, если $v=0$:

Частота $\nu_$ называется «красной границей фотоэффекта», а приведенное соотношение — это формула красной границы фотоэффекта. Если фотон имеет частоту ниже, то его энергии недостаточно для разрыва связей электрона с ядром, фотоэффект с таким фотоном невозможен.

Термин «красная граница» был введен А. Столетовым, который провел наиболее глубокие исследования фотоэффекта в конце XIX в. Третий закон Столетова гласит, что для каждого вещества есть некоторая минимальная частота фотонов, ниже которой фотоэффект исчезает.

Законы фотоэффекта Столетова

Рис. 2. Законы фотоэффекта Столетова.

Именно красной границей фотоэффекта определяется использование красного освещения при печати фотографий в первой половине XX в. и ранее. Красная граница фотоэффекта материалов того времени лежала в желтой области видимого света. Поэтому фотопластинки проявлялись при красном освещении. В дальнейшем стали использоваться материалы с меньшей работой выхода, красная граница фотоэффекта для них переместилась в инфракрасную область, и проявлять их было необходимо уже в полной темноте.

Красный фонарь для фотопечати

Рис. 3. Красный фонарь для фотопечати.

Что мы узнали?

Красная граница фотоэффекта — это минимальная частота, при которой наблюдается фотоэффект. Если частота излучения меньше, то энергии фотонов не хватает для совершения работы выхода, и фотоэффект исчезает.

Физика

Урок 4: Формула Эйнштейна для фотоэффекта. Применение фотоэффекта

  • Видео
  • Тренажер
  • Теория

Введение

Возьмем металлическую пластинку и направим на нее луч света. При этом электроны будут покидать поверхность пластинки, то есть свет выбивает электроны из вещества.

Если мы будем уменьшать частоту излучения, в какой-то момент электроны перестанут покидать металл. Возникает вопрос: почему так?

Еще один вопрос: если увеличивать интенсивность света, будет вырываться больше электронов с прежней энергией или столько же электронов с большей энергией? С помощью модели света как электромагнитной волны на эти вопросы ответить нельзя.

Есть другая модель – квантовая, предложенная Планком. Мы с ней уже знакомы, она предполагает, что излучение дискретно. Энергия излучается и поглощается отдельными порциями – квантами. С ее помощью мы и будем объяснять явление фотоэффекта.

Уравнение Эйнштейна

Если считать свет потоком частиц – квантов, то становится понятно: один квант поглощается одним электроном. Логично предположить, что сколько квантов поглотилось, столько электронов подверглись воздействию. Квант световой энергии передается электрону (см. рис. 1).

Рис. 1. Поглощение электроном кванта световой энергии

И если кванта световой энергии для выхода электрона недостаточно, электрон не выбивается, а остается в металле. Если энергии достаточно, лишняя энергия передаётся электрону в виде кинетической энергии его движения после выхода из металла (см. рис. 2).

Рис. 2. Условие выхода электрона из металла

Квант

По определению, квант – это неделимая порция какой-либо величины в физике. Мы сегодня рассматриваем кванты, то есть порции, световой энергии. Мы говорим, например, что энергия фотона равна одному кванту (одной порции, равной ).

Часто «квант» употребляется в значении неделимой порции излучения, в том же значении, что и «фотон». Тогда имеет смысл говорить об энергии одного кванта излучения. Мы будем употреблять слово «квант» в обоих значениях в зависимости от контекста, как нам удобно выражать мысли.

Эта закономерность отражена в уравнении Эйнштейна для фотоэффекта, которое выглядит так:

– это работа выхода – минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Квант энергии света расходуется на совершение работы выхода и на сообщение электрону кинетической энергии. По сути, уравнение Эйнштейна является реализацией закона сохранения энергии.

Почему мы рассматриваем металлы

Мы сегодня говорим о выбивании светом электронов с поверхности металла. А что если будет другое вещество, не металл? Давайте рассмотрим, что будет, если свет будет падать на диэлектрик. Ничего нового: квант энергии так же поглотится электроном (см. рис. 3).

Рис. 3. Поглощение кванта электроном

Однако в диэлектрике нет свободных электронов, они входят в состав атомов, и, чтобы электрон покинул атом, нужна энергия намного большая, чем энергия фотона видимого света (см. рис. 4).

Рис. 4. Поглощение намного большей энергии электроном для его выхода из атома

Если мы будем облучать полупроводник, то энергия фотона может пойти на разрушение ковалентной связи между атомами (см. рис. 5), вследствие чего образуется пара электрон – дырка. Что это такое, вы можете вспомнить, обратившись к урокам об электрическом токе в полупроводниках.

Рис. 5. Разрушение ковалентной связи

В металлах, помимо электронов на атомных орбитах, как в диэлектриках, есть свободные электроны, и они могут покинуть поверхность металла. Для этого им нужно преодолеть притяжение кристаллической решетки, которая состоит из положительно заряженных ионов (см. рис. 6).

Рис. 6. Покидание поверхности металла свободным электроном

Выбивание именно таких электронов под действием света мы сегодня и изучаем.

Теперь понятно, почему возникает порог. Чтобы электрон покинул поверхность металла, нужен один фотон с достаточной для этого энергией. Много фотонов с малой энергией электрон не выбьют.

Этот пример подобен примеру с собакой, которая пытается перепрыгнуть через двухметровый забор. Ей для этого нужно прыгнуть один раз на высоту два метра. Если она будет прыгать на один метр хоть целый день, забор она не перепрыгнет, независимо от суммарной затраченной энергии.

Еще один пример: невысоко расположенная ветка, на которой висят яблоки. Попробуем камнем сбить яблоко. Чтобы яблоко оторвалось, нужно совершить работу по разрыву черенка. При энергии камня, меньшей, чем эта работа, яблоко не оторвется. Если энергия камня будет как раз достаточна для отрыва яблока, оно упадёт сразу под веткой (см. рис. 7).

Рис. 7. Энергия камня достаточна для отрыва яблока

Если будем бросать камни сильнее, с большей энергией, то яблоки будут не просто падать, а отлетать от ветки. Избыточная энергия камня, оставшаяся после разрыва черенка, перейдет в кинетическую энергию яблока.

При фотоэффекте наблюдаются те же процессы, только вместо камня – фотон с энергией , а вместо яблок – электроны (см. рис. 8).

Рис. 8. Пример фотоэффекта

Яблоко может быть спелым, тогда для отрыва его черенка требуется меньшая работа, чем когда яблоко еще не созрело. Работа выхода электрона зависит от материала и состояния поверхности: какой-то материал лучше держит электроны, а от какого-то оторвать электрон легче (см. рис. 9).

Рис. 9. Красная граница фотоэффекта для некоторых веществ

Работу выхода можно определить экспериментально: можно освещать материал светом с разной энергией фотонов и заметить, при какой энергии фотонов фотоэффект начинает протекать (см. рис. 10).

Рис. 10. Экспериментальное определение работы выхода

С этим всё понятно: количество электронов, покинувших металл, определяется количеством попавших на него фотонов, а кинетическая энергия электрона, если он вообще покинет материал, определяется энергией одного фотона.

Но не можем же мы сосчитать количество фотонов. И непосредственно энергию одного фотона измерять мы не будем. Эти параметры можно вычислить, а измеряем мы интенсивность света, частоту, длину волны.

Энергия одного кванта излучения определяется частотой, . Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота света больше некоторого минимального значения , потому что кванта энергии должно хватить на совершение работы выхода: .

Предельную частоту и соответствующую ей длину волны max называют красной границей фотоэффекта.

Красная граница фотоэффекта

Красной границей фотоэффекта называется минимальная частота и соответствующая ей максимальная длина волны, при которой наблюдается фотоэффект. Почему она так называется – красная граница?

Если мы возьмем свет такой частоты, при которой будет наблюдаться фотоэффект, и будем ее уменьшать, мы будем по оси частоты смещаться влево, пока не дойдем до предела, при котором фотоэффект прекратится. Можно поставить рядом ось длин волн.

Если мы будем так же смещаться в видимом спектре, то мы будем двигаться к красному свету, который является граничным для нашего глаза. Свет меньших частот или бόльших длин волн мы уже не видим. Граница видимости соответствует красному цвету.

Для фотоэффекта предельная частота не обязательно соответствует красному цвету, но по аналогии называется красной границей (см. рис. 11).

Рис. 11. Красная граница фотоэффекта и граница спектра видимого света

Как найти красную границу фотоэффекта?

Запишем уравнение Эйнштейна для этого случая. Т. к. энергии такого кванта хватает только на то, чтобы выбить электрон, и на его разгон энергии уже нет (см. рис. 12), составляющая будет равна нулю:

,
– красная граница фотоэффекта.

Рис. 12. Зависимость кинетической энергии фотоэлектрона от частоты падающего света

Частота или длина волны, соответствующие красной границе фотоэффекта, зависят от вещества и определяются величиной работы выхода электрона из данного вещества (см. рис. 13).

Рис. 13. Зависимость частоты (длины волны) от вещества

Суммарная энергия квантов в световом потоке, падающем на металл, – это интенсивность света. Если мы изменяем интенсивность света данной частоты, то это значит, что мы изменяем количество фотонов, а значит, и количество фотоэлектронов. Скорость каждого выбитого из металла электрона от интенсивности света не зависит.

Задача

Красная граница фотоэффекта для калия . Какую максимальную скорость могут иметь фотоэлектроны, вылетающие с поверхности калиевого фотокатода при облучении его светом с диной волны ?

  • В задаче описан фотоэффект, значит, будем использовать уравнение Эйнштейна для фотоэффекта: .
  • Красная граница фотоэффекта – это минимальная частота, при которой наблюдается фотоэффект, при этом энергии фотона хватает только на выбивание электрона из вещества, но кинетическая энергия электрону не сообщается: .
  • Мы легко переходим от частоты к длине волны, используя формулу .

Применим к данной задаче уравнение Эйнштейна для фотоэффекта и выражение для красной границы. В задаче заданы значения длин волн, поэтому сразу перейдем от частот к длинам волн по формуле . Запишем:

Получили систему уравнений, решив которую, найдем максимальную скорость электрона. Получим ответ около 580 км/с.

Математическая часть решения задачи

Подставим выражение для работы выхода из второго уравнения в первое:

Выразим отсюда искомую скорость:

Как мы можем использовать фотоэффект на практике?

Свет сообщает электрону энергию и выбивает его из металла (см. рис. 14).

Рис. 14. Выход электрона из металла

Что это нам дает? Электрон мы можем зарегистрировать. Если есть свободные электроны, то можно создать электрическое поле, которое заставит их двигаться и создаст электрический ток (см. рис. 15).

Рис. 15. Возникновение электрического тока

Что делать с ним дальше – задача электроники; мы можем ток измерить, преобразовать, передать на расстояние и т. д. Главное, что энергия света передалась электрону, свет преобразовался в электричество.

А это значит, что можно сделать датчик света, который определял бы его наличие по наличию фотоэффекта, его интенсивность по количеству фотоэлектронов.

Такие устройства – это фотоэлементы, в которых световой поток управляет электрическим током или преобразуется в электрическую энергию. Фотоэлементы находят множество применений в быту и в технике. Например, они считывают информацию, записанную на звуковой дорожке кинопленки, обнаруживают проход безбилетника в метро (при пересечении невидимого луча прекращается ток в фотоэлементе (см. рис. 16)), замечают задымление в помещении и т. п.

Рис. 16. Принцип турникетов в метро

Мы рассмотрели один случай – что происходит при передаче электрону энергии фотона – электрон покидает вещество. Но в общем случае он может покинуть атом вещества и стать свободным носителем заряда внутри вещества (это явление называется внутренним фотоэффектом) (см. рис. 17).

Рис. 17. Внутренний фотоэффект

Излучение можно использовать как информационный сигнал. К примеру, пульт дистанционного управления телевизором посылает управляющие сигналы в виде инфракрасного (невидимого для наших глаз) излучения (см. рис. 18), которое воспринимается фотоэлементом на передней панели телевизора.

Рис. 18. Инфракрасное излучение

Невидимые электромагнитные сигналы пульта ведут себя так же, как видимый свет. Вы можете убедиться в этом, попытавшись переключать каналы, направляя пульт не на телевизор, а на его изображение в зеркале.

Электрон покидает атом, становится свободным, и в цепи начинает течь фототок. Он и осуществляет нужные переключения в электрической цепи телевизора.

При поглощении энергии света электронами может возникнуть ЭДС, что используется в солнечных батареях, а это еще одно очень перспективное применение фотоэффекта.

На этом наш урок окончен. Спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Касьянов В.А. Физика 11 кл. учебник для общеобразоват. учреждений. – 4-е изд. – М.: Дрофа, 2004.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фотоэффект

Фотоэффект — это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) — разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1 .

Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод и анод . На катод и анод подаётся напряжение, величину которого можно менять с помощью потенциометра и измерять вольтметром .

Сейчас на катод подан «минус», а на анод — «плюс», но можно сделать и наоборот (и эта перемена знака — существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение часто называют анодным напряжением). В данном случае, например, напряжение положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны , которые разгоняются напряжением и летят на анод. Включённый в цепь миллиамперметр регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2 .

Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим .

Если напряжение отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает — электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

Здесь кг — масса электрона, Кл — его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения , которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины , называемой током насыщения, и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода — в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет — ресурс, так сказать, исчерпан.

Законы фотоэффекта

Величина тока насыщения — это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3 ):

Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота , называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если , то фотоэффекта нет.

Если же \nu_0′ alt=’\nu > \nu_0′ /> , то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом , то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при \nu_0′ alt=’\nu > \nu_0′ /> : максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта — наименьшая частота света , при которой фотоэффект ещё возможен. При фотоэффект не наблюдается ни при какой интенсивности света.

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества — когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно — в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт — единственный критерий истины в физике! — этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями — квантами. Энергия кванта пропорциональна частоте излучения:

Cоотношение (2) называется формулой Планка, а коэффициент пропорциональности — постоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию — на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Этим полностью объясняется ход графика на рис. 3 .

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: . Наименьшая частота , определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если , то фотоэффекта не будет — сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное — хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение , в точности совпадающее с (3) . Такое совпадение результатов двух независимых экспериментов — на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта — означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике — теории микромира, построение которой продолжается и сегодня.

Это была необходимая теория. Разберем задачи ЕГЭ по теме «Фотоэффект».

Задача 1. Поток фотонов с энергией 10 эВ выбивает из металла электроны. Какова максимальная кинетическая энергия электронов, если работа выхода электронов с поверхности данного металла равна 6 эВ?

Eк = Eф — Авых = 10 – 6 = 4 эВ.

Задача 2. Когда на металлическую пластину падает электромагнитное излучение с длиной волны , максимальная кинетическая энергия фотоэлектронов равна 4,5 эВ. Если длина волны падающего излучения равна ,то максимальная кинетическая энергия фотоэлектронов равна 1 эВ. Чему равна работа выхода электронов из металла?

Запишем уравнение фотоэффекта для двух случаев:

Домножим второе уравнение на 2 и вычтем из первого уравнения второе:


_________________________________

Задача 3. Красная граница фотоэффекта исследуемого металла соответствует длине волны нм. Какова длина волны света, выбивающего из него фотоэлектроны, максимальная кинетическая энергия которых в 2 раза меньше работы выхода?

По условию задачи,

Подставим это в уравнение фотоэффекта:

Задача 4. Фотоны с энергией 2,1 эВ вызывают фотоэффект с поверхности цезия, для которого работа выхода равна 1,9 эВ. На сколько нужно уменьшить энергию фотона, чтобы максимальная кинетическая энергия фотоэлектронов уменьшилась в 2 раза?

Запишем два уравнения фотоэффекта для двух случаев и учтём, что по условию задачи

Из первого уравнения получаем, что

Тогда из второго уравнения получаем, что

Значит энергию падающих фотонов нужно уменьшить на

Задача 5. Работа выхода электронов из металла равна Дж. Задерживающая разность потенциалов для фотоэлектронов, вылетевших с поверхности этого металла под действием излучения с некоторой длиной волны , равна 3 В. Чему будет равна задерживающая разность потенциалов для фотоэлектронов в случае длины волны излучения ?

Переведём работу выхода в электронвольты: />

Теперь из уравнения фотоэффекта найдём энергию фотонов в первом случае:

Если длину волны увеличить в 2 раза, то энергия фотона уменьшится тоже в 2 раза, так как энергия фотона обратно пропорциональна длине волны. Тогда во втором случае энергия фотона будет равна:

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Фотоэффект» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *