История одного парадокса электротехники
Если составить электрическую цепь из источника тока, потребителя энергии и соединяющих их проводов, замкнуть ее, то по этой цепи потечет электрический ток. Резонно спросить: «А в каком направлении?» Учебник теоретических основ электротехники дает ответ: «Во внешней цепи ток течет от плюса источника энергии к минусу, а во внутри источника от минуса к плюсу» (1).
Так ли это? Вспомним, что электрическим током называется упорядоченное движение электрически заряженных частиц. Таковыми в металлических проводниках являются отрицательно заряженные частицы – электроны. Но ведь электроны во внешней цепи движутся как раз наоборот от минуса источника к плюсу. Это можно доказать очень просто. Достаточно поставить в вышеуказанную цепь электронную лампу – диод. В случае, если анод лампы будет заряжен положительно, то ток в цепи будет, если же отрицательно, то тока не будет. Напомним, что разноименные заряды притягиваются, а одноименные – отталкиваются. Поэтому положительный анод притягивает отрицательные электроны, но не наоборот. Сделаем вывод, что за направление электрического тока в науке электротехнике принимают направление ПРОТИВОПОЛОЖНОЕ движению электронов. (2)
Выбор направления, противоположный существующему, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники как науки.
Среди множества теорий, иногда даже анекдотичных, пытающихся объяснить электрические явления, появившихся на заре науки об электричестве, остановимся на двух основных.
Американский ученый Б. Франклин выдвинул так называемую унитарную теорию электричества, по которой электрическая материя представляет собой некую невесомую жидкость, которая могла вытекать из одних тел и накапливаться в других. Согласно Франклину, электрическая жидкость содержится во всех телах, а наэлектризованным становится только тогда, когда в них бывает недостаток или избыток электрического флюида. Недостаток флюида означает отрицательную электризацию, избыток – положительную. Так появилось понятие положительного и отрицательного заряда. (3) При соединении положительно заряженных тел с отрицательными электрическая жидкость (флюид) переходит от тела с повышенным количеством жидкости к телам с пониженным количеством. Как в сообщающихся сосудах. С этой же гипотезой в науку вошло понятие движения электрических зарядов – электрического тока. (4)
Гипотеза Франклина оказалась в высшей степени плодотворной и предвосхитила электронную теорию проводимости, Однако она оказалась далеко не безупречной. Дело в том, что французский ученый Дюфе обнаружил, что существует два вида электричества, которые, подчиняясь каждое в отдельности теории Франклина, при соприкосновении нейтрализовывали друг друга. (5). Причиной появления новой дуалистической теории электричества, выдвинутой Симмером на основании опытов Дюфе, была простой. Как это ни поразительно, но на протяжении многих десятилетий экспериментов с электричеством никто не заметил, что при натирании электризуемых тел, заряжается не только натираемое, но и натирающее тело. Иначе гипотеза Симмера просто бы не появилась. Но в том, что она появилась есть своя историческая справедливость. (6)
Дуалистическая теория считала, что в телах обычном состоянии содержатся два рода электрической жидкости в РАЗНЫХ количествах, нейтрализующих друг друга. Электризация объяснялась тем, что соотношение положительных и отрицательных электричеств в телах менялось. Не очень понятно, но надо же было как-то объяснять реально существующие явления.
Обе гипотезы с успехом объясняли основные электростатические явления и долгое время конкурировали друг с другом. Исторически дуалистическая теория предвосхитила ионную теорию проводимости газов и растворов. (7)
Изобретение вольтова столба в 1799 г. и последовавшее за ним открытие явления электролиза позволило сделать выводы о том, что при электролизе жидкостей и растворов в них наблюдается два противоположных направления движения зарядов – положительного и отрицательного. Дуалистическая теория торжествовала, так как при разложении, например, воды наглядно можно было видеть, что на положительном электроде выделяются пузырьки кислорода, а на отрицательном – водорода. (8). Однако и здесь было не все гладко. При разложении воды количество выделяемых газов было неодинаково. Водорода было вдвое больше кислорода. Это ставило в тупик. Как мог бы помочь ученым того времени любой нынешний школьник, знающий, что в молекуле воды на атом кислорода приходится два атома водорода (знаменитое ашдвао) но химики до этого еще не додумались.
Нельзя сказать, что эти теории были понятны не только учащимся, но и самим ученым. Революционный демократ А.И. Герцен, кстати, выпускник физико-математического факультета Московского университета, писал, что эти гипотезы не помогают, а даже «делают страшный вред учащимся, давая им слова вместо понятий, убивая в них вопрос ложным удовлетворением. “Что есть электричество?” – “Hевесомая жидкость”. Не правда ли лучше было бы, если бы ученик отвечал: “Не знаю.”?» (10). Все-таки не прав был Герцен. Ведь в современной терминологии электрический ток ТЕЧЕТ от плюса к минусу источника, а не как-нибудь по другому передвигается и мы нисколько этим не огорчены.
Сотни ученых разных стран проводили тысячи опытов с вольтовым столбом, но только через двадцать лет датским ученым Эрстедом было открыто магнитное действие электрического тока. В 1820 г. было опубликовано его сообщение о том, что проводник с током влияет на показания магнитной стрелки. После многочисленных экспериментов он дает правило, по которому можно определить направление отклонения магнитной стрелки от тока или тока от направления магнитной стрелки. «Мы будем пользоваться формулой: полюс, который видит отрицательное электричество, входящим над собой, отклоняется к востоку». Правило настолько туманное, что современный грамотный человек не сразу и разберется как им воспользоваться, а что же говорить о том времени, когда понятия еще не устоялись.
Поэтому Ампер в труде, представленном Парижской академии наук, сначала решает принять одно из направлений токов за основное, а потом дает правило, по которому можно определить действие магнитов на токи. Читаем: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов НАПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА, я буду всякий раз подразумевать ПОЛОЖИТЕЛЬНОГО электричества» Так впервые было введено ныне общепринятое правило направления тока. Ведь до открытия электрона было более семидесяти лет. (11).
В 17-19 веках в Европе получила широкое распространение МНЕМОНИКА. или искусство запоминания, то есть система различных приемов, облегчающих запоминание путем образования искусственных ассоциаций. Например известны стихи для запоминания числа ПИ – «Кто и шутя и скоро пожелаетъ…», которым более ста лет. Или присказку на счет фазанов и охотников для запоминания порядка расположения цветов солнечного спектра.. Это мнемонические правила.
Такое же правило было придумано Ампером для определения направлений сил на проводник с током. Оно называлось «правилом пловца». Мы его не приводим, потому что оно было тоже неудачным и не привилось. Но направление тока во всех правилах подразумевало движение ПОЛОЖИТЕЛЬНО заряженных частиц. (12)
Этого канона придерживался позже и Максвелл, придумавший правило «пробочника» или «буравчика» для определения направления магнитного поля катушки. Оно знакомо каждому школьнику. Однако вопрос об истинном направлении тока оставался открытым. Вот что писал Фарадей: «Если я говорю. что ток идет от положительного места к отрицательному, то лишь в согласии с традиционным, хотя до некоторой степени молчаливым соглашением, заключенным между учеными и обеспечивающим им постоянное ясное и определенное средство для указания направления сил этого тока». (13. Курсив наш. БХ)
После открытия электромагнитной индукции Фарадеем (наведение тока в проводнике в изменяющемся магнитном поле) возникла необходимость для определения направления индуцированного тока. Это правило дал выдающийся русский физик Э.Х.Ленц. (14). Оно гласит: «Если металлический проводник перемещается вблизи тока или магнита, то в нем возникает гальванический ток. Направление этого тока таково, что покоящийся провод пришел бы от него в движение, противоположное действительному перемещению». (15). То есть правило сводилось к такому типу, как «спроси совет и поступи наоборот».
Правила, известные нынешним выпускника школ, как «правило левой руки» и «правило правой руки» в окончательном виде предложил английский физик Флеминг и служат они для ОБЛЕГЧЕНИЯ ЗАПОМИНАНИЯ физического явления физикам, студентам и школьникам, а не для того, чтобы им морочить головы.
Эти правила широко вошли в практику и учебники физики и после открытия электрона очень многое пришлось бы изменять и не только в учебниках, если указывать истинное направление тока. Так и живет эта условность более полутора столетий. Сначала она не вызывала трудностей, но с изобретением электронной лампы (по иронии судьбы первую радиолампу изобрел Флеминг) и широким применением полупроводников начали возникать трудности. Поэтому физики и специалисты по электронике предпочитают говорить не о направлениях электрического тока, а о направлениях движения электронов, или зарядов. Но электротехника по-прежнему оперирует старыми определениями. Иногда это вызывает путаницу. Можно было бы внести коррективы, но не вызовет ли это больше неудобств, чем существующие?
Автор статьи: Хасапов Б. Г.
1. Л.А.Бессонов. Теоретические основы электротехники. М., Высшая школа, 1957, с.8.
2. Н.И.Мансуров, В.С.Попов. Теоретическая электротехника. М., Энергия, 1968, с.46.
3. В.Франклин. Опыты и наблюдения над электричеством. АН СССР, М,. 1956, с.12-13.
4. А.Г.Столетов. Обзор теории электричества. Московские университетские известия. М, 1866, № 1, неоф. отдел. с.26-46..
5. М.И.Радовский. Дюфе – основатель дуалистической теории электричества. «Электричество» № 4, 1938, с.74-79.
6. М.В.Ломоносов. Избранные труды по физике и химии. М., 1961, с.534.
7. В.М.Дуков. Электрон. История открытия и изучения свойств. М., Просвещение, 1966, с. 11-12.
8. А.Азимов. Краткая история химии. М., Мир, 1983. с.66-67.
9. М.Фарадей. Экспериментальные исследования по электричеству. Т.1, М., АН СССР, 1947, с.191.
10. А.И.Герцен. Письма об изучении природы. Соч. в 9 томах. т.2. М., худож. лит. 1955, с.102.
11. А.М.Ампер. Электродинамика. М., АН СССР, 1954, с.229.
12. О.Д.Хвольсон. Курс физики. т.4., Берлин, Госиздат РСФР, 1923, С.491.
13. М.Фарадей. с.269.
14. Э.Х.Ленц. Избранные труды. М., АН СССР., 1950, с.147-157.
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Интересные факты, Научные статьи
Проектируем электрику вместе
Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).
Измерение тока
Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10 -19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10 -19 = 6,24 • 10 18 электронов.
Следовательно, если 6,24 • 10 18 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.
Для измерения силы тока существует измерительный прибор — амперметр.
Рис. 1
Амперметр включается в электрическую цепь ( рис. 1 ) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.
Направление электрического тока
Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»
Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2 .
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.
Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.
Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».
Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).
Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.
После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и др.).
Направление электрического тока и направление движения электронов
Мы уже упоминали, что сделанный Франклином выбор знаков электрических зарядов оказался не совсем удачным. Объясним, с чем это связано.
Как выяснилось уже в 20-м веке, носителями заряда в металлах являются электроны, заряд которых «по Франклину» следовало считать отрицательным. За направление же электрического тока было выбрано направление движения положительно заряженных частиц. И поэтому получилось, что условно выбранное направление тока противоположно направлению движения носителей заряда в металлах (рис. 1.4). А наиболее распространенными проводниками являются именно металлы.
Почему принято считать, что электрический ток движется от положительного заряда к отрицательному?
/>
Движение зарядов в проводнике
Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Протекание тока
Электрический ток это есть медленное движение потока электронов в область положительного заряда из области отрицательного заряда. В качестве единицы измерения силы тока используют ампер (А). Названа эта единица в честь французского ученого Андре Мари Ампера. Один ампер это сила тока, возникающая в проводнике при перемещении заряда через заданную точку величиной в один кулон за одну секунду. Следующая формула показывает соотношение между силой тока и зарядом за секунду:
где I — сила тока в амперах, Q — величина электрическо¬го заряда в кулонах, t — время в секундах.
Пример. Чему будет равна сила тока в цепи, если через заданную точку в цепи прошло 12 кулон заряда за 4 секунды. Решение. Q=12 Кл; T=4 с; I=Q/t=12/4=3 (А). Рассмотрим протекание тока по проводнику. Обычно носителями заряда в цепи являются отрицательно заряженные электроны. Тогда ток это есть поток отрицательно заряженных электронов. Так исторически сложилось, что направление протекания тока не совпадает с направлением потока электронов, то есть противоположно. Однако в свое время было открыто, что когда электроны перемещаются от одного атома к другому, то возникают положительные заряды, названные дырками. (рис 2.2).
Можно сказать, что дырка это место на оболочке, откуда ушел электрон. Дырки перемещаются в направлении противоположном потоку электронов (рис 2.3).
В том случае, если электроны берутся с одного конца проводника и добавляются на другой конец проводника, то по проводнику будет течь ток. В результате медленного движения свободных электронов по проводнику, они сталкиваются с атомами, при этом освобождая другие электроны. Эти освободившиеся электроны движутся к положительному заряженному концу проводника, так же сталкиваясь с другими атомами. Это перемещение (или его еще называют дрейф) происходит как следствие отталкивания зарядов. К тому же положительно заряженный конец проводника, где присутствует дефицит электронов, притягивает отрицательно заряженные электроны. Так вследствие «работы» законов взаимодействия электрических зарядов происходит медленный дрейф электронов. Хотя отдельные электроны сталкиваются с атомами и освобождают другие электроны, скорость которых достигает скорости света. Для наглядности возьмем полую трубу и заполним ее шариками (рис. 2.4.).
Если добавить шарик в один конец трубы, то из второго конца шарик выталкивается. Отдельные шары тратят для перемещения некоторое время, но частота их столкновений иногда будет достаточно высокой. Устройство, которое забирает электроны с положительно заряженного конца проводника и отдает их в отрицательно заряженный конец проводника, называют источником напряжения. В сравнении с системой водопровода источник напряжения может рассматриваться как своего рода насос (рис. 2.5).
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
- Электрический ток в металлических проводниках
- Электродвижущая сила (ЭДС) источника энергии
- Направление и величина электрического тока. Количество электричества
- Электрическое сопротивление проводника. Электрическая проводимость
- Электрический ток в электролитах
- Ток смещения в диэлектрике
- Электрический ток в полупроводниках
- Электрический ток в газах
Комментарии
Санёк 30.09.2019 17:45 Классная статья спасибо автору)
trademaxx 06.05.2018 04:32 Я думаю вместо «Дырки перемещаются в направлении противоположном потоку электронов» правильнее написать дырки возникают…
Tocaor 08.01.2018 10:48 Олег, Вы серьёзно? Сила тока в кулонах? 12 кулонов изначально в условии были, читайте внимательнее.
30.10.2017 09:36 Спасибо,хорошая статья
Дмитрия 04.10.2017 04:18 Статья доступная для чайника, где положительно заряженная частица которая бежит встречно?!
Марат 15.07.2016 23:12 Так пример правильный или нет?
Ростислав 30.06.2016 20:29 Электричество это кровь цивилизации .Нет толковых специалистов в области электроники и страна будет отсталой . Но самое главное доступно и понятно объяснять то что связано с электроникой и подобные сайты это Великое дело
Олег 17.07.2015 06:25 У вас ошибка в тексте: ———————— Пример. Чему будет равна сила тока в цепи, если через заданную точку в цепи прошло 12 кулон заряда за 4 секунды. Решение. I=12 Кл; T=4 с; I=Q/t=12/4=3 (А). —————————- Должно быть: Q=12 Кл;
Олег 30.12.2014 06:39 Отличная статья! Проще трудно объяснить.
Обновить список комментариев
Добавить комментарий
Электрический ток и поток электронов
Электрический ток — что это такое
Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.
Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.
Ядро и электроны
Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.
У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.
Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).
Действия тока
Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?
Можно выделить три основных действия электрического тока:
1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример – некоторые бытовые обогреватели (Рис. 5).
Рис. 5. Электрообогреватель ()
2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (Рис. 6).
Рис. 6. Электролизный цех алюминиевого width=»670″ height=»446″[/img])
3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.
Электрический ток в параллельной цепи
В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.
Параллельная электрическая цепь
Вид цепи и напряжение
В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:
- Цепи постоянного тока;
- Цепи переменного тока.
Единица измерения силы тока
Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).
На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.
Для цепей переменного тока характерны такие виды и значения напряжения, как:
- мгновенное;
- амплитудное;
- среднее значение;
- среднеквадратическое;
- средневыпрямленное.
Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)
Как определить анод и катод
Если с батарейкой все довольно просто (полюс и минус не меняются местами), то с зарядкой аккумулятора дело обстоит сложнее.
Во время зарядки разность между большим и меньшим потенциалом увеличивается, то есть потенциал положительного электрода становится выше, чем его же потенциал в покое – накапливается заряд, а потенциал отрицательного электрода становится меньше, чем он же в состоянии покоя. Отсюда вытекает, что положительный электрод выступает анодом, а отрицательный – катодом.
При использовании устройства потенциал положительного электрода (анода) всегда остается больше, чем потенциал отрицательного (катода). Но во время цикла разрядки/зарядки роль электрода меняется: при разрядке положительным становится катод, отрицательным – анод. Во время зарядки положительным выступает анод, отрицательным – катод.
Если речь идет о растворах и электрофизических реакциях в них, проще запомнить, что катионы – всегда частицы с положительным зарядом, а значит двигаются к минусу. Анионы – частицы всегда с отрицательным зарядом и двигаются к плюсу.
Голос строительного гуру
Чтобы запомнить, где плюс, где минус, используют мнемоническое правило. В словах «катод» и «минус», а также в словах «анод» и «плюс» одинаковое количество букв. В нормальном режиме работы любого электрического прибора ток вытекает из катода и втекает в анод. Даже если речь о металлической жиле, поскольку здесь направление тока определяют не смещении электронов, а смещение дырок.
Виды токов: постоянные и переменные
В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:
- Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
- Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Основные характеристики переменного тока
Сфера применения
В промышленности используют не только собственно гальванические элементы (для получения электрического тока), но и электрохимические реакции, которые протекают под действием тока. Самый известный – получение тонкопослойного защитного покрытия стали – из цинка, алюминия, цинкового-алюминиевых сплавов.
Электрохимия
Электролиз по своему значению противоположен работе гальванического элемента: реакция проходит под действием тока. При этом плюс источника питания все же именуется катодом, а минус анодом, что как бы противоречит вышесказанному. Происходит это потому, что ток от плюсового вывода источника питания уходит на плюсовой вывод аккумулятора и в этом случае последний уже никак не может быть катодом. В результате электроды аккумулятора при зарядке меняются местами, потому что реакция идет в обратном направлении.
Гальванотехника
Посеребрение, золочение, хромирование, оцинковка – наиболее известные способы использования процесса осаждения вещества. Принцип действия таких установок одинаков: изделие погружают в электролитическую ванную, в которой оно выступает катодом. На его поверхности осаждаются ионы металла – катионы. Чтобы изделие стало катодом, к нему подключают плюсовой вывод источника питания.
Вакуумные и полупроводниковые электроприборы
Понятие катода и анода, а точнее плюса и минуса в вакуумных и полупроводниковых приборах связано с возможностью протекания тока только в одном направлении или в двух. Полупроводник допускает только прямое течение тока, а при наложении напряжения обратного типа ток здесь течет, но крайне незначительно. Для резистора же вопрос не принципиален: он пропускает ток в обоих направлениях.
Катодом и анодом называют выводы диода – ножки. К плюсу батареи подключается анод. Называется он так, потому что у диода в ток любом случае втекает в анод. Светодиод и даже вакуумный подключается точно так же: анод к плюсу, а катод к минусу.
У пассивных потребителей катод и анод (плюс и минус) не меняются. У активных, способных пропускать ток в обоих направлениях, разряжаться и заряжаться – плюсы и минус могут меняться. В аккумуляторе катод положительный во время разрядки и отрицательный при зарядке. Для правильного использования приборов и элементов важно помнить одно: у всех потребителей энергии – электронных деталей, электролизеров, гальванических батарей − вывод, подключаемый к плюсу, называется анодом.
Двунаправленное перемещение зарядов
Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).
Двунаправленное перемещение зарядов в аккумуляторной батарее
Значение перемещения электронов в электрической схеме
Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,
диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.
Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.