8.5.2 Факторы, влияющие на величину показателя преломления света.
Свет, проходя через вещество, испытывает определенное сопротивление среды, что выражается в изменении его скорости и проявляется как эффект преломления лучей. В зависимости от свойств среды, этот эффект может быть как слабым, так и достаточно заметным. К факторам, влияние которых на величину n необходимо учитывать, относятся:
длина волны излучения;
наличие поглощающих и рассеивающих частиц;
фазовый состав (структурные особенности и химический состав).
При анализе воздействия конкретных факторов на величину показателя преломления будем рассматривать его взаимосвязь с плотностью среды.
Температура среды.
При нагревании практически все тела расширяются, а следовательно увеличивается их объем и возрастают межмолекулярные расстояния, тогда как межмолекулярное взаимодействие ослабевает. Это приводит к уменьшению плотности среды и увеличению скорости света в ней. Следовательно, учитывая формулу (8.22), значение показателя преломления с ростом температуры будет убывать. Для водных растворов при нагреве от 4-х до 100 эта зависимость имеет вид:
где и — показатели преломления воды при заданной температуре t и при 20 , t – температура среды в ( ).
Концентрация вещества.
С ростом концентрации вещества значение показателя преломления уменьшаются. Эта закономерность следует из взаимосвязи плотности среды и концентрации как числа единиц вещества в единичном объеме. Чем больше концентрация, тем выше плотность среды, тем ниже скорость распространения света в ней. Эта закономерность больше характерна для конденсированных сред, таких как растворы, расплавы или твердые вещества. Для газов эффект выражен значительно слабее, так как молекулы вещества достаточно далеко удалены друг от друга. Так абсолютный показатель преломления воздуха = 1,00027, т.е. практически близок к единице в широком температурном и концентрационном интервале. Это позволяет выполнять многие аналитические определения в обычных условиях, а при обработке результатов – не учитывать погрешность, вносимую воздухом из-за ее малости.
Длина волны излучения.
Как известно, в зависимости от энергии меняется цвет воспринимаемого излучения, а значит и значение длины волны. Так как длина волны определяется скоростью распространения излучения в вакууме, то и значение показателя преломления также будет меняться в зависимости от излучения. При прочих равных условиях наиболее сильно преломляются синие лучи, а наименее – красные. Этот факт объясняет расположение цветов в спектре при прохождении луча через призму (рисунок 8.37). Зависимость показателя преломления света для данного вещества от длины волны характеризуется дисперсией света . Под дисперсией света понимают разность показателей преломления синего ( =) и красного лучей ( =).
Дисперсия света характеризует преломляющие свойства вещества и является табличным значением.
Рисунок 8.37 Разложение в спектр белого света при прохождении его через
Наличие поглощающих и рассеивающих частиц.
Любое вещество, обладающее выраженной окраской (цветом), имеет сильное избирательным поглощением. Поэтому, при прохождении белого света через такую среду, наряду с преломлением луча, будет меняться и его цветность. Следовательно характеристики падающего и преломленного лучей будут существенно отличаться, а значение n не будет верным.
Если вещество характерно окрашено, то измерение показателя преломления следует выполнять на монохроматическом излучении того же цвета, что и среда. Это позволит исключить поглощение части исходного излучения самим веществом. Для аналитических целей интенсивно окрашенные растворы с сильным избирательным поглощением не используют из-за высокой погрешности определения. Наличие рассеивающих частиц практически не сказывается на точности показателя преломления, если размеры их больше длины волны излучения. Так как измерение показателя преломления проводят в очень тонком слое, то для большинства даже мутных сред эффектом рассеивания можно пренебречь. Для очень мелких частиц, какие образуются в коллоидах металлов, рассеяние света подчиняется закону Рэлея и зависит от длины волны. В этом случае показатель преломления подчас измеряется с существенной погрешностью.
Фазовый состав.
Под фазовым составом в химии понимают различие как в структуре, так и в химическом составе веществ. Показатели преломления оптических изомеров несколько отличаются, что позволяет определять их соотношение по градуировочным характеристикам, полученным путем замера стандартных серий специально приготовленных растворов. Аналогично выполняют определение состава 3-х фазных систем. Для этого используют несколько измеряемых параметров, таких как температура, пикнометрическая плотность раствора и его показатель преломления. По эмпирическим формулам рассчитывают коэффициенты, позволяющие по номограмме системы найти искомый состав. Например, таким способом можно определять соотношение компонентов в тройной системе вода – этанол – сахароза. На рисунке 8.38 приведен вид номограммы, применяемой для этих целей.
Рисунок 8.38 Вид номограммы для расчета состава тройной системы:
вода – этанол – сахароза.
8.5.3 Устройство и принцип работы рефрактометра.
На практике применяют несколько видов рефрактометров: от самых простых до более сложных, снабженных световыми и поляризационными светофильтрами. Вид одного из таких устройств показан на рисунке 8.39. Некоторые рефрактометры снабжены 2-мя шкалами, проградуированными не только в единицах показателя преломления, но и в белковых числах.
Рисунок 8.39 Внешний вид рефрактометра марки ИРФ-22.
А и Б – измерительные призмы внутри измерительной головки
1 – разъемные полушария термостатируемой измерительной головки;
2 – маховик поворота измерительной головки; 4 – осветительное зеркало;
5 – зеркало подсветки шкалы; 6 – окошко шкалы; 7 – зрительная труба (тубус);
8 – окуляр; 9 – маховик для компенсации рефракции; 10 – термометр.
Работа рефрактометра базируется на измерении предельного угла преломления на границе призма – слой жидкости (рисунок 8.40). В этом случае свет, пройдя через верхнюю призму (2), попадает в слой жидкости под критическим углом и скользит вдоль поверхности второй призмы (3). В окуляре (7) проецируется изображение обоих призм в виде 2-х полей: светлого (освещенная призма) и темного (не освещенная призма). При качественной настройке в перекрестье визира или просто в окуляре видна четкая граница 2-х полей: светлого и темного.
Рисунок 8.40 Схематическое устройство рефрактометра с призмой Амичи.
1 – источник света; 2 и 3 – измерительные призмы, между которыми находится тонкий слой измеряемой жидкости; 4 – фокусирующее устройство; 5 – призма Амичи для компенсации дихроизма; 6 – шкала в единицах преломления; 7 – вид поля в окуляре рефрактометра при его правильной настройке.
Показатель преломления
Показатель преломления Электромагнитрых волн (безразмерная величина) (иногда встречается «коэффициент преломления») зависит от свойств вещества и длины волны излучения. Для некоторых веществ показатель преломления меняется с изменением частоты электромагнитных волн, в ряде случаев достаточно сильно (дисперсия). По умолчанию обычно имеется в виду оптический диапазон, либо диапазон, определяемый контекстом.
Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это явление наблюдается в кристаллах с достаточно низкой симметрией кристаллической решетки, а также вещества, подвергнутые механической n = μ ε <\displaystyle n=<\sqrt <\mu \varepsilon >>>
(надо при этом учитывать, что значения μ <\displaystyle
\varepsilon > для интересующего диапазона частот — например, оптического, могут очень сильно отличаться от статического значения этих величин).
Величина μ есть относительный показатель преломления среды В по отношению к среде А, а μ’ = 1/μ есть относительный показатель преломления среды А по отношению к среде В.
Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с [1]
Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным коэффициентом преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по коэффициенту преломления относительно воздуха.
Измерение показателя преломления света [ ]
Для измерения коэффициента преломления используют ручные и автоматические Некоторые табличные значения [ ]
Что нужно знать о показателе преломления
Позвонить специалисту Запросить информацию Запросить онлайн-демо /content/ru/ru/home/applications/Application_Browse_Laboratory_Analytics/Refractive_index/definition_and_measurement.fb.1.c.11.html Запросить цены
Что такое показатель преломления?
Показатель преломления вещества — это отношение скоростей света (электромагнитных волн) в вакууме и в данной среде. Показатель преломления — безразмерная величина, которая зависит от температуры и длины волны света. Показатель преломления характеризует скорость распространения света в среде и рассчитывается по формуле:
n = c / v,
n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в среде (например, воде, оливковом масле и т. п.).
На этой странице приведена необходимая информация о методах измерения показателя преломления.
Узнайте больше о показателе преломления, его применении, способах измерения, а также о законе преломления света и многом другом.
Перейдите в один из следующих разделов, чтобы узнать больше о показателе преломления:
- Преломление света: практический пример
- Закон преломления света (закон Снеллиуса)
- Полное внутреннее отражение и критический угол
- Закон преломления света и устройство рефрактометра
- Измерение показателя преломления: что измеряет рефрактометр?
- Факторы, влияющие на величину показателя преломления
- Показатель преломления: применение на практике
- Абсолютный и относительный показатель преломления
- Рекомендации по измерению показателя преломления
- Совершенствуйте методику измерения показателя преломления
- Приблизительные значения показателя преломления стандартных и эталонных веществ
- Часто задаваемые вопросы
Преломление света: практический пример
Прежде чем углубиться в теоретическое обоснование показателя преломления, рассмотрим наглядный пример распространения света в различных средах.
На иллюстрации изображены три стакана с опущенными в них стеклянными палочками. Стаканы заполнены разными жидкостями:
Жидкость в стакане
1 Вода.
2 Вода и кедровое масло.
3 Кедровое масло.
Что мы видим в этих стаканах?
Показатель преломления воды (n = 1,333) ниже, чем стекла (n = 1,517). По этой причине стеклянную палочку видно в стакане 1 и отчасти — в стакане 2.
Зато у стеклянной палочки (n = 1,517) и кедрового масла (n = 1,516) показатели преломления почти одинаковые, поэтому кажется, что палочка при погружении в кедровое масло исчезает (частично в стакане 2 и полностью в стакане 3).
Закон преломления света (закон Снеллиуса)
Закон преломления света, известный также как закон Снеллиуса, описывает взаимосвязь углов падения и преломления с показателями преломления граничащих сред. Как показано на иллюстрации, согласно этому закону отношение синуса угла падения α к синусу угла преломления β (и показателей преломления n1 и n2) — это величина, постоянная для двух данных сред:
На иллюстрации показано, как отклоняется световой луч (1, синяя стрелка), проходящий под определенным углом из оптически менее плотной (n1) в оптически более плотную среду (n2), например из воздуха в воду.
Но когда луч проходит из одной среды в другую перпендикулярно границе раздела, никакого преломления не происходит (зеленая стрелка).
Согласно закону преломления света, отношение показателей преломления граничащих сред пропорционально отношению угла падения и угла преломления светового луча. То есть:
Полное внутреннее отражение и критический угол
Полное внутреннее отражение возникает, когда весь свет, направленный из оптически более плотной среды в оптически менее плотную, отражается обратно в оптически более плотную среду. Для понимания этого явления рассмотрим иллюстрацию слева.
Синяя стрелка: луч света преломляется, проходя из оптически более плотной среды (n2) в оптически менее плотную (n1).
Угол падения α увеличивается (зеленая стрелка): когда угол падения α возрастает (1), он может достигнуть критической величины, после которой свет не проходит в оптически менее плотную среду (n1), а отражается вдоль раздела двух сред. Такой угол падения называют критическим углом полного внутреннего отражения. Заметим, что при этом угол отражения β = 90°.
Угол падения больше критической величины: если угол падения превышает критическую величину, свет полностью отражается обратно в оптически более плотную среду (n2). Это явление называют полным внутренним отражением (2).
Показатель преломления n1 рассчитывается по величине критического угла α, когда
β = 90° —> sin β = 1.
Внимание! Луч в случае 1 (зеленая стрелка) падает под критическим углом, а полное внутренне отражение происходит в случае 2 (голубая стрелка).
Закон преломления света и устройство рефрактометра
На основе описанного выше закона преломления света созданы рефрактометры — приборы для измерения показателя преломления жидкостей и высоковязких веществ.
На иллюстрации схематически показано устройство измерительной ячейки цифрового рефрактометра, в котором использован закон преломления света. Процедура измерения связана с полным внутренним отражением и критической величиной угла падения света. Принцип действия:
Источник света (1) — светодиод (LED). Луч света от светодиода проходит через поляризационный фильтр (2), интерференционный фильтр (3) и фокусирующие линзы (4), а затем через сапфировую призму (5) на образец.
Когда угол падения превышает критическую величину, отраженный свет попадает через линзу (6) на оптический датчик с зарядовой связью (7), который фиксирует критический угол. Кроме того, современные цифровые рефрактометры автоматически контролируют температуру на поверхности раздела призма/образец для повышения точности измерения.
Измерение показателя преломления: что измеряет рефрактометр?
Цифровой рефрактометр предназначен для измерения показателя преломления и связанных с ним характеристик жидкостей по методу полного внутреннего отражения. Процедура измерения автоматизирована, благодаря чему точность результатов не зависит от оператора. Измерение выполняется в течение нескольких секунд с высокой точностью на небольших образцах (объемом от 0,5 до 1 мл).
Также для измерения показателя преломления используются ручные рефрактометры, например оптический настольный рефрактометр Аббе или обычный переносной рефрактометр. Подробнее об их достоинствах и недостатках.
Факторы, влияющие на величину показателя преломления
Влияние температуры на измерение показателя преломления
Как зависит величина показателя преломления от температуры?
Сначала узнаем, как влияет температура на жидкости. С ростом температуры увеличивается пространство, которое занимают атомы, связанные между собой в одной молекуле. При нагревании усиливаются колебания атомов, атомы отодвигаются друг от друга раздвигаются, что приводит к снижению оптической плотности среды.
Как сказано выше, показатель преломления связан со скоростью распространения света в среде. Когда температура растет, оптическая плотность среды снижается, а скорость света в ней увеличивается, что приводит к небольшому изменению угла преломления. Другими словами, чем выше температура, тем меньше показатель преломления, как показано на графике ниже на примере воды.
Из графика видно, что температура образца существенно влияет на измеряемую величину. Это означает, что температуру следует точно измерять и по возможности регулировать.
Приборы старой конструкции, например рефрактометры Аббе, приходится помещать в жидкостный термостат. В большинстве современных цифровых рефрактометров температура оптической системы регулируется с помощью элемента Пельтье. Такая конструкция обеспечивает быстрое и точное измерение показателя преломления.
Влияние длины волны на измерение показателя преломления
Вследствие различной дисперсии света (дисперсионного соотношения) в разных веществах показатели преломления также почти всегда различаются в зависимости от длины волны света, используемого для измерения. Дисперсионное соотношение можно рассчитать следующим образом.
Мы знаем, что скорость распространения света в среде равна:
где:
n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в данной среде.
Длина волны в этой же среде:
где: λ0 — длина световой волны в вакууме (или воздухе).
Следовательно, величина показателя преломления (n) обратно пропорциональна как длине волны, так и скорости распространения света в среде. Это означает, что при большей длине волны показатель преломления уменьшается. Такое соотношение можно представить в виде уравнения:
В то же время для контроля качества в промышленности необходимо иметь определенную точную длину волны, чтобы сравнивать значения показателя преломления различных образцов, измеренные в одинаковых условиях.
Чаще всего в рефрактометрах используется желтая линия спектра натрия с длиной волны 589,3 нм. Желтая линия натрия уже давно используется для измерения показателя преломления. Это широко доступный, надежный и стабильный стандарт оптического излучения.
n = показатель преломления.
t = температура (°C).
D = желтая линия натрия.
Значение показателя преломления, измеренное по желтой линии натрия, обозначается символом nD.
Показатель преломления: применение на практике
Любой материал, который взаимодействует со светом, можно характеризовать показателем преломления. Во многих отраслях промышленности измерение показателя преломления используется для проверки чистоты и концентрации жидких, высоковязких и твердых образцов. Показатель преломления жидких и высоковязких материалов измеряется с высокой точностью (погрешность от ± 0,00002).
Кроме того, показатель преломления можно сопоставлять с широким диапазоном концентраций. Эту зависимость используют для анализа многих материалов в разных отраслях, например:
- Производство пищевых продуктов и напитков: плотность (содержание сахара) по шкале Брикса для безалкогольных напитков или плотность виноградного сусла по шкале Эксле.
- Химическая промышленность: температура замерзания (°C или °F), концентрация кислоты/щелочи, содержание органических растворителей или неорганических солей в объемных или весовых процентах.
- Производство и клинические исследования лекарств: содержание перекиси или метилового спирта, концентрация различных веществ в моче.
В некоторых случаях измерение показателя преломления сочетают с измерением плотности, получая простой и эффективный метод контроля. Такой анализ можно полностью автоматизировать.
Требуется более подробная информация о показателях Брикса, Плато, Баллинга и Боме?
Наряду с плотностью по шкале Брикса, существуют другие сопоставимые единицы для измерения содержания сахарозы, например градусы Плато, Боме, Эксле и Баллинга. Узнайте больше об их различиях, применении, способах измерения и расчета.
от чего зависит показатель преломления вещества?
Показа́тель преломле́ния вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде . Также о показателе преломления иногда говорят для любых других волн, например, звуковых, хотя в таких случаях, как последний, определение, конечно, приходится как-то модифицировать.
Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может еще более резко меняться в определенных областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.
Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решетки, а также вещества, подвергнутые механической деформации.
Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды (надо при этом учитывать, что значения и для интересующего диапазона частот — например, оптического, могут очень сильно отличаться от статического значения этих величин) .
Для измерения коэффициента преломления используют ручные и автоматические рефрактометры. При использовании рефрактометра для определения концентрации сахара в водном растворе прибор называют Сахариметр.
Отношение синуса угла падения (α) луча к синусу угла преломления (γ) при переходе луча из среды A в среду B называется относительным показателем преломления для этой пары сред.
Величина n есть относительный показатель преломления среды В по отношению к среде А, а n’ = 1/n есть относительный показатель преломления среды А по отношению к среде В.
Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело) . Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды) .
Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.
Показатели преломления различных сред
Среда ——Показатель
Воздух (при обычных условиях) 1,0002926
Вода 1,332986
Глицерин 1,4729
Бензол 1,500
Органическое стекло 1,51
Фианит (CZ) 2,15–2,18
Кремний 4,010
Алмаз 2,419
Кварц 1,544
Киноварь 3,02
Топаз 1,63
Лёд 1,31
Масло оливковое 1,46
Сахар 1,56
Спирт этиловый 1,36
Слюда 1,56–1,60