Электроемкость
Важнейшей характеристикой многих элементов электрических цепей является электроемкость. Рассмотрим это понятие более подробно, дадим его определение, выясним, от чего зависит эта величина, выведем формулу электроемкости.
Электризация тел
Электризация тел заключается в том, что с помощью внешних воздействий телам сообщается некоторый электрический заряд.
Рис. 1. Электризация тел.
Если вещество, из которого состоит тело, является проводником, то его электризация обычно совершается с помощью источника электрического тока. Электризация диэлектриков совершается обычно с помощью трения.
В любом случае, наэлектризованное тело имеет некоторый избыток носителей заряда, и чтобы этот избыток создать, необходимо совершить некоторую работу. А это значит, что наэлектризованное тело имеет некоторый электрический потенциал. (Напомним, что потенциал равен отношению работы, которую совершает электрическое поле, чтобы перенести заряд из бесконечности в данную точку, к величине этого заряда).
Наиболее интересные явления происходят, если электризуются два тела, каждое по-своему. Каждое тело имеет свой потенциал, а между этими телами образуется разность потенциалов – электрическое напряжение, которое будет прямо пропорционально заряду:
Электроемкость и конденсаторы
Напряжение, которое возникает между двумя по-разному заряженными телами, зависит от многих параметров – в первую очередь, от геометрических размеров тел, их электрических свойств, а также от свойств окружающей среды. Однако, пропорциональность этого напряжения заряду всегда сохраняется. Данное обстоятельство позволяет ввести специальную величину, характеризующую способность тел накапливать заряды – электроемкость (обозначается латинской буквой $C$).
Рис. 2. Электроемкость.
Как правило, в реальных электрических схемах для создания электроемкости в качестве заряженных тел используются проводящие пластины, а чтобы создаваемые на них заряды не смешивались и не компенсировали друг друга, пространство между пластинами заполняется диэлектриком (например, воздухом).
Рис. 3. Переменный конденсатор с воздушным диэлектриком.
Конденсаторам, обладающим большой емкостью, легко передавать заряды, для этого требуется совершить мало работы. Конденсаторам с малой емкостью, наоборот, заряды передавать трудно, работы для этого требуется больше. Поскольку работа, совершаемая при переносе заряда, характеризуется потенциалом, то емкость конденсатора будет равна отношению переданного заряда к разности потенциалов (напряжению) между обкладками:
Из данной формулы можно вывести единицу электроемкости – Фарад. Фарад – это емкость конденсатора, у которого при передаче ему заряда в 1 Кулон на обкладках возникнет напряжение 1 Вольт:
1 Фарад – это очень большая емкость. Конденсаторы, использующиеся в силовой электротехнике, имеют емкость, порядка десятков и сотен микрофарад. Конденсаторы, использующиеся в высокочастотной радиотехнике (например, изображенный выше), имеют емкости порядка десятков и даже единиц пикофарад ($1пФ = 10^<-12>Ф$).
Что мы узнали?
Электроемкость – это способность тел накапливать электрические заряды. Единицей электроемкости является Фарад. В реальных схемах для создания электроемкости используются конденсаторы, состоящие из проводящих пластин, разделенных диэлектриком.
Электроемкость — основные понятия, формулы и определение с примерами
Сообщая телу определенный заряд, мы изменяем его потенциал. Это изменение непосредственно связано со значением заряда, сообщаемого телу.
Для исследования зависимости потенциала тела от его заряда проведем опыт с электрометром, корпус которого соединен с поверхностью Земли. ‘Гикая система может измерять потенциал тела относительно Земли. Укрепим на стержне этого электрометра пустотелый металлический шар и будем сообщать ему заряд с помощью маленького металлического шарика на изоляционной ручке. Если коснуться заряженным шариком внутренней поверхности металлического шара, то весь его заряд перейдет на шар, а стрелка электрометра покажет увеличение потенциала шара. Последовательно повторяя опыт с переносом заряда на большой шар, заметим, что каждый раз его потенциал увеличивается (рис. 1.28).
Применяя более точные способы измерения заряда и потенциала, можно установить, что потенциал возрастает пропорционально возрастанию заряда. Потенциал пропорционален заряду шара. Результаты одного из таких опытов отражены на графике (рис 1.29).
Если ни стержне электрометра укрепим шар большего (меньшего) диаметра и продолжим опыты (рис. 1.31), то увидим, что скорость зарядки изменилась, соответственно уменьшилась (увеличилась).
Процесс электризации шара большего диаметра отображен графиком на рисунке 1.32.
Сопоставив графики, которые иллюстрируют процессы зарядки шаров различных диаметров (рис. 1.30 и 1.32), увидим, что графики имеют различный наклон относительно горизонтальной оси. Это свидетельствует о том, что при одинаковых значениях заряда шары разных диаметров будут иметь разные потенциалы. Оказывается, что на князь между зарядом и потенциалом шара существенно влияют геометрические размеры шаров.
Рис. 130. Электризация шара большего диаметра
Потенциал металлического шара пропорционален его заряду; коэффициент пропорциональности для различных шаров разный.
Анализируя результаты опытов и соответствующие графики, можно сделать выводы:
- потенциал каждого шара пропорционален его заряду:
- для тел различных размеров коэффициент пропорциональности разный.
Установлено, что этот коэффициент для каждого тела имеет вполне определенное значение, что отражает способность тела накапливать электрический заряд. Физическая величина, равная отношению электрического заряда, сообщенного телу, к его потенциалу, называется электроемкостью тела.
где C — электроемкость проводника; Q — заряд; φ — потенциал.
Для измерения электроемкости в физике применяют единицу, которую называют фарад (Ф).
Тело имеет электроемкость в 1 фарад, если при изменении его заряда на 1 кулон потенциал изменяется па 1 вольт:
Электроемкость 1 фарад имеют тела, у которых при изменении заряда на 1 кулон потенциал изменяется на 1 вольт.
- 1Ф — довольно большое значение электроемкости. Например, электроемкость Земли, имеющей радиус 6400 км, составляет всего 7 ∙ 10 4 Ф. Поэтому на практике используют единицу электроемкости, кратную фараду:
- 1 микрофарад = 1 мкФ = 10 -5 Ф.
- 1 пикофарад = 1 пФ = 10 -12 Ф.
Два шара, электроемкости которых 50 мкф и 80 мкФ, а потенциалы 120 В и 50 В соответственно, соединяют проводом. Найти потенциал шаров после соединения.
После соединения шаров произойдет перераспределение зарядов между ними так, что их потенциалы станут одинаковыми. Согласно закону сохранения электрических зарядов
Отсюда
или
Подставив значения физических величин и произведя расчеты, получим:
Ответ: после соединения шары будут иметь потенциал 77 В.
Конденсатор
Чтобы экспериментально определить электроемкость проводника, как и его потенциал, нужно создать условия, исключающие влияние всех окружающих тел, которые, влияя па тело, изменяют его потенциал и электроемкость.
Это утверждение можно проверить опытом.
Укрепим на стержне электрометра металлический шар и сообщим ему определенный заряд. Стрелка прибора отклонится от положения равновесия и покажет определенное значение потенциала относительно земли.
Поднесем к шару металлическую пластину, соединенную проводником с землей (рис. 1.32).
Pиc. 132. Заземленная металлическая пластина влияет на электроемкость шара
Показания стрелки электрометра уменьшатся. Поскольку заряд шара в опыте не изменялся, то уменьшение потенциала свидетельствует об увеличении электроемкости шара. Изменение потенциала и соответственно электроемкости шара будет наблюдаться и в случае изменения расстояния между шаром и пластиной.
Таким образом, определяя электроемкость тела, необходимо учитывать также наличие окружающих тел. Поскольку на практике это сделать трудно, то применяют систему из двух или более проводников произвольной формы, разделенных диэлектриком. В этом случае электрические свойства такой системы проводников и диэлектрика не зависят от окружающих тел. Такую систему называют конденсатором. Простейшим для изучения и расчетов является конденсатор из двух металлических пластин, разделенных диэлектриком.
Электроемкость конденсатора, в отличие от обособленного тела, определяется по разности потенциалов между пластинами:
где Q — заряд одной пластины; (φl— φ2) и ∆φ — разность потенциалов между пластинами.
Слово конденсатор обозначает накопитель. В электричестве понимают как «накопитель электрических зарядов».
Какую электроемкость имеет конденсатор, если на его обкладках накапливается заряд 50 нКл при разности потенциалов 2,5 кВ?
Решение
Используем формулу емкости конденсатора:
Подставим значения физических величин:
Ответ: электроемкость данного конденсатора 20 пФ.
Первый конденсатор был создан в 1745 г. голландским ученым Питером ван Мушенбруком, профессором Лейденского университета. Проводя опыты по электризации различных тел, он опустил проводник от кондуктора электрической машины в стеклянный графин с водой (рис. 1.33).
![]() |
Питер ван Мушенбрук (1692-1781) — голландский физик; работы посвящены электричеству, теплоте, оптике; изобрел первый конденсатор — лейденскую банку и провел опыты с ней. |
Pиc. 133. Из истории открытия простейшего конденсатора лейденской банки
Случайно коснувшись пальцем этого проводника, ученый ощутил сильный электрический удар. В дальнейшем жидкость заменили металлическими проводниками, укрепленными на внутренней и внешней поверхностях банки. Такой конденсатор назвали лейденской банкой. В таком первозданном виде она использовалась в лабораториях более 200 лет.
Более совершенные конденсаторы применяются в современной электротехнике и радиоэлектронике. Их можно найти в преобразователях напряжения (адаптерах), питающих постоянным электрическим током электронные приборы, в радиоприемниках и радиопередатчиках как поставные части колебательных контуров. Они применяются практически во всех функциональных узлах электронной аппаратуры. В фотовспышках конденсаторы накапливают большие заряды, необходимые для действия вспышки.
В электротехнике конденсаторы обеспечивают необходимый режим работы электродвигателей, автоматических и релейных приборов, линий электропередач и т. п.
Во многих широкодиапазонных радиоприемниках конденсаторы переменной емкости (рис. 1.34) позволяют плавно изменять собственную частоту колебательного контура н процессе поиска передачи определенной радиостанции.
Рис. 134. Конденсатор переменной емкости с воздушным диэлектриком
Весьма распространены конденсаторы варикапы, электроемкость которых можно изменять электрическим способом. Конструктивно они весьма схожи с полупроводниковыми диодами.
Конденсаторы могут быть плоскими, трубчатыми, дисковыми. В качестве диэлектрика в них используют парафинированную бумагу, слюду, воздух, пластмассы, керамику (рис. 1.35).
Рис. 1.35. Различные типы конденсаторов
Искусственно созданные диэлектрические материалы позволяют создавать конденсаторы больших емкостей при небольших размерах.
Электроемкость плоского конденсатора
Плоским конденсатором обычно называют систему плоских проводящих пластин — обкладок, разделенных диэлектриком. Благодаря простоте конструкции такого конденсатора легко рассчитывать его емкость и получать значения, подтверждаемые опытами. Для этого достаточно знать его геометрические параметры и электрические свойства диэлектрика между его пластинами. Зависимость электроемкости плоского конденсатора от указанных параметров можно исследовать в школьной лаборатории.
Создадим плоский конденсатор из двух плоских пластин. Для этого одну пластину укрепим на стержне электрометра, я другую — па изоляционной подставке, присоединив ее проводником к корпусу электрометра (рис. 1.36.). В такой системе электрометр будет измерять разность потенциалов между пластинами, образующими плоский конденсатор.
Pиc. 136. Плоский конденсатор, присоединенный к электрометру
Проводя исследования, нужно помнить, что при постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.
При постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.
Сообщим пластинам некоторый заряд и отметим показания стрелки прибора. Когда начнем сближать пластины, уменьшая расстояние между ними, показания стрелки начнут уменьшаться. Это будет свидетельством того, что при уменьшении расстояния между пластинами электроемкость конденсатора будет увеличиваться. При увеличении расстояния между пластинами показания стрелки будут увеличиваться, что свидетельствует об уменьшении электроемкости.
Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.
где d — расстояние между обкладками.
Эту, зависимость можно изобразить на графике как обратно пропорциональную зависимость (рис. 1.37).
Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.
Pиc. 137. График зависимости электроемкости и плоского конденсатора от расстояния между пластинами
Будем смещать одну пластину относительно другой в параллельных плоскостях, не изменяя расстояния между ними. При атом площадь перекрытия между пластинами будет изменяться (рис. 1.38). Изменение разности потенциалов, отмеченное электрометром, засвидетельствует изменение электроемкости.
Pиc. 138. При расчетах электроемкости плоского конденсатора учитывают площадь перекрытия пластин
Увеличение площади перекрытия приведет к увеличению электроемкости, при уменьшении — наоборот.
Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.
где S — площадь пластин, которые перекрываются.
Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.
Эту зависимость можно изобразить графиком прямой пропорциональной зависимости (рис. 1.39).
Pиc. 139. График зависимости электроемкости плоского конденсатора от площади его пластин
Возвратив пластины в первоначальное положение, внесем в пространство между обкладками пластину из диэлектрика. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увеличении электроемкости. Если внести пластину из другого диэлектрика (другая диэлектрическая проницаемость), то изменение электроемкости будет другим.
Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика между обкладками.
где ε — диэлектрическая проницаемость диэлектрика.
Эта зависимость изображена графиком на рисунке 1.40.
Рис. 1.40. График зависимости электроемкости плоского конденсатора от диэлектрической проницаемости диэлектрика
Результаты описанных выше исследований можно обобщить формулой электроемкости плоского конденсатора
где ε — относительная диэлектрическая проницаемость диэлектрика; ε0— электрическая постоянная; d — расстояние между пластинами; S — площадь пластины.
Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика.
Соединение конденсаторов в батареи
Для получения необходимых значений электроемкости конденсаторы соединяют в батареи. На практике встречается параллельное, последовательное и смешанное соединение конденсаторов.
При параллельном соединении конденсаторов все обкладки соединяются в две группы, в каждую из которых входит по одной обкладке каждого конденсатора. На рисунке 1.41 приведена схема такого соединения. При таком соединении каждая группа обкладок имеет одинаковый потенциал.
Pиc 1.41. Схема параллельного соединения конденсаторов
Если батарею параллельно соединенных конденсаторов зарядить, то между обкладками каждого конденсатора будет одинаковая разность потенциалов. Общий заряд батареи будет равен сумме зарядов каждого из конденсаторов, входящих в батарею:
Если учесть, что то
или
Электроемкость батареи параллельно соединенных конденсаторов равна сумме электроемкостей всех конденсаторов.
При последовательном соединении конденсаторов соединяются между собой только две пластины разных конденсаторов. Если в каждом конденсаторе пластины обозначить буквами А и В, то при последовательном соединении пластина B1 будет соединена с пластиной A2, пластина B2 -с пластиной А3 и т. д. (рис. 1.43).
Если цепочку последовательно соединенных конденсаторов присоединить к источнику тока, то об-
кладка A1 и обкладка B1 будут иметь одинаковые по значению заряды +Q и -Q. Благодаря этому все обкладки внутри цепочки будут иметь такие же, но попарно противоположные по знаку заряды:
Pиc. 1.42. Последовательное соединение конденсаторов
Вместе с тем общая разность потенциалов на концах цепочки будет равна сумме разностей потенциалов на каждом конденсаторе:
Учитывая, что будем иметь
Разделим левую и правую части равенства на Q:
При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.
При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно с
При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.
При последовательном соединении конденсаторов разной электроемкости C1, C2, C3, . Сn общая электроемкость С будет меньше электроемкости самого меньшего конденсатора.
Если C1
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Электроемкость. Энергия электрического поля
В курсе физики основной школы вы уже познакомились с конденсатором – устройством, предназначенным для накопления электрических зарядов.
Например, плоский конденсатор (рис. 54.1) состоит из двух параллельных пластин, расстояние между которыми намного меньше их размеров. Эти пластины называют обкладками конденсатора.
Между обкладками конденсатора находится диэлектрик. Им может быть, например, воздух. Но чаще пространство межу обкладками заполняют жидким или твердым диэлектриком.
Если сообщить обкладкам конденсатора равные по модулю, но противоположные по знаку электрические заряды, то поле, созданное этими зарядами, будет сосредоточено практически полностью между обкладками (см. рис. 51.6).
Зарядом конденсатора называют модуль заряда любой из го обкладок (напомним, что разноименные заряды на обкладках конденсатора равны по модулю).
Если увеличить заряды обкладок конденсатора, скажем, 3 раза, то при этом напряженность поля между обкладками увеличится также в 3 раза. Значит, в 3 раза увеличится и работа поля по перемещению заряда с одной обкладки на другую. Следовательно, напряжение между обкладками увеличится тоже в 3 раза.
Это рассуждение показывает, что напряжение между обкладками конденсатора прямо пропорционально заряду конденсатора. Поэтому отношение заряда q конденсатора к напряжению U между его обкладками не зависит ни от заряда, и от напряжения. Следовательно, это отношение является характеристикой самого конденсатора.
Отношение заряда конденсатора к напряжению между его обкладками называют электроемкостью:
Единица электроемкости. Единицей электроемкости является 1 фарад (Ф). Эта единица названа в честь английского ученого Майкла Фарадея.
Если конденсатор имеет электроемкость 1 Ф, то при заряде 1 Кл напряжение между его обкладками равно 1 В. Это очень большая электроемкость, поэтому для практических целей используют такие единицы электроемкости как микрофарад (10 -6 Ф) и пикофарад (1 пФ = 10 -12 Ф).
? 1. Чему равен заряд конденсатора, если его электроемкость равна 5 мкФ, а напряжение между его обкладками 200 В?
? 2. Как изменится электроемкость конденсатора, если:
а) заряд конденсатора увеличить в 2 раза?
б) напряжение между обкладками конденсатора уменьшить в 3 раза?
От чего зависит электроемкость плоского конденсатора?
Поставим опыт
Соединим одну из обкладок школьного демонстрационного конденсатора с корпусом электрометра, а другую – с его стержнем (рис. 54.2, а).
Зарядим конденсатор и начнем сближать обкладки. Мы увидим, что показания электрометра уменьшаются (рис. 54.2, б). Это означает, что разность потенциалов (напряжение) между обкладками уменьшается.
Поскольку заряд обкладок остается при этом неизменным, из формулы C = q/U следует, что при уменьшении расстояния между обкладками электроемкость конденсатора увеличивается.
Если при неизменном расстоянии между пластинами конденсатора внести между ними диэлектрик (например, лист органического стекла), то разность потенциалов между пластинами уменьшится. Это указывает на то, что емкость конденсатора увеличилась.
Изменяя площадь пластин конденсатора, мы увидим, что при увеличении площади пластин емкость конденсатора увеличивается.
Более точные опыты и расчеты показывают, что электроемкость плоского конденсатора выражается формулой
где S – площадь одной из обкладок, d – расстояние между ими, ε – диэлектрическая проницаемость диэлектрика, заполняющего пространство между ними, ε0 = 8,85 * 10 -12 Кл 2 / (Н * м 2 ) (так называемая электрическая постоянная).
? 3. Как изменится электроемкость конденсатора, если:
а) площадь его обкладок увеличить в 3 раза?
б) расстояние между обкладками уменьшить в 2 раза?
в) заполнить пространство между обкладками диэлектриком с диэлектрической проницаемостью ε = 4?
Соотношение между напряжением на конденсаторе и напряженностью поля между его обкладками. В пространстве между обкладками плоского конденсатора электрическое поле можно считать практически однородным. Поэтому если расстояние между ними обозначить d, получим следующее соотношение (см. § 53):
? 4. Чему равен заряд плоского конденсатора, если его электроемкость 20 пФ, напряженность поля между обкладками 50 кВ/м, а расстояние между обкладками равно 5 мм?
? 5. Расстояние между обкладками плоского конденсатора увеличили в 3 раза при неизменном заряде. Как изменились напряжение между обкладками и напряженность поля?
2. Энергия заряженного конденсатора
Поставим опыт
Замкнем обкладки заряженного конденсатора через лампочку накаливания. Мы увидим, что при разрядке конденсатора лампочка вспыхнет. Это означает, что заряженный конденсатор обладает энергией.
Предположим, что мы раздвигаем обкладки заряженного конденсатора, начальное расстояние между которыми практически равно нулю. Раздвигая пластины, мы совершаем положительную работу, потому что разноименно заряженные обкладки притягиваются. При этом согласно закону сохранения энергии потенциальная энергия конденсатора возрастает. Расчет показывает, что она увеличивается на
где q – модуль заряда обкладки (заряд конденсатора), U – напряжение между его пластинами. Это и есть энергия заряженного конденсатора.
Множитель ½ в формуле (3) обусловлен тем, что, раздвигая пластины конденсатора, мы перемещаем каждую из них в поле, созданном зарядом одной (другой) пластины. А напряженность поля, создаваемого одной обкладкой, в 2 раза меньше модуля напряженности поля между обкладками.
? 6. Докажите, что энергия заряженного конденсатора выражается также формулами
Wp = q 2 /2C, (4)
Wp = CU 2 /2. (5)
Подсказка. Воспользуйтесь формулой C = q/U.
Из формулы (4) следует, что энергия заряженного конденсатора обратно пропорциональна его электроемкости, а из формулы (5) следует, что она, наоборот, прямо пропорциональна электроемкости. Не противоречат ли эти формулы одна другой?
Чтобы ответить на этот вопрос, рассмотрим, как изменяется энергия конденсатора при изменении его электроемкости. Конденсаторы, электроемкость которых можно изменять, широко используются, особенно в радиотехнике: например, с их помощью настраивают радиоприемник на волну той или иной радиостанции (подробнее мы расскажем об этом в курсе физики 11-го класса). Такие конденсаторы называют конденсаторами переменной емкости.
Например, в описанном выше опыте (см. рис. 54.2) электроемкость конденсатора увеличивалась при сближении его пластин.
Исследуя зависимость энергии конденсатора от его электроемкости, очень важно учитывать, какая величина остается неизменной при изменении электроемкости: заряд конденсатора или напряжение между его пластинами.
? 7. Электроемкость конденсатора увеличивают в 3 раза при неизменном заряде.
а) Найдите изменение энергии конденсатора, используя формулу (4).
б) Как изменилось напряжение между обкладками конденсатора?
в) Найдите изменение энергии конденсатора, используя формулу (5).
? 8. Электроемкость конденсатора увеличивают в 3 раза при неизменном напряжении между обкладками.
а) Найдите изменение энергии конденсатора, используя формулу (5).
б) Как изменился заряд конденсатора?
в) Найдите изменение энергии конденсатора, используя формулу (4).
Таким образом, мы видим, что противоречия между формулами (4) и (5) нет: обе эти формулы дают одинаковое значение энергии конденсатора, если принять во внимание, что заряд конденсатора и напряжение между его обкладками связаны соотношением C = q/U.
3. Энергия электрического поля
Потенциальную энергию зарядов в электрическом поле важно рассматривать также как энергию электрического поля. При перемещении зарядов друг относительно друга энергия созданного этими зарядами электрического поля изменяется.
Например, раздвигая заряженные обкладки конденсатора, мы совершаем положительную работу, потому что обкладки притягиваются друг к другу. Согласно закону сохранения энергии совершенная работа равна увеличению энергии электрического поля. Увеличивая расстояние между пластинами, мы увеличиваем объем пространства, занятый электрическим полем: на рисунке 54.3, а, б занятая электрическим поем область пространства для наглядности выделена светлым.
Расчеты показывают, что для однородного поля энергия электрического поля в заданной области пространства пропорциональна объему этой области и квадрату напряженности поля.
Дополнительные вопросы и задания
9. Все размеры воздушного конденсатора уменьшили в 2 раза и затем заполнили пространство между его обкладками диэлектриком.
а) Как изменилась электроемкость конденсатора вследствие уменьшения его размеров?
б) Чему равна диэлектрическая проницаемость диэлектрика, если после заполнения им пространства между обкладками значение электроемкости конденсатора стало равно первоначальному?
10. Маленький заряженный шарик подвешен на нити между вертикально расположенными пластинами воздушного конденсатора. Масса шарика 0,2 г, заряд 30 нКл, расстояние между пластинами 5 см. Нить отклонена на угол 30º от вертикали.
а) Изобразите на чертеже все силы, действующие на шарик.
б) Чему равна сила, действующая на шарик в электростатическом поле?
в) Чему равна напряженность поля между пластинами конденсатора?
г) Чему равна разность потенциалов между пластинами конденсатора?
11. Пространство между пластинами плоского конденсатора заполнено диэлектриком, диэлектрическая проницаемость которого равна 7. Заряды пластин конденсатора остаются неизменными. Как изменится при удалении диэлектрика:
а) электроемкость конденсатора?
б) разность потенциалов между его пластинами?
в) энергия конденсатора?
12. Пространство между пластинами воздушного конденсатора заполняют диэлектриком с диэлектрической проницаемостью ε и уменьшают расстояние между пластинами в 2 раза. При этом разность потенциалов между пластинами поддерживают неизменной.
а) Как изменяется электроемкость конденсатора?
б) Как изменяется заряд конденсатора?
в) Как изменяется энергия конденсатора?
от чего зависит электроёмкость плоского конденсатора?
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.
Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).