Что является причиной электрохимической коррозии
Перейти к содержимому

Что является причиной электрохимической коррозии

  • автор:

1.3.2. Электрохимическая коррозия

Электрохимическая коррозия — самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов под влиянием внешних факторов, в котором, в отличие от химической коррозии, наблюдается направленное движение электронов от окисляемого металла к окислителю.

Электрохимическая коррозия возникает, когда соприкасаются два металла различной активности. Различие в энергиях ионизации и в величине сродства к электрону заставляет электроны переходить от более активного металла к менее активному, что и запускает процесс электрохимической коррозии.

Механизм электрохимической коррозии. Процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие процессы:

1) анодный процесс — переход ионов окисленного металла в раствор, сопровождающийся гидратацией (сольватацией):

Ме + nН2O → Ме n + · nН2O + ;

2) омический процесс — перетекание освободившихся электронов от анодных участков к катодным и движение ионов в растворе;

3) катодный процесс — ассимиляция электронов каким-либо окислителем, при этом происходит катодное восстановление окислителя Ох:

Ох + nē → Red.

Окислителями при коррозии служат молекулы кислорода О2, хлора Cl2, ионы Н + , Fe 3+ , NO3 – и др. Наиболее часто при коррозии в нейтральной и щелочной среде наблюдается восстановление кислорода:

а в кислой среде — выделение водорода:

Коррозия с участием молекулярного кислорода называется коррозией с кислородной деполяризацией. Коррозия с участием ионов водорода называется коррозией с водородной деполяризацией.

Кроме электрохимических реакций при коррозии обычно протекают вторичные химические процессы, например взаимодействие образующихся ионов металла с гидроксид-ионами, концентрация которых повышается в результате катодных реакций:

Me n + + nOH – = Ме(OН)n .

Рис. 5. Атмосферная коррозия в результате контакта меди и железа

анод Fe 0 – 2ē → Fe 2+ ;

Далее происходят вторичные процессы:

Образующийся гидроксид железа (II) легко окисляется кислородом воздуха, что в конечном итоге приводит к образованию ржавчины mFe2O3·nFeO·pH2O.

Образование гальванического элемента (гальванопары) из двух различных по активности металлов приводит к коррозии более сильной, чем для исходного активного металла. Например, цинк в растворе соляной кислоты (Е 0 Zn2+/Zn 0 = – 0,762 B) реагирует с выделением водорода:

или в ионном виде:

Zn + 2H + = Zn 2+ + H2↑;

но постепенно изолируется от раствора мелкими пузырьками образовавшегося газа, в результате чего его дальнейшее растворение прекращается.

Медь с разбавленной соляной кислотой не реагирует, так как находится в ряду напряжений после водорода, её стандартный электродный потенциал Е 0 Cu2+/Cu 0 = +0,34 B. Но цинк в контакте с медью образует в разбавленной соляной кислоте коррозионную гальванопару:

В кислой среде наблюдается электрохимическая коррозия Zn с водородной деполяризацией, в которой роль анода играет более электроотрицательный (более активный) металл — цинк, так как

Е 0 Zn2+/Zn 0 = – 0,762 B, в то время как Е 0 Cu2+/Cu 0 = +0,34 B.

В процессе коррозии цинк растворяется:

анод: Zn – 2ē → Zn 2+ (окисление);

омический процесс — переход электронов с анода на катод:

Zn 2 ē Cu;

катод: 2H + + 2ē → H2 (на поверхности меди).

Продукт коррозии в кислой среде — хлорид цинка:

Zn 2+ + 2Cl – = ZnCl2.

Очень часто электрохимическая коррозия возникает, когда металл содержит вкрапления металла меньшей активности или неметаллические, но, вместе с тем, токопроводящие включения (как, например, происходит в стали, где есть многочисленные включения карбида железа FeC3), становящиеся катодными участками электрохимической коррозии.

В качестве примера рассмотримжелезо, которое в качестве примеси содержит включения меди (рис. 6). Вся конструкция погружена в разбавленный раствор соляной кислоты HCl. На поверхности меди происходит восстановление окислителя, а материал анода окисляется и растворяется:

Анод Fe 0 – 2ē → Fe 2+ ;

Катод H + + ē → Н 0 ;

Рис. 6. Коррозия железа с включениями меди

Электрохимическая коррозия и ЭДС гальванопары. Возможность протекания коррозии может быть установлена по знаку ЭДС образующегося гальванического элемента. Если ЭДС > 0, то коррозия возможна. ЭДС равна разности потенциалов окислителя и восстановителя (катода и анода), поэтому коррозия возможна при условии, что потенциал катода (окислителя) положительнее потенциала анода (восстановителя). Если на аноде идет растворение металла, то должно быть ЕОх > ЕMen+/Me 0 .

Потенциал кислородного электрода при 298 К описывается уравнением:

Е 0 O2/OH – = 1,23 – pH + lgPO2 .

Потенциал водородного электрода описывается уравнением:

Е 0 2H+/H2 = 0,00 – pH + lgPH2 .

Графики зависимостей приведены на рис. 7, по ним можно определить возможность протекания коррозии различных металлов в водных средах.

Если потенциал металла положительнее потенциала кислородного электрода (который равен +1,2 В в кислой среде при pH = 1 и составляет около +0,8 В в нейтральной среде при pH = 7), то коррозия металла невозможна (область III).

Рис. 7. Зависимость потенциала кислородного (линия 1) и водородного (линия 2) электродов от значения pH среды при PO2 и PH2 = 1 атм

Если потенциал металла положительнее потенциала водородного электрода (последний равен нулю в кислых средах при pH = 1 и составляет около – 0,41 В в нейтральной среде при pH = 7) и отрицательнее потенциала кислородного электрода (область II), то коррозия возможна с поглощением кислорода и невозможна с выделением водорода.

Если потенциал металла отрицательнее потенциала водородного электрода (область I), то возможна коррозия как с поглощением кислорода, так и с выделением водорода. К таким металлам относятся щелочные, щелочноземельные, алюминий, цинк, и др.

Скорость электрохимической коррозии. Действие гальванических элементов в значительной мере зависит от поляризации и деполяризации. При этом может происходить как поляризация анода, которая выражается в том, что его потенциал становится более положительным, так и поляризация катода, вызываемая смещением его потенциала в отрицательную сторону.

Поляризация снижает скорость коррозии во много раз. Без поляризации многие металлы, в том числе и железо, корродировали бы с такой высокой скоростью, что потеряли бы свое техническое значение.

Скорость электрохимической коррозии можно определить по формуле:

,

где I — сила тока, величина которого указывает на скорость коррозии; R — омическое сопротивление раствора электролита; Па — поляризация анода, Пк — поляризация катода; Е — электродвижущая сила.

В зависимости от того, какая из величин (R, Па, Пк) оказывает ограничительное действие на скорость процесса, различают коррозию с различным контролем:

Па>>(R+Пк) — анодный контроль.

Контролирующая стадия является лимитирующей для всего процесса, т.е. ограничивает скорость коррозии в целом, так как протекает медленнее других. Возможен и смешанный контроль, когда слагаемые в знаменателе приблизительно равны по величине.

Что нужно знать об электрохимической коррозии?

Специалисты разделяют много видов коррозии. Ее делят по типу распространения, по виду и по скорости протекания.

Электрохимическая коррозия – это механизм протекания процесса, возникающий при взаимодействии металла с электролитической средой. Наиболее часто встречающийся вид коррозии, поражающий полотенцесушители

Что нужно знать об электрохимической коррозии?

соединение полотенцесушителя, покрытое ржавчиной

Начать эту статью хотелось бы с одной цифры: ежегодно из-за коррозии, промышленный сектор теряет до 10% от общего валового продукта. Переводя это значение в денежный эквивалент, сумма будет феноменальной. В нее входят сами потери, борьба с коррозией, а также снижающийся срок службы изделий. Не менее удручающая ситуация с коррозией, поражающей привычные в нашем обиходе металлические полотенцесушители. И ведь именно ржавчина становится первопричиной дальнейших проблем с эксплуатацией и внешним видом изделия.

Специалисты разделяют много видов коррозии. Ее делят по типу распространения, по виду и по скорости протекания. Электрохимическая коррозия – это механизм протекания процесса, возникающего при взаимодействии металла с электролитической средой. Под электролитом в данном случае подразумевается любая среда, способная проводить ток, а это и контакт с почвой, и нахождение металла в воде (влажной среде) и даже коррозия, возникающая при атмосферном воздействии.

С научной точки зрения это обусловлено тяготением металла к растворению. Плотная атомная связь при контакте с электролитом разрушается, и начинается процесс растворения. На практике – это ржавчина, появляющаяся сначала на поверхности изделия, и постепенно распространяющаяся по всей площади. Появление ржавчины говорит о разрушении целостности атомной решетки, следовательно, в месте появления коррозии, металл уже является ослабленным и необходимо принимать меры. В противном случае коррозия будет распространяться, пока не уничтожит все атомные соединения.

Именно коррозии, вызванной «блуждающими токами», подвержены полотенцесушители. Причем не сыграет роли и материал изготовления. Со временем ей будет покрыта даже нержавейка.

Именно коррозии, вызванной «блуждающими токами», подвержены полотенцесушители. Причем не сыграет роли и материал изготовления. Со временем ей будет покрыта даже нержавейка.

Как определить электрохимическую коррозию?

виды коррозии

За редким исключением, коррозия формируется на поверхности металла, постепенно разрастаясь и проникая в глубокие слои. Существует несколько типов повреждений разной степени тяжести.

На рисунке показаны виды коррозионного разрушения:

  1. Сплошная. Покрывает всю поверхность изделия равномерным слоем. Возникает при полном контакте с электролитом, например, при нахождении изделия в растворе кислоты.
  2. Неравномерная. Коррозионная пленка покрывает всю поверхность изделия, но внутренние повреждения распространяются неравномерно.
  3. Пятна. Возникают в разных местах и не проникают на большую глубину.
  4. Язвы. Повреждения с глубоким проникновением. Распространение хаотичное.
  5. Точечная. Поражение на большую глубину. Сложный вид коррозии, так как на поверхности может выглядеть как обычное пятно, но при этом с очень глубоким проникновением.
  6. Межкристаллическая. Поражает кристаллическую решетку и в некоторых случаях не имеет выхода на поверхность.
  7. Растрескивающая. Коррозия, возникающая при одновременном контакте с электролитом, и при механическом воздействии на металл. Один из признаков старения механизмов и подвижных деталей.

Сплошная или равномерная коррозия наименее опасна в техническом плане. Она возникает по всей поверхности металла. Легко определяется на глаз и относительно просто поддается удалению. Более сложные процессы, особенно с глубоким проникновением остановить сложнее, а выявить зачастую невозможно без специальной экспертизы.

коррозия под микроскопом

Электрохимическая коррозия – процесс неизбежный и необратимый. Однако, своевременное обнаружение позволяет принять меры по замедлению этого процесса.

Визуальное определение не дает полной картины происходящего. В частности оно не позволяет выявить кинетическую связь, то есть определить скорость протекания процесса. Для этого были разработаны различные меры контроля и преодоления коррозии:

  • Металлография. Ряд методов, часть из которых позволяет проводить анализ без необходимости изъятия образцов. Существуют металлографические методы для определения межкристаллитной коррозии, благодаря которым можно выявить склонность металла к разрушению, а также скорость процесса при определенных условиях эксплуатации.
  • Химические методы позволяют определить целостность структуры кристаллической решетки. Их также довольно много, а самым распространенным является кипячение нержавеющих сталей в натриевом растворе. Анализируется сам раствор на процентное соотношение в нем атомов железа к атомам хрома.
  • Механические испытания. В зависимости от эксплуатационного назначения исследуемого объекта применяют методы испытания на растяжение, прочность, изгиб, вязкость, а также прочность на выдерживание давления.
  • Рентген. Один из наиболее точных методов определения электрохимической коррозии, но самый трудоемкий и затратный.

Выбор метода испытания зависит от многих факторов. В частности от опасности эксплуатации поврежденного металла. В бытовых условиях коррозия определяется визуально, и в большинстве случаев этого достаточно для понимания общей картины происходящего и необходимости принятия мер.

Возвращаясь к разговору о полотенцесушителях, отметим, что наиболее стойким материалом к возникновению электрохимической коррозии считается нержавеющая сталь марки AISI 304 (наиболее качественная). Но и она может со временем дать слабину и тогда вы заметите сначала небольшие темные пятна на поверхности, увеличивающиеся в размерах и в глубине со временем.

Характерным признаком коррозии является точка-отверстие на очищенной (механическим путем) поверхности, которая свидетельствует о том, что процесс поражения водой с электричеством проходит и внутри. Конечно, существуют и дополнительные способствующие составы, присутствующие в воде — это кислород, хлор, кальций, магний, а также высокая температура! Наиболее подверженными коррозии элементами полотенцесушителя являются сварные швы, на которых в последствие появляются свищи и подтеки.

признаки коррозии на сварном шве полотенцесушителя

Из-за чего появляется электрохимическая коррозия?

Следует понимать, что электрохимический процесс неизбежен, но в зависимости от агрессивности среды, факторов воздействия и прочих нюансов меняется время протекания этого процесса. Практически все металлы являются термодинамически неустойчивыми, то есть их структура сама стремится к растворению. Существуют и устойчивые типы, такие как золото, платина и другие металлы, называемые благородными. В природе они встречаются в самородном виде. В то время как привычное железо в рудном, то есть требующем предварительного восстановления.

Электрохимическая коррозия возникает в процессе контакта изделия с электролитом. В природе электролитом является практически все, в том числе воздух. Выделяют три основных типа:

  1. Атмосферную коррозию также относят к разновидностям электрохимического процесса. В процессе эксплуатации металлического изделия, на его поверхности образуется конденсатная пленка, которая и становится проводником. Соответственно, чем в более влажной среде находится объект, тем быстрее в нем будут развиваться коррозионные процессы. Кинетически атмосферная коррозия имеет привязку к уровню влажности. Чем он выше, тем быстрее процесс, и наоборот. При снижении уровня влажности процесс резко замедляется, и это является одним из методов защиты и предотвращения разрушения металла.
  2. Подземная коррозия – отдельный вид. Тут на процесс влияет не только взаимодействие с влажной структурой почты, но и так называемые, блуждающие подземные токи. Они существенно ускорят коррозию, и лучшим методом защиты является изоляция эксплуатируемого изделия. Еще одним важным фактором является температура электролита, то есть проводника, в котором находится металл.
  3. Наиболее распространенная среда для возникновения электрохимической коррозии – вода. Не секрет, что в воде металл быстрее покрывается ржавчиной, однако это не совсем верно. Наибольшему влиянию подвержены металлы, имеющие непостоянный контакт. В судостроении это наблюдается как раннее ржавление ватерлинии. То есть, металл, постоянно находящийся в воде стареет медленнее, чем тот, который находится над ее поверхностью. Более того, чем больше глубина погружения, тем медленнее процесс разрушения и обусловлено это понижающейся концентрацией кислорода. А вот полотенцесушители, находящиеся как раз в непостоянном контакте с водой, а также в условиях высокой концентрации кислорода, попадают в зону максимального риска.

То есть, электрохимическому воздействию подвержены все металлы, и один из методов защиты связан с изменением эксплуатационной среды, если это возможно. В промышленности тщательно контролируют влажность в помещении и температуру. Но при уличной эксплуатации эти процессы контролировать невозможно, поэтому разрабатываются специальные методы защиты металла.

схематическое отображение коррозии

Откуда же берется электрический ток, поражающий стенки полотенцесушителя, в системе водоснабжения? Вариантов, к сожалению, много и далеко не от всех можно обезопасить себя:

  • Неправильная организация заземления (или его отсутствие), которым становятся трубы ХВС, ГВС и отопления, расположенные в земле. «Блуждающие токи» в этом случае появляются от неисправной бытовой техники, которой в каждой квартире сегодня достаточно. Не решенная с заземлением проблема может сказаться не только на выводе приборов из строя за счет электрохимической коррозии, но и быть опасной для жизни людей, контактирующих с ними, в случае скачка напряжения.
  • Неправильная прокладка электропроводов. Токи могут попасть в трубы из-за повреждения кабеля или контактов.
  • Недобросовестные соседи, использующие «нулевые» провода для остановки показаний счетчика за электричество. Опасность аналогичная первому пункту, но риск получения «смертельного» удара током значительно выше.
  • Разница потенциалов между материалами изготовления труб. Этот момент актуален для старого жилого фонда, где наряду с нержавейкой устанавливалась обычная черная сталь. Токи возникают от взаимодействия этих металлов. Минимизировать риск возникновения коррозии можно только на этапе проектирования и монтажа коммуникаций дома, то есть на инженерном уровне.
  • Те самые популярные сегодня металлопластиковые трубы! А именно в случае установки пластиковой трубы в отрезок от стояка до полотенцесушителя. Здесь возникает мощнейший диссонанс потенциалов, а сама вода проносит ток внутри трубы к полотенцесушителю, находя его слабые места. Не менее опасный момент — это статическое электричество, накапливаемое внутри труб при трении воды о пластиковые стенки.
  • Токи извне. В полотенцесушитель электричество может попасть из стояка, а оттуда из труб, проложенных глубоко под землей на далеком расстоянии от жилья. Как он попадает туда? За счет воздействия других мощных приборов, транспорта и подстанций электричества.

Одним словом — полностью предупредить возникновение на полотенцесушителе электрохимической коррозии нельзя, так как от владельцев зависит крайне мало. А, если быть точнее, то совсем ничего.

Как предотвратить появление электрохимической коррозии?

Процесс защиты начинается еще на этапе создания металлического объекта. Существуют определенные нормы эксплуатации. Они разрабатываются исходя из экономической целесообразности и безопасности. Яркий пример — цинкование. Оцинкованные металлы гораздо меньше подвержены электрохимической коррозии, однако магистральные трубопроводы из них не делают. Экономически это невыгодно, поэтому для трубопроводов разрабатываются другие методы, например изоляция.

таблица Менделеева

Цинковый слой на полотенцесушителях из нержавеющей стали — одно из наиболее часто встречающихся методов сохранения целостности и защиты поверхности.

Легирование – наиболее распространенный способ повышения коррозионной устойчивости. На этапе создания сплава в его состав добавляется определенный процент металлов, с наименьшей подверженностью коррозии. К сожалению, периодическая таблица элементов не дает описания фактора устойчивости, однако некоторые закономерности прослеживаются. Наименее устойчивыми являются щелочные металлы, находящиеся в 1 и 2 группах. Однако в подгруппах, обозначенных в таблице синим цветом, прослеживается связь с атомным номером. Чем он выше, тем устойчивее металл:

  • медь (29);
  • цинк (30);
  • серебро (47);
  • кадмий (48);
  • золото (79).

Также закономерность наблюдается в побочных подгруппах 4 и 6:

  • титан (22);
  • хром (24);
  • цирконий (40);
  • молибден (42).

И так далее. А наиболее устойчивые металлы находятся 8 группе (осмий, иридий, платина), но ввиду их дороговизны, в легировании сталей они используются крайне редко.

Что касается защиты готового изделия, то тут выделяется 4 типа, каждый из которых делится на несколько способов. Например, металлические покрытия разделяют на:

  • диффузионные;
  • гальванические;
  • металлизационные.

Разнится технология нанесения защитного слоя, но объединяет их суть защиты. Металлическое изделие покрывается слоем другого металла, более устойчивого к электрохимической коррозии. Это позволяет сохранить характеристики изначальной стали, используемой при производстве изделия, но повышает уровень защиты, так как коррозия воздействует на верхний слой.

Неметаллические методы защиты также делятся на несколько категорий:

  • лакокрасочные;
  • оксидные;
  • фосфатные;
  • эмалевые;
  • полимерные.

Суть этих методов в нанесении на поверхность неметаллического компонента. Они менее затратные, но уступают по качеству металлизированным видам. Любое покрытие имеет ограниченный срок службы, зато можно обновлять покрытие без существенных затрат.

Помимо этого, существуют методы защиты, не связанные с самим изделием. Они заключаются в снижении агрессивности среды. Сюда можно отнести понижение уровня влажности в помещении, или добавление в среду специальных ингибиторов, то есть замедлителей процесса. С подземными сооружениями часто применяют электрическую защиту, направляя на изделие отрицательный заряд тока, тем самым превращая его в самостоятельный проводник. Это защищает изделие от блуждающих токов, но не снижает воздействия влаги.

полотенцесушитель, глубоко пораженный коррозией

Как защитить полотенцесушитель от воздействия «блуждающих токов»? Вот несколько реальных способов:

  1. И крайне важное. Доверять установку полотенцесушителя только профессионалам с определенным уровнем квалификации, подтверждающей возможность осуществлениями ими такого рода работ!
  2. Обязательно заземлить прибор. Это можно сделать несколькими способами. Технически для металлических труб потребуется подсоединиться к РЕ-шине электрического щита на этаже с помощью медного провода. Для металлопластиковых труб потребуется установить между шаровым краном и элементом подсоединения металлическую вставку, например, нипель — на него подсоединить провод из меди и также связать с ближайшим электрощитом. В комбинированной системе потребуется дополнительно соединить проводом разорванные металлические части стояка.
  3. Уровнять потенциалы в пределах комнаты. Для этого используется специальная система уравнивания и устанавливается коробка с пластиковым корпусом с заземляющей шиной. К шине с помощью медного кабеля подсоединяются все «потенциально» проводящие ток приборы. Саму шину, имеющую большее сечение, соединяют с этажным электрощитом.
  4. Есть выход из ситуации попроще — приобретение полотенцесушителя из цельнотянутой трубы, пример это полотенцесушитель компании МСталь «Вираж».
  5. Заменить водяной полотенцесушитель на электрический. Все электрические полотенцесушители имеют небольшую мощность, поэтому включать их можно в обычную электрическую розетку. Но, так как в ванной комнате постоянно присутствует вода и бывает высокая влажность, подключение прибора должно производиться только через устройство защитного отключения (УЗО) и автоматический выключатель (автомат). Заземление здесь также обязательно.
  6. Приобрести полотенцесушитель из меди (материал), так как медь устойчива к электрокоррозии

Возможно ли устранить следы появления электрохимической коррозии?

разница между ржавым полотенцесушителем и очищенным

К сожалению, не существует стопроцентного метода защиты от коррозии, по крайней мере, экономически обоснованного. Любое изделие рано или поздно подвергнется старению, и избавиться от него будет сложно. Если изделие начало покрываться ржавчиной, в первую очередь следует определить причину.

В быту чаще всего встречается атмосферная коррозия, а способ ее устранения – нанесение неметаллических компонентов, или проще говоря, окрашивание. Однако и тут есть свои нюансы, так как если не устранить следы коррозии, она продолжит распространяться и под покрытием, сведя все старания к нулю.

Для начала необходимо устранить источник заражения. В большинстве это поверхностные очаги, которые удаляются механическим путем, то есть зачисткой. Сложности возникают с очагами глубокого проникновения, когда нет возможности снять такой слой, чтобы устранить дефект. Также особое внимание следует уделить устранению оксидной пленки с поверхности. Она является тем самым электролитом. А простой способ – это обезжиривание. Применяются любые средства с октановым числом: бензин, растворитель и так далее. Не стоит пренебрегать этим процессом, так как если на окрашенной поверхности останется пленка, разрушение продолжится даже под слоем эмали или полимера.

А еще лучше — обратиться к инженеру-проектировщику УК. Он подскажет корень проблемы и поможет с ее решением.

Причины электрохимической коррозии и способы защиты металла

Электрохимическая коррозия металлов – одна из насущных проблем человечества с того момента, как в производстве различных, необходимых человеку предметов, стали использоваться изделия из металла. Проблема защиты металлов от коррозии всегда стояла остро, потому что под действием разрушительных процессов окисления предметы теряли функциональность, деформировались и приходили в негодность, и нужно было искать способы их защиты.

Когда химия выделилась в отдельную науку, а использование металлов стало приобретать широкое промышленное значение, человечество начало исследовать эти процессы и искать способы борьбы с разрушениями от внешних воздействий.

Что такое коррозия

Процесс разрушения верхнего слоя металлического материала под влиянием внешних воздействий называется коррозией в широком смысле.

коррозия металлов

Термин коррозия в данном случае – только характеристика того, что металлическая поверхность вступает в химическую реакцию и теряет под её влиянием свои изначальные свойства.

4 основных признака, по которым можно определить, что этот процесс существует:

  • процесс, развивающийся на поверхности, и со временем проникающий внутрь металлического изделия;
  • реакция возникает самопроизвольно от того, что нарушается устойчивость термодинамического баланса между окружающей средой и системой атомов в сплаве или монолите;
  • химия воспринимает этот процесс не просто, как реакцию разрушения, но как реакцию восстановления и окисления: при вступлении в реакцию одни атомы замещают другие;
  • свойства и особенности метала при такой реакции претерпевают значительные изменения, или утрачиваются там, где она происходит.

Виды коррозии

В зависимости от типа металла и окислительно-восстановительной реакции, происходящей с ним, коррозия может быть:

  • равномерной или неравномерной;
  • местной и точечной (отдельные участки почему-либо вступили в реакцию, а другие – нет);
  • язвенной, известной еще как питтинг;
  • подповерхностной;
  • растрескивающейся;
  • межкристаллической, возникающая вдоль границ кристалла металла.

Также в зависимости от того, какие именно внешние факторы воздействуют на поверхность, коррозия бывает химической и электрохимической. Химическая коррозия происходит в результате некоторых реакций под влиянием химических взаимодействий, но без участия электрического тока, и может быть присуща даже нефти и газу. Электрохимическая отличается определенными процессами, она более сложная, чем химическая.

Химическая коррозия

На видео: коррозия металлов.

Причины и признаки электрохимической коррозии

Электрохимическая коррозия отличается от химической тем, что процесс разрушения проходит в системе электролитов, отчего внутри этой системы возникает электрический ток. Два сопряжённых процесса, анодный и катодный, приводят к удалению из кристаллической решетки металла неустойчивых атомов. Ионы при анодном переходят в раствор, а электроны от анодного процесса попадают в ловушку к веществу-окислителю и связываются деполяризатором.

Таким образом, деполяризация – это отвод с катодных участков свободных электронов, а деполяризатор – вещество, которое отвечает за этот процесс. Основные реакции происходят с участием водорода и кислорода в роли деполяризаторов.

электрическая коррозия

Существует множество примеров электрохимической коррозии разного типа, которая оказывает воздействие на металлические поверхности в природе и проходит под влиянием различных условий. Водород при этом работает в кислой среде, а кислород – в нейтральной.

Практически все металлы подвергаются электрохимической коррозии, и по этому признаку их разбивают на 4 группы, определяют величину их электродного потенциала:

  • активные коррозируют даже в той среде, где нет окислителей;
  • среднеактивные вступают в реакцию окисления в кислотной среде;
  • малоактивные не вступают в реакцию при отсутствии окислителей и в нейтральных, и в кислых средах;
  • не вступают в реакцию — высокой стабильности (благородные металлы, палладий, золото, платина, иридий).

Самый распространенный вид электрохимической коррозии – атмосферная.

Атмосферная коррозия

Но эта же реакция может протекать и в воде, в растворах оснований, солей и кислот. В узкоспециальном различии атмосферной коррозии различают почвенную и аэрационную, морскую и биологическую (протекающую под воздействием бактерий).

Есть даже электрическая коррозия, которая протекает под воздействием электрического тока, и является результатом работы блуждающих токов, возникающих там, где электрический ток используется человеком для осуществления определенной деятельности.

Гомогенная металлическая поверхность при этом разрушается из-за термодинамической неустойчивости к окружающей среде. А гетерогенная – из-за состава кристаллической решётки, в которой атомы одного металла держатся плотнее, чем атомы инородных вкраплений. Эти реакции отличаются скоростью протекания ионизации ионов, и восстановления окислительных компонентов окружающей среды.

Разрушение металлических поверхностей при электрохимической коррозии состоит в одновременном протекании двух процессов: анодного и катодного, и отличия процессов состоят в том, что растворение происходит на анодах, которые и контактируют с окружающей средой через множество микроэлектродов, которые входят в состав поверхности любого металла и замкнуты на себя.

Характерными примерами электрохимической коррозии можно считать протекание коррозионных процессов на днищах морских судов или в атмосфере на металлических конструкциях.

Коррозия судна

Необходимость антикоррозионной защиты

Защита металла от воздействий, которые разрушающе действуют на его поверхность – одна из основных задач, возникающих перед теми людьми, которые работают с механизмами, агрегатами и машинами, морскими судами и строительными процессами.

Любой металл, кроме благородных, в той или иной степени, подвергается воздействию разрушительных процессов.

коррозия металла

Чем активнее эксплуатируется устройство или деталь, тем больше шансов у нее подвергнуться разрушительному воздействию и атмосферных условий, жидкостей, с которыми приходится сталкиваться в процессе работы. Над защитой металла от коррозии работают многие отрасли науки и промышленного производства, но основные способы остаются при этом неизменными, и состоят в создании защитных покрытий:

  • металлических;
  • неметаллических;
  • химических.

Неметаллические покрытия создаются с помощью органических и неорганических соединений, их принцип действия достаточно эффективен и отличается от остальных типов защиты. Для создания неметаллической защиты в промышленном и строительном производстве используются лакокрасочные составы, бетон и битум и высокомолекулярные соединения, особенно активно взятые на вооружение в последние годы, когда больших высот достигла химия полимеров.

антикоррозийная краска

Химия внесла свой вклад в создание защитных покрытий методами:

  • оксидирования (создания защитной пленки на металле с помощью оксидных пленок);
  • фосфатирования (фосфатных пленок);
  • азотирования (насыщения поверхности стали азотом);
  • цементации (соединения с углеродом);
  • воронения (соединения с органическими веществами);
  • изменения состава металла путем введения в него антикоррозийных добавок);
  • модификации окружающей коррозийной среды путем введения ингибиторов, влияющих на нее.

Электрохимическая защита от коррозии – это процесс, обратный электрохимической коррозии. В зависимости от смещения потенциала металла в положительную или отрицательную стороны, различают анодную и катодную защиту. Путем подсоединения к металлическому изделию протектора или источника постоянного тока на металлической поверхности создается катодная поляризация, которая и препятствует разрушению металла через анод.

Электрохимические методы защиты состоят в двух вариантах:

  • металлическое покрытие защищено другим металлом, у которого более отрицательный потенциал (то есть, защищающий металл менее устойчив, чем защищаемый), и это называется анодное покрытие;
  • покрытие нанесено из менее активного металла, и тогда он является и называется катодным.

 Электрохимические методы защиты

Анодная защита от коррозии – это, например, оцинкованное железо. Пока не израсходуется весь цинк с защитного слоя, железо будет в относительной безопасности.

Защита катодным способом – это никелирование или нанесение меди. В этом случае разрушение защитного слоя приводит и к разрушению того слоя, который он защищает. Присоединение протектора для предохранения металлического изделия ничем не отличается от протекания реакции в других случаях. Протектор выступает в роли анода, а то, что находится под его протекторатом, остается в сохранности, используя созданные ему условия.

Способы защиты металла

Электрохимическая коррозия – одно из основных препятствий, которые встречаются на пути человеческой деятельности. Защита от воздействия разрушительных процессов и их протекания на поверхности конструкций и сооружений – одна из перманентных и насущных задач любого промышленного производства, и любой бытовой деятельности человека.

коррозия металла

Разработано несколько способов такой защиты, и все они активно применяются в повседневном цикле жизнедеятельности:

  • Электрохимическая защита – электролитическое по принципу работы использование химических закономерностей, защищает металл с помощью анодного, катодного и протекторного принципа.
  • Э лектроискровая обработка с использованием различных установок – бесконтактных, контактных, анодно-механических.
  • Электродуговое напыление – основное преимущество в толщине наносимого слоя и относительной дешевизне производимого процесса.
  • Эффективная антикоррозийная обработка – удаление загрязнений и очистка обрабатываемой поверхности, с последующим нанесением на поверхность сначала противокоррозионного, а затем и дополнительного защитного слоя.

Все эти способы наработаны в процессе деятельности человека с целью защиты инструментария, средств передвижения и транспортировки на стыке нескольких промышленных отраслей, и с использованием научных достижений.

Электрохимическая коррозия, которая является естественным процессом разрушения поверхности металла под воздействием нейтральных или агрессивных факторов окружающей среды, представляет собой сложную проблему. Убытки от нее терпят и машиностроительные, и транспортные, и промышленные предприятия, средства передвижения. И это проблема, которая требует ежедневного разрешения.

Электрохимическая коррозия

Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

Как мы знаем, наше окружение наполнено электричеством.

В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

У процесса есть несколько важных отличий.

В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

  • щелевые поражения;
  • питтинги;
  • межкристаллическое повреждение.

Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

Какие механизмы отвечают за протекание электрохимической коррозии

Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

  • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
  • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

У такого вида процесса есть несколько особенностей.

В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

Схема электрохимической коррозии

Схема электрохимической коррозии

В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

Из-за чего начинает развиваться коррозия

После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

Среди них три распространенные:

  • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
  • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
  • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

Главные внутренние факторы протекания электрохимической коррозии

На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

Текущее состояние поверхности металла

Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

Это может негативно повлиять на интенсивность распространения.

Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

Степень термодинамической стойкости металла

Разные виды материалов отличаются разными показателями термодинамической устойчивости.

Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

Кристаллографическая структура

Оказывает прямое воздействие на металл.

Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

Гетерогенность

Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

Не стоит сбрасывать со счетов и механические факторы

Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

Основные внешние факторы электрохимической коррозии

Кроме внутренних, на металл также влияют и внешние факторы.

Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

К ним относятся следующие:

  • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

В некоторых случаях полярность электродов значительно меняется.

Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

  • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

На них подобное поражение оказывает минимум влияния.

Чем отличаются анодный и катодный процессы

Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

Рассмотрим их более подробно.

Анодный процесс

В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

Катодный процесс

Может протекать по-разному.

В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

Формула будет зависеть от того, в каких условиях протекает реакция.

Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.

Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

Анодный и катодный процесс

Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

  • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
  • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

Потому далее мы рассмотрим другой важный показатель – поляризацию.

Поляризация и ее влияние на скорость протекания коррозии

Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

Принято выделять три вида поляризации:

  • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
  • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
  • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

Обеспечиваем эффективную защиту от коррозии

Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

В пользу работы с нами говорит сразу несколько факторов:

  • Опыт работы с 2007 года, есть постоянные заказчики.
  • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
  • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *