Экранный эффект какое явление создает
Перейти к содержимому

Экранный эффект какое явление создает

  • автор:

Экранный эффект

Экранный эффект или эффект влияния земли — эффект резкого увеличения подъемной силы крыла и других аэродинамических характеристик летательного аппарата при полёте вблизи экранирующей поверхности (воды, земли и др) [1] . Открыт в середине 20-х годов XX века.

Экранный эффект — это та же воздушная подушка, только образуемая путём нагнетания воздуха не специальными устройствами, а динамически набегающим потоком воздуха. [2] То есть «крыло» таких аппаратов создаёт подъёмную силу не только за счёт уменьшения давления над верхней плоскостью (как у «нормальных» самолётов), а за счёт повышенного давления под нижней плоскостью, создать которое возможно только на очень небольших высотах (меньше аэродинамической хорды крыла).

Эффект экрана связан с тем, что возмущения (рост давления) от крыла достигают земли (воды), отражаются и успевают дойти до крыла. Таким образом, рост давления под крылом получается большим. Если принять скорость распространения волны давления равной скорости звука, то из равенства времени прохождения волной давления расстояния 2h времени пролета хорды крыла следует, что экранный эффект начинает проявляться с высоты

<\mathbf<h>\le<\mathbf<l>\cdot\mathbf <V>\over 2\cdot\mathbf<v>>>» width=»» height=»» />, [<i>источник не указан 1231 день</i>] </p>
<p>где l — ширина крыла (хорда крыла), V — скорость звука, h — высота полёта, v — скорость полёта.</p>
<p>Чем шире крыло, ниже скорость полёта и высота — тем выше экранный эффект. Например, максимальная дальность полёта экранолёта «Иволга» на высоте 0,8 м составляет 1150 км, а на высоте 0,3 метра с той же нагрузкой — уже 1480 км.</p>
<p>Традиционно на скоростях полётов самолетов у самой земли принято считать высотой действия экрана половину хорды крыла. Это даёт высоту порядка метра. Наиболее сильно экранный эффект проявляется у дельтапланов из-за малой полетной скорости (порядка 10 м/сек) и большой хорды крыла. У достаточно больших экранопланов высота полёта «на экране» может достигать 10 и более метров.</p>
<p>Центр давления (общая точка приложения силы) экранного эффекта находится ближе к задней кромке, центр давления «обычной» подъёмной силы — ближе к передней кромке, поэтому, чем больше вклад экрана в общую подъёмную силу, тем больше центр давления смещается назад. Это приводит к проблемам балансировки. Изменение высоты меняет балансировку, изменение скорости — тоже. Крен вызывает диагональное смещение центра давления. Поэтому управление экранопланом требует специфических навыков.</p>
<h2>Крокодилы летают, но низко-низко (об экранопланах без эмоций, зато с отступлениями)</h2>
<p>Скажу сразу: ничего про «не имеющее аналогов», «бездумно разрушенное» и т.п. – не будет.</p>
<ul>
<li>немного истории;</li>
<li>разъяснение того, что такое эффект экрана, его свойства и последствия;</li>
<li>преимущества и недостатки;</li>
<li>практические реализации у нас и за рубежом, разные схемы и причины их появления;</li>
<li>перспективы, какими они видятся мне.</li>
</ul>
<p><img decoding=

Сначала, для разминки и введения, немного попрыгаем.

Прыжок в ширину

Чтобы не было путаницы с воздушными подушками, вставлю пару слов о них. Воздушная подушка отличается от полёта на экране и тем более самолётного тем, что давление под днищем считается равномерным. Важное свойство! Именно благодаря этому аппараты на воздушной подушке могут двигаться над сушей, льдом, волнами, всходить на берег.

Это оправдывает их военно-десантное и транспортное применение, несмотря на дороговизну эксплуатации.

Впрочем, и подушки бывают разными, по меньшей мере, трёх типов:

Воздух подаётся в очень тонкий слой под днищем. Малый расход обеспечивается очень малым зазором и относительно небольшой скоростью перемещения. Очень неплохо подходит для перемещения тяжёлых грузов по гладкому полу цехов. Помещаем под оборудование эти опоры, и они на воздушной смазке позволяют катать десятки тонн без проблем:


Но при условии очень гладкого пола, ведь высота подъёма — порядка миллиметра. Потому для транспорта вне помещений, подобным этому

уже даже вода не годится и все проекты за пределы эскизов так и не вышли.

Хотя есть примеры. Глиссер «Заря», как легко заметить, захватывает воздух под днище, что несколько снижает сопротивление и даёт право называться аппаратом с воздушной смазкой:

Если подняться выше, чтобы можно было не бояться неровностей, нужно как-то загораживать образующуюся щель, чтобы уменьшить потери воздуха. Выход — загородиться гибкой юбкой.

Она скользит невысоко над поверхностью или даже просто по поверхности, а над препятствиями подгибается, при этом положение аппарата в целом остаётся неизменным.

Не случайно попытки выпустить воздушную подушку в эксплуатацию начались давно, например, наш торпедный катер Л-5 ещё 1936 года:

И нынешние суровые «Мурена-Э»:

А также мирные паромы через Ла Манш, SR.N4:

Но широко распространить такой транспорт сложно, потому что дорого. Расход топлива на компрессор, быстрый износ юбок… На суше вообще шансов мало, быстро юбку оборвёшь. В сложных тесных условиях не хватает устойчивости в движении. На месте-то развернуться можно, а на скорости… сами понимаете, цепляться можно только за воздух.

Раз компрессор для воздушной подушки дорог и много ест, а летим всё равно быстро — почему бы не воспользоваться скоростью? На скорости юбку будет срывать? Не беда, сделаем жёсткие борта, погрузим их частично в воду, заодно получим кили и устойчивость движения. Решается и вопрос с приводом: вместо шумных, громоздких и недостаточно эффективных воздушных винтов можно использовать привод с водяными винтами или водомётами. Осталось дать таким бортам название скеги и получить скеговый аппарат на динамической воздушной подушке. В большинстве случаев для начального подъёма и получения более стабильных параметров используется и компрессор, как у байкальских «Баргузинов»:

Часто, увы, путают динамическую воздушную подушку и экранный эффект. Но аэродинамически это совершенно разные вещи. Динамическая воздушная подушка, как и «обычная», обладает тем же полезным свойством: давление можно считать одинаковым в разных местах. Экраноплан совсем не таков, и теоретическое различие даёт очень серьёзные различия на практике.

Прыжок в высоту

Рассуждения об экранопланах невозможно вести без сравнения с самолётами, потому самую малость из особенностей полёта самолёта. Никакой науки, даже упоминаемого всеми всуе закона Бернулли — не будет. Всего пара простых, даже простейших и очевидных принципов, приводящих к отличиям самолётов от экранопланов.

Закон природы, не шучу: при двойном по интенсивности изменении потери больше, чем при двух одинарных. Получение подъёмной силы — изменение, мы преобразуем сопротивление набегающего потока в подъёмную силу.
Чтобы делать это эффективно, получать наибольшую подъёмную силу в обмен на наименьшее сопротивление, нужно делать много маленьких изменений потока, а не одно крупное (не поворачивать поток на большой угол).
На крыле предельная эффективность достигается у передней кромки, где мы лишь слегка заворачиваем совсем ещё свежий, невинный поток. Много-много маленьких изменений, производимых на передней кромке предельно длинного и предельно узкого крыла. К этому и стремятся, хотя мешают, прежде всего, вопросы прочности. У рекордных планеров, например, крыло такое (Perian 2):

Вообще же крыло, безусловно, имеет вполне заметную ширину. И давление воздуха по этой ширине распределено не равномерно. Чем дальше от передней кромки, тем больше мы поворачиваем поток, выше потери и меньше подъёмной силы. Поэтому точка приложения подъёмной силы на крыле приходится не в середину, а примерно на четверти — трети от передней кромки.

Точка приложения аэродинамических сил называется центром давления. В дальнейшем станет ясно, что это очень важное, многое определяющее, понятие для экраноплана, повторю его не раз, записывая для краткости как просто ЦД.

Как бы ни был воздух при атмосферном давлении и малых скоростях похож на идеальный газ, всё равно вязкость есть. Чем больше давление — тем выше потери при получении той же выгоды. Проектировщики самолётных крыльев давно нашли выход, профиль крыла строится так, чтобы подавляющую часть подъёмной силы давала именно верхняя поверхность за счёт понижения давления там и, соответственно, понижения потерь.

Другими словами, самолёт летает так:

Только на самых тяжеловозах увеличивают долю подъёмной силы, организуемой повышением давления под крылом, но это очень далеко от того, что творится под крылом экраноплана.

Допрыгались до эффекта экрана

История экрана стара, как самолёты вообще. Неоднократно наблюдали, особенно на первых монопланах, что самолёт «не хочет садиться» при заходе на посадку. Несмотря на снижение мощности мотора, самолёт не терял высоту – а потом, после большой потери скорости, падал с высоты на полосу. Пусть высота была небольшой, но и прочность была невелика – всё ломалось и даже гибли пилоты. Кроме просто падения, были и эффекты резкого задирания носа и падения на крыло, что добавляло неприятных последствий. Поначалу проблем в авиации было столько, что эта была просто одной из многих. Её отмечали, но до досконального разбора причин «не доходили руки», тем более, что, когда самолёты стали тяжелее, с большей нагрузкой на крыло и большей скоростью – влияние эффекта снизилось.

Чуть позже, на тяжёлых гидропланах, которые очень долго и низко разгонялись, заметили и выгоду полёта на малой высоте. Двенадцатимоторный «Dornier Do X», крыло которого имело значительную хорду, расходовал в таком режиме значительно меньше топлива.

Наступило время разобраться, наконец, в чём же дело. У нас первым был знаменитый Б. Н. Юрьев и его работа «Влияние земли на аэродинамические свойства крыла». Занимались, конечно, и за рубежом, в первую очередь нужно отметить Липпиша.

Чтобы разобраться и нам, прикоснёмся к теории.

Теория

Звук, по определению, волна давления в воздухе, скорость звука — скорость распространения давления в воздухе. Под крылом давление растёт, и рост давления распространяется, ровно как и обычный звук, отражаясь от поверхности. Если крыло достаточно широкое, а скорость невелика, то отражённая волна давления попадает в крыло и дополнительно повышает давление под ним. На очень малых высотах и скоростях это может произойти даже неоднократно.

Чтобы успеть попасть в крыло, волна должна успеть пролететь две высоты, пока крыло пролетит свою ширину. Перейдя от словесного описания к формуле, получаем:

2*H / Vзв < L/V, где
H — высота полёта, Vзв — скорость звука,
L — ширина (хорда) крыла, V — скорость полёта.
Формула, как видите, проста и даже тривиальна. Но именно из неё следует практически всё, что можно сказать об экранопланах.

Следствия

Рост аэродинамического качества до двух раз

Следствие очевидное: энергия, которая от крыла самолёта бездарно улетает в бесконечность, возвращается на пользу дела.

Автоматическая устойчивость по высоте

Поскольку отражённая волна давления приходит в заднюю часть крыла, ЦД смещается назад относительно «самолётного» положения. Причём не просто смещается, а гуляет в зависимости от скорости и высоты над поверхностью. Чем быстрее и выше полёт — тем меньше прирост давления и больше смещение ЦД в заднюю часть. Поскольку центр масс остаётся на месте, перемещение ЦД и изменение величины силы создаёт наклоняющие моменты. Как продольные (пикирующий, кабрирующий), так и поперечные, кренящие.

Но это не так плохо: полёт на экране самоустойчив по высоте. Поднялись выше — подъёмная сила уменьшилась и вырос пикирующий момент. Аппарат проседает, вернулся на заданную высоту — подъёмная сила выросла, пикирующий момент пришёл в исходное состояние… летим!
Нужно только поддерживать желаемую скорость.

Но у всякой палки два конца, и кроме этой приятной пары следствий есть и другие, не такие радостные.

Любая автоматическая устойчивость опасна при выходе за границы

Это верно для любых естественно-устойчивых систем. В данном случае давайте рассмотрим ещё раз: поднялись высоко, подъёмная сила упала, появился пикирующий момент. Опускаемся? Да, но набираем при этом вертикальную скорость, а гасить её места-то нет.

Обратный случай: высота мала, пикирующий момент уменьшается, подъёмная сила растёт, аппарат поднимается. Хорошо? Не всегда, ведь аппарат теряет скорость в положении «нос задран». Это, кстати, один из самых распространённых видов аварий экранопланов:

Пролёт над препятствиями — тряска

Проведём экраноплан над поперечной волной:

Очевидно, что такое перераспределение давлений приведёт к крену. Точнее, поскольку волну экраноплан пролетает быстро — к переменному крену, поперечной тряске. Или диагональной. Или продольной, в зависимости от направления волны. То же самое будет происходить при пролёте над любым препятствием, и потому над сушей в режиме экрана не летают вообще.

Повороты блинчиком

Как ни просторна атмосфера, а поворачивать придётся.

У самолёта поведение в повороте правильное: скорость наружного крыла выше, подъёмная сила тоже выше, и самолёт аккуратно кренится внутрь поворота, изображая из себя мотоцикл.

Даже лучше, мотоцикл наклоняет водитель, а самолёт правильно кренится сам. Скольжение уменьшается, поворот круче и безопаснее. Да и пассажирам так, конечно, приятнее.
А вот у экраноплана, как мы помним, рост скорости приводит к потере подъёмной силы. В результате он кренится наружу, из поворота.

А наружу-то и некуда, крыло заденет за воду! Чтобы не терять высоту в повороте, в отличие от самолёта, экраноплану нужно сбрасывать скорость. Но поворот сам по себе требует расхода энергии, и сбрасывать скорость при этом вдвойне невыгодно. В итоге повороты делаются с огромными радиусами, «блинчиком». Другими словами, маневренность у экранопланов отвратительная.

В реальной жизни, на ветрах, волнах, препятствиях, ЦД гуляет по крылу во всех направлениях непредсказуемо для пилота. В конструкции создаются переменные (и даже знакопеременные) разнонаправленные нагрузки, что быстро её изнашивает.

Всё плохо? Ну, не совсем

Как видно, заманчивый эффект экрана опасен для пилотирования и губителен для конструкции. Но, раз есть проблемы — есть и методы их решения. Поговорим о разных схемах экранопланов, какие они и зачем.

Автоматическая устойчивость опасна? Да, более того, опасна любая избыточная устойчивость.

Во-первых, сделаем «обратное V» крыла, то есть опустим его концы вниз.


Видите? При положительном V с поднятыми концами крыла в крене внешнее крыло теряет подъёмную силу, внутреннее — наращивает, крен выправляется. При отрицательном V — наоборот.

Дополнительная выгода: поскольку экраноплан летает над водой, на опущенных концах поставим поплавки.

Во-вторых, на устойчивость влияет стреловидность:

В скольжении внутренняя консоль становится менее стреловидной, увеличивает подъёмную силу. Внешняя консоль обдувается под более острым углом, подъёмная сила падает.

В результате стреловидное крыло увеличивает устойчивость аппарата до чрезмерных величин, потому-то у многих современных стреловидных самолётов обратное V.

Для дополнительного снижения чрезмерной устойчивости делаем стреловидность обратной.

В-третьих, чтобы уменьшить метания ЦД по крылу в кренах (и при пролёте над неровностями), снизим роль внешней части крыла, делаем большое сужение, практически треугольное крыло.

И, наконец: скорость мала, крыло треугольное — можно использовать очень большой угол атаки. Это не просто облегчит полёт. Задняя кромка практически ложится на воду, препятствуя выходу воздуха, и на разгоне получится динамическая воздушная подушка, помогающая подъёму.

Получилась схема Липпиша

Липпиш, немецкий авиаконструктор, поработав после войны на истребительную программу американцев, занялся экранопланами. Как специалист в треугольных крыльях, он естественно пришёл к этой схеме, выпустив в 1963-м году известный X-112:

Позже двигатель переехал в более удобное место, получился X-113

— и пришла популярность.

Подведём итог: получилась очень безопасная малоскоростная машина для покатушек. Небыстрая, 60 км/час, в пределе 120. Главное достоинство в возможности весьма безопасно летать вдвоём на движке 25лс. Дёшев двигатель, дёшева конструкция. Собственная масса аппарата меньше 200кг — а это стоимость.

Энтузиасты у вариантов Х-113 есть до сих пор, хотя наступившая доступность более приличных движков и качественных материалов плохо сказалась на их количестве. Многим стали доступны лёгкие самолёты, а это уже совсем другая лига.

Схема фактически не масштабируется, при росте скорости принятые решения превращаются в свои противоположности.

Заметьте, об обычно упоминаемых супердостоинствах в виде повышенной грузоподъёмности и дальности, речи не идёт. Параметры дальности для этих экранопланов практически и не указываются, зачем это в покатушках?

Но есть и другой путь

Путь можно назвать силовым: по каждой конкретной проблеме принимается конкретное силовое решение.

  • Проблемы устойчивости? Большой стабилизатор;
  • Крыло должно быть широким? Да;
  • Длинное крыло мешает в поворотах и на неровностях? Будет коротким;
  • Трудно взлетать? Дополнительные двигатели, работающие только на взлёте.

Работы над военными экранопланами были начаты примерно одновременно с работами Липпиша, в начале 1960-х годов. Главным достоинством была сверхмалая высота полёта, скрывающая аппарат от вражеских радиолокаторов и слишком высокая для надводных и подводных кораблей скорость, чтобы они могли помешать выполнению задания.

Вышеназванные прямые решения были приняты не с бухты-барахты, а после исследования разных вариантов:

Сначала была испробована схема «С», тандем с двумя крыльями. Достоинства очевидны, можно летать устойчиво без больших потерь. Но всё те же резкие изменения подъёмной силы показали ненадёжность стабилизации. Кроме того, слишком большим оказалось влияние возмущений от переднего крыла на заднее.

Схема «В» (Липпиша) не годится для больших и быстрых аппаратов. И работы сосредоточились на варианте «А», классической схеме с прямым крылом, стабилизатором и разгонными двигателями.

Первым опытным был СМ-1:

Потом был СМ-2, было получено добро и начата разработка сразу самого большого, можно сказать, огромного, КМ:

Не зря он получил кличку «Каспийский монстр». Размер получился таким не случайно: летать нужно было над морем. На море волны, и бывают — высокие. Ладно тряска, можно же просто в волну влететь! Значит, нужно летать высоко. А ведь хочется ещё и быстро, машина же военная.
Но чем выше и быстрее летим, тем слабее экран, до исчезновения. Остаётся делать крыло шире, а, значит, и весь аппарат больше. Взлётная масса достигала 544 тонн, только Мрия много позже взлетала в большем весе.

Став огромным, КМ получил и проблему больших гидросамолётов: от воды тяжело оторваться, она держит. Тем более, крыло для такого аппарата небольшое. Именно потому появилась целая батарея двигателей в носу. Они не просто включаются на взлёте, их струи направлены вниз, под крыло, создавая на разгоне и отрыве от воды динамическую подушку.

В полёте разгонные двигатели отключаются, остаётся маршевый двигатель в хвосте.

Должен был получиться невероятный ракетоносец, невидимый для радаров, очень быстрый для моря и с большим запасом ракет в сравнении с самолётами.

Неплохой вариант для борьбы с авианосцами? Увы, слишком огромен, слишком зависим от погоды. Кроме того, дальность полёта оказалась на удивление мала. Впрочем, КМ был огромной, но опытной машиной с естественными недостатками. Нужны были дальнейшие шаги.

После оптимизации по большинству параметров удалось сделать классически красивый, гораздо более экономичный «Орлёнок». Назначение — быстрая перевозка десантов.

Он настолько красив, что не откажу себе в удовольствии показать схему:

Маршевый двигатель стал турбовинтовым, что гораздо лучше соответствовало скорости полёта и было экономичнее. Разгонные моторы спрятались в носовом обтекателе, да и все обводы стали более аэродинамичными.

Машина получилась более удачной, дело пошло к серии, была сформирована 11-я отдельная авиагруппа:

Параллельно создавалась новая версия КМ, ракетоносец под названием «Лунь»:

Но дело так и не вышло за рамки испытаний и экспериментов, при расширении полётов вышли наружу практически все проблемы экранопланов. Дело тянулось до 90-х годов и относительно тихо сошло на нет. Именно так, несмотря на стоны фанатов и конспирологов, просто-напросто не было обнаружено достоинств и были обнаружены множественные недостатки. Как ни старайся, как ни делай технически совершенную машину — подвёл сам принцип.

Окончательно на военных экранопланах поставили крест радиолокаторы. Появились крылатые ракеты, новые опасные цели, появились и локаторы, способные их отслеживать. Экранопланы сразу перестали быть чем-то скрытным. Скорость и дальность ракет сделали ненужной скорость и дальность экранопланов. Десанты высаживать экраноплан на произвольный берег тоже не сможет, пригодных для этого пляжей на весь мир раз, два — и обчёлся.

Так военная идея сошла на нет.

И, всё-таки, поговорим об эксплуатации. Увы, там тоже ничего обнадёживающего не нашлось:

Экономичность

Экран даёт нарастить аэродинамическое качество вдвое? Но на практике огромные потери на стабилизацию всё съедают. Не верите? Посмотрите выше на схему «Орлёнка» или здесь на схему «Луня»: стабилизатор по размеру сравним со всем крылом. И ведь кроме собственно сопротивления, он давит вниз, расходуя ту самую подъёмную силу, ради которой всё затеяно.

Сравните со схемой Ан-12, каков у него стабилизатор в сравнении с крылом:

Уместно привести цитаты из статьи «Можно, но не нужно».

Таблица по реальным аппаратам, где М — взлётная маса, Кв — аэродинамическое качество на взлёте, Кк — аэродинамическое качество в крейсерском полёте.

Экранопланы Самолёты М Кв Кк
«Акваглайд-5» 2,40 5,3 8,0
«Cessna-206» 1,64 5,0-6,0 7,0-9,0
«Орлёнок» 140 4,5 13,6
Ан – 74 36,5 5,0-6,0 11-13
«Лунь» 380 5,5 14,6
Ан–124 405 10,5 18

Пример: Экраноплан «Акваглайд-5» может перевозить 4-х пассажиров со скоростью 150-170 км /час., при этом расходует на крейсерском режиме 32 кГ. топлива в час.
Тогда: 32 кГ/час/ (170 км/час * 4 пасс) = 0,047 кг/ пасс*км
Провозоспособность экраноплана «Акваглайд-5» составит при этом 680 пассажиро-километров в час.
Самолёт-аналог «Cessna-206» перевозит до 6 пассажиров со скоростью 265 км/час и расходует на крейсерском режиме 42 кГ. топлива в час.
Отсюда: 42 кГ/час / (265 км/час * 6 пасс) = 0,026 кг/ пасс*км
Провозоспособность самолёта – аналога составит 1590 пассажиро-километров в час.

Таким образом, по расходу топлива на 1 пассажиро-километр рассмотренный экраноплан в 1,8 раза уступает самолёту-аналогу, а по провозоспособности — в 2,3 раза.

Можно и совсем коротко: сравнить «Орлёнка» с Ан-12 (который на 25 лет старше и уж никак не совершеннее технологически или по материалам). Перевозимый груз одинаков, но Ан-12 быстрее, втрое легче и во многие же разы экономичнее. Причина ещё и в том, что самолёт поднимается туда, где плотность (и сопротивление) воздуха ниже, а экраноплан бороздит самую плотную часть атмосферы.

Как видите, применение экрана никакой реальной выгоды не приносит. И это, увы, не всё.

Масса

Экраноплан — очень тяжёлый аппарат. Требования к прочности обшивки по условиям посадки на воду высоки. Требования к прочности конструкции из-за постоянно перемещающегося ЦД высоки. Получаются судовые требования к прочности при авиационных требованиях к технологиям и материалам. Очень, очень дорого.

Кроме собственно конструкции весят и двигатели. Разгонные нужно «возить бесплатно» весь полёт. Нужно обслуживать, заменять, ремонтировать. Двигатели вообще самая дорогая часть воздушного аппарата, в случае экранопланов проблема только обостряется.

Коррозия, двигатели

Экраноплан летает низко, а это пыль у земли и вода над морем. Во многие и многие разы ускоряется износ двигателей. Зимой же обледенение будет просто убийственным, морским:

«Окорочка Алексеева»

Высота полёта экранопланов совпадает с высотой полёта птиц.

Даже военным нужно двигатель беречь, видите — ставили защитные сетки:

Но для гражданских машин и такое решение не приемлемо, недавняя история с чайками в Жуковском показательна.

Проблемы есть и у речных экранопланов: остальные участники движения гораздо медленнее, а увернуться от них или безопасно перелетать не получится. Подобная проблема есть и у судов на подводных крыльях, но они всё же гораздо лучше управляются.

Современные проекты, попытка оценки

Тем не менее, идея экранопланов продолжает будоражить умы, и попыток возродить её немало. В Boeing в преддверии войны в Ираке рассматривали проект океанского экраноплана «Pelican»:

Легко заметить, что это не экраноплан по схеме, но и на эффективный самолёт тоже не похож. Трудно утверждать, насколько в Boeing проработали проект, но, кроме как бегемотожираф, я его не назову. Может быть, они надеялись, что размер (взлётная масса до 1500 тонн) поможет убежать от проблем, но… не верю.

Довольно много попыток делалось и продолжается у нас. Направлений три:
«Большие Липпиши» или гибриды по аэродинамической схеме например, С-90:

Смысл в том, чтобы уйти от очень больших потерь в очень уж прямолинейной схеме Алексеева. Но весь внешний вид показывает высокую скорость, а какой уж тогда экран без огромных размеров? Эскиз так и остался эскизом.

«Маленькие Алексеевы»
«Акваглайд 2» (автор фото: Stefan Richter)

Здесь просматривается, скорее, надежда на простоту разработки, без аэродинамических изысков. Хотя идея поддува под крыло на взлёте реализована через поворотные винты — это не про простоту.

Поскольку в малом размере необходимость стабилизации, включая поперечную, только обостряется, я бы кататься на «Акваглайде» не рискнул.

Раз на экране проблемы — почему бы от них не улететь повыше? Ведь даже тяжёлая классика Алексеева умела подниматься на высоту до двух (!) километров. Конечно, с таким-то крылом и массой это был разовый прыжок, на полёт никакого запаса топлива не хватило бы.

Но соблазнительно ведь… может, добавить самолётное крыло? Даже на режиме экрана самолётное крыло ведёт себя стабильнее, а при перепрыгиваниях препятствий и вовсе поможет.

Получилось, как в немецкой фразе со словом nicht в конце:

  • Все проблемы экранопланов остаются, потому что решать их приходится не крылом, а стабилизатором;
  • Полёт на высоте не стал экономичным, тяжёлый и неправильный блин экранного крыла сопротивляется;
  • Согласование работы «экранного» крыла и «самолётного» требует проработки, которую никто не делает, просто ставят стандартные профили;
  • Два крыла — две цены, всё становится только дороже.

Они строятся и даже летают:

Посмотрим на ВВА-14, Иволгу, ЭКИП, Иволгу, да и тот же Pelican — то же самое, самолётное крыло.

Не случайности, а закономерности

Аварии и катастрофы в авиации увы, не новость. Но развитие в том и состоит, что причины для них устраняют. В случае экранопланов увы, всё остаётся. Проблемы и опасности, общие для всех экранопланов, никуда не делись, стоит подуть ветру, и:

… крушения экраноплана “Орлёнок” на Каспии в 1992 году. В процессе выполнения 2-го разворота, при движении на “экране” на высоте 4 метра и скорости 370 км/ч, произошел “клевок”, начались продольные колебания с изменениями по высоте. В процессе удара о воду экраноплан разрушился. Выживших членов экипажа эвакуировал гражданский сухогруз.

Аналогичным образом завершил свою карьеру “Каспийский монстр”, разбившись вдребезги в 1980 году.

“Каспийский монстр” повторил судьбу своего предшественника — экраноплана СМ-5 (копия 100-метрового КМ в масштабе 1:4), погибшего в 1964 году. “Его резко качнуло и приподняло. Пилоты включили форсаж для набора высоты, аппарат оторвался от экрана и потерял устойчивость, экипаж погиб”.

Еще один “Орленок” был потерян в 1972 г. От удара о воду у него отвалилась вся корма вместе с килем, горизонтальным оперением и маршевым двигателем НК-12МК. Однако пилоты не растерялись, и, увеличив обороты носовых взлетно-посадочных двигателей, не дали погрузиться в воду и довели машину до берега.

О чём поют фанаты

Упомяну ещё пару легендарных проектов, о которых много говорят, и которые, к счастью для их создателей, не были закончены:

Очень романтический, очень популярный и очень авантюристичный авиаконструктор Бартини пытался сделать суперневероятный аппарат сразу-со-всем. Это должен был быть скоростной самолёт с экраном и ещё и с вертикальным взлётом. Исходя из известного опыта вертикально взлетающих самолётов, проект бредовый изначально провальный. Впрочем, сколько-нибудь успешных проектов у Бартини вообще не было (упоминают Ер-2, но продвижение его к успешности заключалось именно в отказе от конструкции Бартини). А жаль — в детстве я зачитывался книгой «Красные самолёты» про него и долго был фанатом Бартини.

Здесь нет вертикального взлёта, зато свалены в кучу и дисковое летающее крыло, и огромные размеры (без обеспечения экранной специфики), управление пограничным слоем (будто это автоматически избавляет от проблем устойчивости. Никого не избавило, а тут будет, ага).
Технически обсуждать это вообще невозможно.

Заключение

Буквально все демонстрируемые проекты — ничего не решают, тупо паразитируя на старой идее.
Но ситуацию улучшить можно. Проблема экраноплана в устойчивости — значит, нужна компьютерная устойчивость. Самолётам это даёт существенную, в десяток процентов, экономию, а экраноплан это может просто спасти. Не только устранятся опасности, в разы упадут расходы на стабилизацию.

Да, это будет высокотехнологичный и дорогой аппарат, но он сможет летать. Если ещё и применить электро- или гибридную схему двигательной установки, может, удастся и проблемы коррозии порешать. Хотя, конечно, эрозия воздушных винтов, птички, лодки и особенно яхты с их высокими мачтами — никуда не денутся.

UPD:
Упустил описать нишу, в которой экраноплан мог бы быть очень успешным. Конечно, при условии качественного аппарата из композитов (коррозия, вес) с компьютерной устойчивостью (безопасность, экономичность).
Ниша эта — Юго-Восточная Азия, включая Японию. Много моря, расстояния между островами невелики, так что самолёт еле успевает на эшелон подняться, как пора спускаться. Большие пассажиропотоки (размер для экраноплана — благо, можно летать выше и быстрее).

Но увы, ниша эта чисто теоретическая и, боюсь, никогда не откроется.
Во-первых, желаемого экраноплана нет, не видно даже движения в эту сторону. И не будет его, ведь такая разработка очень дорога и делать её для ниши вряд ли кто возьмётся.
Во-вторых, пусть самолёты не идеальны для этих условий, но они есть, есть вся инфраструктура, всё массовое и потому предельно недорогое. Чтобы занять нишу — нужно не просто её занять, а вытеснить оттуда уже работающую систему. Чего, конечно, ни «арбузы», ни «бобики» сделать не дадут.

UPD:
Поправил текст в спойлере про нелинейность потерь. Надеюсь, теперь корректнее и понятнее.
UPD от 18.11.2021:
Вадим Петрович Черноголов в Дзене(!) высказал разумную мысль, которую считаю необходимым вставить и сюда.
Одна из проблем экранопланов дополнительные двигатели для стартового разгона и поддува. Очень дорого, очень неэффективно по топливу и как-то даже глупо.
Идея в том, чтобы сделать гибрид: разгон-поддув на электродвижках (с винтами, ессно), аккумов при этом достаточно минут на 15 работы, не так много. При этом тяга от винтов будет выше, чем от реактивных движков в пересчёте на расход топлива — в разы. Или, при той же тяге топлива можно будет сэкономить много.

А дальше, после взлёта, потихоньку дозарядить от генератора на крейсерском двигателе.
Ещё одна выгода — электромоторы не будут так страдать от коррозии (бич двигателей экранопланов).

Экранный эффект: разработка экспериментальной методики определения аэродинамических характеристик моделей с учетом влияния экрана

Марашан, М. В. Экранный эффект: разработка экспериментальной методики определения аэродинамических характеристик моделей с учетом влияния экрана / М. В. Марашан. — Текст : непосредственный // Молодой ученый. — 2015. — № 24 (104). — С. 157-160. — URL: https://moluch.ru/archive/104/24413/ (дата обращения: 26.07.2023).

Представлена методика экспериментального определения аэродинамических характеристик тел с учетом экранного эффекта в аэродинамической трубе Т-500 МГТУ им. Н. Э.Баумана. В качестве объекта экспериментального аэродинамического исследования выбран профиль B-12 симм. ЦАГИ. В результате обработки опытных данных для профиля получены зависимости коэффициентов нормальной силы от расстояния от носка до поверхности экрана.

Ключевые слова: экраноплан, дренажный эксперимент, экранный эффект, аэродинамическая труба, аэродинамические характеристики.

Экранный эффект — это эффект увеличения подъемной силы ЛА во время движения около опорной поверхности, называемой экраном (вода, земля, лед).

Экранопланы имеют повышенную грузоподъёмность по сравнению с самолетами, большую крейсерскую скорость по сравнению с грузовыми кораблями, поэтому экранопланы могут заполнить важный участок в транспортных системах, являясь промежуточным звеном между обычным самолетом и кораблем [1]. Использование экранопланов может решить проблемы, связанные с транспортировкой грузов по крупным рекам, в акваториях морей, транспортной связи с Крымом, а также для транспортировки грузов и полярников на Северный полюс.

Крыло и корпус экранопланов дополнительно увеличивают подъёмную силу за счёт повышенного давления под нижней плоскостью. Эффект экрана связан с тем, что возмущения от крыла достигают поверхности экрана, отражаются и успевают дойти до крыла. Скорость распространения возмущений давления равна скорости звука. Соответственно, проявление экранного эффекта начинается при высоте полета над экраном h:

(1)

где b — хорда крыла, a — скорость звука, h — расстояние от поверхности крыла до экрана, v — скорость полёта.

С другой стороны, существуют оценки, по которым экранный эффект проявляется высотах, соизмеримых с половиной длины средней аэродинамической хорды (САХ) крыла [2].

Аэродинамические характеристики ЛА могут определяться экспериментальными и расчетными методами. Количество известных эмпирических зависимостей, позволяющих учитывать влияние экранного эффекта на АДХ, весьма ограничено [3]. Численные методы аэродинамики, используемые в специальных расчетных программах (SWFlowSimulation, AnsysFluent) на сегодняшний день не являются надежным средством определения аэродинамических характеристик моделей. Это связано в первую очередь с полуэмпирческим характером моделей турбулентности, используемых в расчетах. Использование натурного эксперимента сопряжено со значительными материальными и календарными затратами, невозможно для еще не созданных летательных аппаратов. Поэтому испытания его моделей в аэродинамических трубах остается основным используемым средством для определения аэродинамических характеристик ЛА. В данной работе для определения АДХ используется дренажный эксперимент. Данный метод исследования позволяет получать эпюры распределения нормального давления в точках, в которых расположены дренажные отверстия, и тем самым построить физическую модель возникновения экранного эффекта. Такой метод не позволяет измерить значение трения, но его прямой вклад в величины АДХ рассматриваемого в работе тела незначителен [4]. C помощью дренажного эксперимента удобно рассматривать влияние изменяющейся эпюры распределения давления на изменение коэффициента нормальной силы.

Для учета влияния «эффекта экрана» в рабочую часть трубы введена плоская экранирующая поверхность. На рис. 1 представлены фотографии модели дренированного профиля В-12 симм. ЦАГИ [5] в рабочей части трубы.

Рис. 1. Дренажная модель с экранирующей поверхностью в рабочей части трубы

Скорость потока в рабочей части аэродинамической трубы, при которой проводились исследования, составила V ≈ 30 м/с, что соответствует числу Рейнольдса Re≈376 000, рассчитанному по средней аэродинамической хорде крыла модели (b=0,2 м). В соответствии с формулой (1) влияние экранного эффекта при данной скорости V и данной длине хорды b должно начать проявляться на высоте h≈1,05 м. Из-за ограниченных габаритов рабочей части аэродинамической трубы исследовать степень влияния на этой высоте не представляется возможным.

На рис.2 представлены эпюры распределения давления на профиле крыла, полученные при обдувке с экранирующей поверхностью и без неё.

C:\Users\Максим\Desktop\ \Презентации, рефераты, проекты\Экранопланы\МГТУ\Рис1.png

Рис. 2. Эпюры распределения давления с экраном и без экрана

C:\Users\Максим\Desktop\ \Презентации, рефераты, проекты\Экранопланы\МГТУ\График.png

Рис. 3. Зависимость коэффициента нормальной силы от высоты над экранном

Полученные результаты показывают, что наличие экранирующей поверхности существенно влияет на величину коэффициента нормальной силы профиля Сy. Так, Сy ≈ 0,52 при α=5° и h = 0,17 м, Сy ≈ 0,36 при h = 0,67 м, Сy ≈ 0,34 при h = 0,97 м (

b/2), при отсутствии экрана Сy ≈ 0,32 при α=5° и h → ∞. На высоте, близкой к половине хорды значение Сy отличается от значения на высоте, бесконечно удаленной от экрана на 6,5 %. Учитывая монотонность зависимости Сy(h) можно отметить, что распространённая оценка о влиянии экранного эффекта на высоте половины хорды справедлива и для данного эксперимента; влияние экрана на высотах больших b/2 можно не учитывать.

По различию эпюр следует отметить, что помимо повышения давления на нижней поверхности профиля на увеличение коэффициента давления влияет также разрежение давления на верхней поверхности, обусловленное увеличением скорости потока вдоль верхней поверхности благодаря увеличению градиента давления за счет снижения давления у задней кромки на верхней поверхности. Это понижение давления вызвано увеличением скорости потока, выходящего между экраном и задней кромкой.

Методика, описанная в данной работе, позволяет получать значения аэродинамических коэффициентов с учетом влияния экранной поверхности и оценивать это влияние качественно. Однако следует понимать, что данный эксперимент не учитывает относительного перемещения изучаемой модели и экрана, а также не учитывает особенности реальной поверхности (волны на поверхности воды, сыпучесть снежной поверхности), которая является экраном для реального ЛА.

Поэтому для дальнейшего, более точного, исследования актуально создание динамической экранирующей поверхности и разработка методики определения аэродинамических характеристик модели около неплоской поверхности.

Большая Энциклопедия Нефти и Газа

Экранный эффект , который так наглядно демонстрируется с помощью галлереи, в той или иной степени свойственен также и ряду скважин. Такой ряд, в котором расстояния между скважинами не равны нулю, а конечны, экранирует залежь тем меньше, чем больше эти расстояния.  [1]

Экранный эффект поднятий проявляется и в областях склонов подводных хребтов, океанских островов и отдельных подводных гор. Это явление используется в настоящее время в рыболовстве. Однако значение его шире, оно приводит к дополнительному поступлению в области лавинной седиментации значительных количеств биогенного материала, и что особенно важно органического углерода. Это должно приводить к возникновению условий, благоприятных для образования нефти и газа, что подтверждается первыми результатами бурения.  [2]

Экранное действие одного ряда усиливается последующими рядами, но даже при очень большом числе их и малом расстоянии между скважинами суммарный экранный эффект остается меньшим, чем для галлереи.  [3]

Для получения плотных алюминиевых покрытий на углеродных волокнах был с успехом опробован метод вакуумного напыления, однако при этом способе металлизации существует значительный экранный эффект , и для получения равномерных покрытий по всему сечению жгута необходимо перед напылением укладывать жгут в тонкую ленту.  [4]

Области лавинной седиментации второго глобального уровня ( у основания склона) имеют специфические условия среды, которые не встречаются в других осадочных бассейнах: 1) существование здесь особых контурных течений; 2) наличие значительных постоянных возмущений водной толщи, связанных с экранным эффектом гигантских масштабов , и 3) сильных периодических возмущений, вызываемых периодическим сходом лавин, обвалов подводных селей, зерновых потоков и гурбидигных потоков. Эти явления также порождают внутренние волны, действующие на значительных расстояниях.  [5]

Галерея обладает свойством экранировать всю лежащую позади нее область залежи от действия данной пластовой силы. Экранный эффект в той или иной степени свойственен и ряду скважин; чем меньше расстояния между скважинами, тем больше этот эффект. Он еще больше проявляется при одновременной работе двух или трех рядов скважин. Однако даже при очень большом числе их и малом расстоянии между скважинами суммарный эффект остается меньшим, чем для галереи.  [6]

В основе методов определения промыслово-геологических параметров всех трех методик лежит метод удельного электрического сопротивления. Эти же методы относительно свободны от влияния экранных эффектов , р оценивается по палеткам на основе палеток БКЗ.  [7]

Внешними рядами экранируются внутренние. Если на забоях скважин во всех рядах поддерживается одно и то же давление, то чем дальше отстоит ряд от контура, тем сильнее сказывается на нем экранный эффект каждого предыдущего ряда. Вследствие этого динамические пластовые давления я тяк — р и ТТР-прессии от ряда к ряду уменьшаются и поэтому могут снижаться ебиты скважин внутренних рядов.  [8]

ЭКРАНОПЛАН — ЛА для полета на малой высоте с использованием эффекта влияния экранирующей поверхности воды или ровных участков земли. Экранный эффект при прочих равных условиях позволяет уменьшить потребную мощность двигателей.  [9]

Металлизированный слой представляет собой очень тонкую прозрачную пленку двуокиси олова с полупроводниковыми свойствами, наносимую на обычное силикатное стекло. Пленка создает экранный эффект благодаря электронной проводимости. Выпускают стекла размером 650×500 мм, толщиной 4 мм и более. Для экранировки могут также применяться стеклянные блоки.  [10]

Кривая экранированного токового метода отражает изменение силы тока центрального электрода, который пересекает породы разного удельного сопротивления. Однако кривая экранированного токового метода сильнее искажена экранными эффектами .  [12]

В заключение отметим, что две рассмотренные модели, описывающие влияние ОДА, синтезируются. Модель, 1 предложенная в [130], не позволяет объяснить того экспериментального факта, что рассеяние луча лазера на образовавшихся частицах влаги появляется при введении в поток ОДА до скачка конденсации. Действительно, как было показано выше, присутствие в расширяющемся потоке присадок ОДА в силу экранного эффекта приводит к затягиванию процесса спонтанной конденсации, перемещению зоны максимальной скорости ядрообразования в область больших переохлаждений потока. Вторая модель [126] объясняет появление диспергированной фазы до зоны спонтанной конденсации и причины смещения конденсационного скачка против потока.  [13]

Для получения плотных алюминиевых покрытий на углеродных волокнах был с успехом опробован метод вакуумного напыления, однако при этом способе металлизации существует значительный экранный эффект, и для получения равномерных покрытий по всему сечению жгута необходимо перед напылением укладывать жгут в тонкую ленту. Более успешные эксперименты проведены по алюминированию волокон методом химического осаждения при термическом разложении триизобутила алюминия; экранный эффект в этом случае не проявляется и покрытия получаются однородными по всему сечению углеродного жгута. Были сделаны также попытки изготовления углеалюми-ниевого материала из покрытых таким образом волокон методами горячего и холодного прессования, но из-за малого количества полученного материала его свойства не определялись.  [14]

В случае литологической изменчивости и непостоянства свойств терри-генного коллектора по разрезу продуктивного горизонта использование только лишь кривой стандартного потенциал-зонда и даже больших градиент-зондов БКЗ может оказаться затруднительным, в связи с чем указанный комплекс может быть дополнен показаниями индукционного метода и бокового каротажа. Индукционный метод обычно дает информацию, как двух — и четырехметровый градиент-зонд. Преимуществом индукционного каротажа по сравнению с градиент-зондами БКЗ является возможность получения в переходной зоне при неоднородном строении коллектора кривой сопротивлений, слабо искаженной экранными эффектами .  [15]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *