Что такое ШИМ и почему мерцает OLED? РАЗБОР
ШИМ, все вокруг говорят про ШИМ. Ну фиг знает — я его не вижу. Что хотите сказать, если понижу яркость дисплея, это как-то будет меня утомлять? Кажется тут есть в чём разобраться!
Сегодня мы объясним как на самом деле работает ШИМ. Узнаем сколько FPS видит человек, а сколько муха. Проведём тесты ШИМ на осциллографе. И, конечно, расскажем как избавиться от ШИМа на Samsung и на iPhone.
OLED дисплеи фактически во всём превзошли IPS. Но некоторые люди просто физически не могут пользоваться OLED, ведь они чувствуют усталость глаз, сухость и даже головные боли.
Почему так? Дело в том, что в отличие от большинства IPS-экранов большинство OLED-матриц мерцают. Примерно как дешевые люминесцентные лампы. И это не очень хорошо сказывается на зрении.
Но стоп! Лично у меня нет никаких проблем с OLED-дисплеями, да и мои друзья ходят с OLED и не жалуются.
Действительно, по статистике большинство (примерно 90%) людей не ощущают мерцания OLED-дисплеев. Мы даже провели опрос: Устают ли у Вас глаза от OLED дисплеев? Устают ли у вас глаза от IPS дисплеев? И получили вот такие результаты: примерно четверть — 27% сообщила, что у них глаза устают. Меньшинство, но всё же — четверть!
Тем не менее есть люди, которые не просто чувствуют ШИМ, но даже отчетливо его видят. Как так получается?
ШИМ в кинопроекторах
Чтобы ответить на этот вопрос давайте поговорим про кино. В старых кинопроекторах, в которых еще были бобины с плёнкой, крутили кино со скоростью 24 кадра в секунду.
Так вот, для того чтобы при смене кадров изображение не смазывалось и вы не видели момент перемотки пленки, в этот момент поток света перекрывался. Это приводило к адскому мерцанию, так как изображение постоянно обрывал «черный кадр».
Так как ускорить процесс смены кадров не было технической возможности киноделы придумали другой хак. Они стали перекрывать изображение дважды: не только во время смены кадра, но и когда на экране отображался статический кадр. Ммм. И какой в этом смысл?
Такое чередование изображения и дополнительных “черных кадров” позволяло искусственно увеличить частоту мерцания до 48 раз в секунду. Чего было достаточно, чтобы обмануть мозг. Видя постоянно мелькающую картинку, мозг просто «отключает» восприятия мерцания и мы видим плавную картинку. Кстати в немом кино, где использовалась частота 16 К/с, вообще перекрывали 3 раза и получилось мерцание — 48 раз в секунду.
Сколько мы видим кадров?
Этот невероятный эффект человеческого зрения называется порогом слияния мерцаний и этот порог равен 60 Гц. Это значит, всё что мерцает чаще чем 60 раз в секунду человек будет воспринимать как непрерывное изображение.
Кстати, у собак и кошек этот порог выше — в районе 70-80 Гц, а у мух так вообще 250-300 Гц.
Что же это получается, игровые мониторы 144 Гц и выше — это всё маркетинг? Нет, 60 кадров в секунду — это минимальный порог, при котором человек перестает видеть мерцание.
А люди с натренированным зрением, например, пилоты истребителей на тестированиях различают кадры, появившиеся на 4 мс. Что соответствует 250 кадрам в секунду. К хардкорным геймерам это тоже относится.
На самом деле есть исследования, где люди смогли различить и 480 к/с и даже больше в некоторых условиях.
Но в целом если верить ГОСТАм: Пульсация освещенности свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность. ГОСТ Р 54945-2012
Зачем нужен ШИМ?
Итак, со зрением разобрались. Но зачем вообще мерцают OLED-дисплеи и на какой частоте?
Сначала ответим на вопрос “Зачем?”
Существует два способа регулировки яркости дисплея:
Первый и самый очевидный способ, при помощи понижения напряжения. Чем меньше мы подаем энергии на дисплей, тем меньше он светится.
Именно так регулируется яркость в большинстве IPS-дисплеев в наших смартфонах, ноутбуках и мониторах.
Но почему бы на OLED-дисплеях не делать также? На самом деле можно, и так даже делали раньше. Например в смартфоне LG G Flex 2 использовался именно такой подход. Но есть проблема! На OLED-дисплеях при уменьшении напряжения сильно страдает картинка. Возникает так называемый мура-эффект, более известный как эффект “наждачной бумаги”. Мы подробно рассказывали об этом в материале про OLED.
Поэтому чтобы избежать такой деградации изображения используется второй подход: регулировка яркости при помощи мерцания или ШИМ. ШИМ — это широтно-импульсная модуляция, или PWM по-английски. Это буквально значит — регулировка ширины, ну или длительности, импульса.
Так, стоп, что еще за импульс? Дело в том, что напряжение в дисплеях, использующих ШИМ, не постоянное, а прерывистое. Оно подаётся при помощи вот таких всплесков или импульсов.
Количество импульсов в секунду называется частотой и измеряется в Гц. А время, которое занимает каждый цикл пульсации, называется периодом.
К примеру, возьмем частоту 250 Гц, в этом случае период будет 4 мс. Частота и период — это фиксированные значения, и с изменением яркости дисплея они не меняются. А вот ширина каждого импульса — это как раз то, что мы можем регулировать. Это значение называется рабочим циклом, и он выражается в процентах.
Если рабочий цикл 100%, импульс будет длиться 100% своего периода, то есть 4 мс. Это соответствует 100% яркости дисплея. Если мы сократим ширину импульса до 50% или 2 мс, воспринимаемая яркость дисплея также упадет до 50%. А на яркости 1% фактически 99% будет отображаться просто черный экран, но наше зрение это интерпретирует как просто очень тусклую картинку. Получается, чем меньше яркость дисплея, тем более выражен эффект мерцания. И тем это вреднее для глаз.
Частота ШИМ в разных дисплеях
На самом деле ШИМ используется не только в OLED-дисплеях, но и в IPS. Но в отличие от OLED в IPS-экранах используют очень высокую частоту мерцания, свыше 2000 Гц. Естественно, столь быстрое мерцание не сможет заметить ни человек, ни муха. А значит и глазки уставать не будут.
А какая частота ШИМ в OLED?
Тут всё зависит от конкретной модели, но есть определенные закономерности. Во-первых, желательно чтобы частота ШИМ была кратной частоте обновления дисплея. Потому на 60 Гц или 120 Гц дисплеях, как правило частота ШИМ — 240 Гц, а на 90 Гц дисплеях 360 Гц.
Мы решили убедиться в этом самостоятельно и отправились в Санкт-Петербург. Там ребята из компании ЛЛС подготовили для нас осциллограф с высокоскоростным фотодетектором.
Так мы проверили на ШИМ на iPhone 11 Pro и Pixel 4.
Тесты показали, что iPhone 11 Pro, вопреки общему мнению, немного мерцает даже на максимальной яркости, с частотой 240 Гц. При снижении яркости до 50%, мерцание становится менее выраженным, а значит до этого момента на iPhone используется уменьшение напряжения. Ну а дальше в бой вступает ШИМ. На осциллографе очень хорошо видно, как при снижении яркости уменьшается ширина импульса, а значит увеличивается мерцание.
В Pixel 4 вплоть до 70% яркости мы не обнаружили ШИМа совсем, видно только обновление экрана 90 Гц. А дальше начинается ШИМ с частотой 360 Гц. Но так как частота обновления экрана в Pixel 4 после 40% падает до 60 Гц, видно как каждый четвёртый импульс немного скачет. Это потому что частота обновления не совпадает с частотой модуляции.
- Galaxy S20 — 242.7 Гц
- Galaxy S20 Ultra — 240.4 Гц
- Google Pixel 2 — 245.1 Гц
- Google Pixel 2 XL — 242.7 Гц
- Google Pixel 3a — 271.1 Гц
- Google Pixel 3a XL — 242.7 Гц
- Google Pixel 4 — 367.6 Гц
- Google Pixel 4 XL — 367.6 Гц
- Huawei P30 — 240.4 Гц
- Huawei P30 Pro — 231.5 Гц
- Huawei P40 — 245 Гц
- Huawei P40 Pro — 365 Гц
- iPhone 11 Pro — 290.7 Гц
- iPhone 11 Pro Max — 245.1 Гц
- iPhone XS — 240.4 Гц
- iPhone XS Max — 240.4 Гц
- OnePlus 5T — 242.7 Гц
- OnePlus 6T — 240 Гц
- OnePlus 7 — 200 Гц
- OnePlus 7 Pro — 122 Гц
- OnePlus 7T Pro — 294 Гц
- OnePlus 8 Pro — 258 Гц
- Samsung Galaxy A50 — 119 Гц
- Samsung Galaxy A51 — 242.7 Гц
- Samsung Galaxy A71 — 247.5 Гц
- Samsung Galaxy S10e — 232 Гц
- Xiaomi Mi 10 — 362.3 Гц
- Xiaomi Mi 8 — 238 Гц
- Xiaomi Mi 8 Explorer Edition — 100 Гц
Samsung Galaxy A50:
На самом деле, частоту мерцания OLED-дисплеев можно увеличить, пусть не до 2000 Гц, но хотя бы до 500 Гц. Кстати, именно такая частота ШИМ была в древнем Windows Phone — Lumia 950. Но это удорожает производство, а так как страдающих людей мало, производители воровать у себя из кармана не готовы.
Кстати, практически все современные LCD-телевизоры тоже ШИМят на частоте 240 Гц. И в теликах этот эффект даже более заметен, чем в телефонах.
Разве что SONY не поскупились установить в свои LCD модели контроллеры управления яркостью либо совсем без мерцания, либо с мерцанием на частоте 720 Гц.
Как проверить ШИМ самому?
Но как проверить ШИМ на вашем телефоне, ноутбуке или телевизоре самостоятельно? Если у вас нет под рукой осциллографа с высокоскоростным кремниевым фотодетектором.
На самом деле очень просто! Вам нужно снять экран на видео в замедленной съемке 240 к/с или больше. Сейчас почти любой телефон так может. Если на всех значениях яркости вы не увидите мерцания в виде перемещающихся полос. Значит ШИМа нет.
Что такое DC Dimming?
Тем не менее проблема есть и первой её осознал Xiaomi, представив функцию DC Dimming в Black Shark 2 Pro. Эта тема настолько хорошо зашла, что очень быстро подсуетились OnePlus, OPPO и Huawei. И начиная с прошлого года во всех флагманах точно есть DC Dimming.
Само название расшифровывается как Direct Current Dimming, что переводится как затемнение постоянным током. Иными словами в этом случае яркость регулируется как и положено снижением напряжения.
СТОП! Но также нельзя! Картинка же убьется! На самое деле, так нельзя было делать раньше, потому как качество OLED-дисплеев оставляло желать лучшего. Но теперь всё иначе.
Уже давно многие производители стали использовать гибридный способ регулировки яркости. Например на iPhone до 50% яркости используется снижение напряжения, и только потом включается ШИМ. А телефоны с функцией DC Dimming пошли дальше и стали регулировать яркость исключительно снижением напряжения.
Да, включив DC Dimming на низких яркостях могут немного поплыть цвета и появиться шум. Но это совсем не критично.
И тесты показывают, что функция реально работает. Хотя колебания яркости и не сглаживаются полностью, всё равно такой подход позволяет многократно снизить нагрузку на наши с вами глаза.
По нашим замерам на Xiaomi Mi 10 ШИМ с включенным DC Dimming исчезает полностью! А значит ваши глазки смогут отдохнуть.
Убираем ШИМ для всех
Но что делать, если вам DC Dimming не завезли? Например у вас Samsung, который ШИМит даже на 100% яркости, или iPhone который начинает ШИМить на 50%?
На самом деле решение есть и оно программное. Имя ему экранные фильтры!
Android. Например, на любой Android можно поставить программу OLED Saver. Она умеет накладывать полупрозрачный серый фильтр поверх всего изображения. Регулируя прозрачность фильтра, регулируется яркость. Это программа умеет имитировать функцию автояркости. Можно довольно быстро из шторки регулировать прозрачность фильтра и настроить автозапуск после перезагрузки.
Не могу сказать что это очень удобно. Но может быть очень полезно, если любите позалипать в телефон перед сном в темноте.
iPhone. А на iPhone вообще есть специальный режим встроенный в систему. Он называется “понижение точки белого” и прячется в разделе “Универсальный Доступ”. Путь такой: Настройки > Универсальный доступ > Дисплей и размер текста > Понижение точки белого
А чтобы постоянно не лезть в настройки можно назначить включение режима на тройное нажатие кнопки питания с помощью такого пути: Настройки > Универсальный доступ > Быстрая команда.
В iOS 14 можно даже назначить тоже самое на постукивание по задней крышке. Но я бы не рекомендовал так делать, будут ложные срабатывания.
Ну и напоследок можно вынести ярлык с этой функцией в пункт управления. Для этого идём в Настройки > Пункт управления и перетаскиваем иконку “Команды для универсального доступа”.
Итоги
Что в итоге? ШИМ, конечно, зло. Хоть я его и не вижу, и мои глаза не устают, эта штука всё равно напрягает мозг. А с возрастом может появиться и усталость глаз.
С другой стороны, благодаря ШИМ вообще стал возможен прогресс в развитии технологии OLED. Если б его не было сидели бы мы на IPS и о всех прелестях классных OLED-дисплеев даже бы и не знали.
Очень надеемся, что DC Dimming станет стандартом и мы забудем о ШИМ в смартфонах и телевизорах точно также, как забыли о нём в настольных мониторах с появлением Flicker Free мониторов от BenQ. Это, кстати, та же самая технология что и DC Dimming.
В основу ролика легла статья с портала deep-review.com и материал Олега Афонина для журнала Хакер. Ребята проделали отличную работу, а мы продолжаем их дело.
Спасибо компании ЛЛС за оборудование и теплый приём в Питере! Очень приятно вместе с вами делать крутой науч-поп контент. На этом сегодня всё!
Широтно-импульсная модуляция (ШИМ)
Жидкокристаллические (ЖК-, LCD-) мониторы используются в самых разных условиях, поэтому желательно производить дисплеи, позволяющие изменять яркость и подходящие для работы как при свете, так и в темноте. Тогда пользователь сможет настроить экран на комфортный уровень яркости в зависимости от условий его работы и общего освещения.
В технических характеристиках дисплея производители обычно указывают его максимальную яркость, но важно принимать во внимание и более низкие значения яркости, на которых способен работать экран — ведь вы вряд ли захотите использовать его на максимальной яркости. Хотя в технических характеристиках часто фигурируют значения до 500 кд/м², вам наверняка потребуется использовать экран при яркости, несколько более комфортной для ваших глаз.
Напомним, что в каждом из наших обзоров на сайте tftcentral.co.uk мы проверяем полный диапазон регулирования яркости подсветки и соответствующие значения яркости. При калибровке мы также пытаемся установить яркость экрана на уровне 120 кд/м², который является рекомендуемым для ЖК-монитора при обычных условиях освещённости. Это помогает вам получить представление о том, как установить такой уровень яркости, при котором вы, скорее всего, захотите использовать его ежедневно.
Как в случае подсветки на люминесцентных лампах (CCFL), так и при светодиодной (LED-) подсветке, изменение яркости дисплея достигается уменьшением общей светоотдачи подсветки. В настоящее время для ослабления яркости подсветки наиболее часто применяется широтно-импульсная модуляция (ШИМ, Pulse Width Modulation, PWM), которая уже много лет используется в дисплеях настольных компьютеров и ноутбуков. Тем не менее, этот способ не лишён некоторых проблем, а с появлением дисплеев с высокими уровнями яркости и распространением светодиодной подсветки побочные эффекты ШИМ стали более заметными, чем раньше, и в некоторых случаях ШИМ может быть причиной быстрой утомляемости зрения у чувствительных к ней людей.
Цель этой статьи — не вселить в вас тревогу, а рассказать, как ШИМ работает, почему она используется, и как проверить дисплей, чтобы разглядеть эти эффекты более явно.
Что такое ШИМ?
Широтно-импульсная модуляция (ШИМ) — один из способов снижения воспринимаемой яркости в дисплеях, работающий путём быстрого циклического включения и выключения подсветки. Такая периодическая подача импульсов обычно происходит на постоянной частоте, а отношение длительности части каждого цикла, в течение которой подсветка включена, к общей длительности цикла называется коэффициентом заполнения (величина, обратная скважности). Изменением скважности достигается изменение общей светоотдачи подсветки. На зрительном уровне этот механизм работает благодаря тому, что чередование включённого и выключенного состояний подсветки происходит достаточно быстро, и пользователь не замечает мерцания, поскольку оно находится за пределами порога слияния мельканий (подробнее об этом ниже).
Ниже вы можете видеть графики светоотдачи подсветки на протяжении нескольких циклов с использованием «идеальной» ШИМ. Максимальная светоотдача подсветки в этом примере составляет 100 кд/м², а воспринимаемая яркость для коэффициентов заполнения 90%, 50% и 10% — 90, 50 и 10 кд/м² соответственно. Соотношение между минимальным и максимальным уровнями яркости в течение одного цикла называется глубиной модуляции и в данном случае составляет 100%. Обратите внимание, что на протяжении цикла в приведённом примере яркость подсветки максимальна.
Аналоговые (без использования ШИМ) графики, соответствующие воспринимаемым уровням яркости, представлены ниже. Здесь модуляция отсутствует.
Постоянная яркость 90% Постоянная яркость 50% Постоянная яркость 10%
Почему применяется ШИМ
Основными причинами применения ШИМ являются лёгкость её реализации, для которой от подсветки нужна лишь способность часто включаться и выключаться, а также обеспечиваемый с её помощью широкий диапазон возможных значений яркости.
Снизить яркость CCFL-подсветки можно путём снижения тока, протекающего через лампу, но лишь примерно вдвое ввиду их строгих требований к току и напряжению. Это делает ШИМ единственным простым способом достижения широкого диапазона регулирования яркости. CCFL-лампа обычно управляется инвертором, включающимся и выключающимся с частотой в десятки килогерц, что находится за пределами мерцания, заметного для человека. Однако ШИМ обычно работает на гораздо более низкой частоте, около 175 Гц, что может приводить к заметным дефектам изображения.
Яркость светодиодной подсветки можно регулировать в широких пределах путём изменения проходящего через них тока, правда в результате несколько изменяется цветовая температура. Этот аналоговый подход к изменению яркости светодиодов также нежелателен ввиду того, что вспомогательные цепи обязаны учитывать тепло, выделяемое светодиодами. Светодиоды во включённом состоянии нагреваются, что уменьшает их сопротивление и дополнительно увеличивает протекающий через них ток. Это может привести к быстрому росту тока в сверхъярких светодиодах и послужить причиной их выхода из строя. При использовании ШИМ ток можно принудительно удерживать на постоянном уровне в течение рабочего цикла, в результате чего цветовая температура всегда одинакова и перегрузок по току не возникает.
Побочные эффекты ШИМ
Несмотря на привлекательность ШИМ для производителей по обозначенным выше причинам, при неосторожном использовании она может также приводить к неприятным визуальным эффектам. Чтобы понять, что мы видим, нам необходимо рассмотреть мерцание настоящих дисплеев. Ниже показана видеозапись CCFL-подсветки, замедленная в 40 раз, благодаря чему мерцание можно увидеть более отчётливо. Графики изменения яркости RGB-компонентов в течение одного цикла показаны непосредственно под ней. Данный конкретный дисплей настроен на его минимальную яркость, при которой мерцание должно быть выражено наиболее ярко.
Как видно из видео и соответствующих графиков, в течение одного цикла общая яркость изменяется примерно в 4 раза. Что интересно, цвет подсветки тоже значительно изменяется в течение каждого цикла. Скорее всего, это связано с тем, что люминофоры в CCFL имеют различающееся время отклика, и в этом случае мы можем сделать вывод, что люминофор, задействованный при продуцировании синего света, может включаться и выключаться быстрее, чем для других цветов. Применение люминофоров также означает, что подсветка продолжает излучать свет в течение нескольких миллисекунд после отключения подсветки в конце рабочего цикла и обеспечивает более постоянный уровень свечения (меньшую модуляцию), чем имели бы место в противном случае. Обратите внимание, что усреднённый во времени цвет остаётся неизменным.
Мерцание светодиодной подсветки обычно гораздо заметнее, чем мерцание CCFL-подсветки при той же скважности, поскольку светодиоды способны включаться и выключаться гораздо быстрее и при этом не продолжают светиться после отключения питания. Это означает, что там, где CCFL-подсветка показывала достаточно плавное колебание яркости, светодиодная версия демонстрирует более резкие переходы между включённым и выключенным состояниями. Именно поэтому совсем недавно тему ШИМ стали поднимать в интернете и в обзорах на фоне появления всё большего и большего количества дисплеев со светодиодной подсветкой на основе белых светодиодов (W-LED) . Как можно видеть ниже, существенного изменения цвета подсветки в течение рабочего цикла не происходит.
Особенно заметен эффект мерцания, когда глаза пользователя двигаются. При постоянном освещении без мерцания (например, при солнечном свете) изображение плавно размывается, и именно так мы обычно воспринимаем движение. Однако при сочетании с источником света, использующим ШИМ, человек может увидеть одновременно несколько раздельных остаточных изображений экрана, что может привести к снижению удобочитаемости и способности фиксировать взгляд на объектах. Из предыдущего анализа CCFL-подсветки мы знаем, что может также искажаться цвет, даже если исходное изображение чёрно-белое. Ниже показаны примеры того, как может выглядеть текст по мере горизонтального движения глаз при использовании подсветки разных типов.
Исходное изображение Без ШИМ
ШИМ при CCFL-подсветке
ШИМ при LED-подсветке
Важно помнить, что это обусловлено исключительно подсветкой, а сам дисплей отображает статичное изображение. Часто говорят, что человек не способен воспринимать более 24 кадров в секунду (fps), что не является правдой и в действительности лишь соответствует приблизительной частоте кадров, необходимой для восприятия непрерывного движения. На самом деле при движении глаз (например, при чтении) реально увидеть эффекты мерцания на нескольких сотнях герц. У разных людей способность замечать мерцание значительно различается и даже зависит от расположения пользователя относительно дисплея, поскольку периферическое зрение наиболее чувствительно.
Так насколько же часто включается и выключается подсветка при использовании ШИМ? По-видимому, это зависит от типа используемой подсветки. Подсветка на основе люминесцентных ламп почти всегда переключается с частотой 175 Гц, или 175 раз в секунду. Частота мерцания светодиодной подсветки, по разным сведениям, составляет от 90 Гц до 420 Гц, и при более низких частотах мерцание гораздо заметнее. Может показаться, что частота слишком высокая, чтобы быть заметной, но не забывайте, что 175 Гц — это ненамного чаще, чем мерцание 100—120 Гц, характерное для ламп освещения, подключённых напрямую к электросети.
В действительности частота 100—120 Гц мерцания люминесцентных ламп была связана с такими симптомами, как перенапряжение глаз и головная боль у части людей. Именно поэтому были разработаны высокочастотные стабилизирующие цепи, обеспечивающие почти непрерывную светоотдачу. Использование ШИМ на низких частотах сводит на нет преимущества использования этих улучшенных стабилизирующих цепей в подсветке, поскольку источник почти непрерывного света в этом случае снова превращается в мерцающий. Дополнительно следует учитывать, что низкокачественные или бракованные стабилизаторы в подсветке на основе люминесцентных ламп могут издавать слышимый шум. Зачастую это происходит при использовании ШИМ, поскольку электроника в настоящее время имеет дело с дополнительной частотой, с которой изменяется энергопотребление.
Важно также понимать разницу между мерцанием дисплеев на основе электронно-лучевых трубок (ЭЛТ, CRT) и TFT-дисплеев с CCFL- и LED-подсветкой. В то время как ЭЛТ может мерцать на низкой частоте 60 Гц, лишь узкая полоса освещена в каждый отдельно взятый момент времени, поскольку луч электронной пушки движется сверху вниз. При использовании TFT-дисплеев с CCFL- и LED-подсветкой вся поверхность экрана светится одновременно, что означает гораздо большее количество света, излучённого за короткое время. В некоторых случаях это может быть более неприятно, чем мерцание ЭЛТ, особенно при высокой скважности.
Для некоторых людей мерцание как таковое в подсветке дисплеев может быть трудноуловимым и малозаметным, но для других — является весьма заметным в силу естественных различий в человеческом зрении. С ростом использования светодиодов высокой яркости, для управления яркостью приходится всё больше использовать высокую скважность ШИМ, что делает проблему мерцания более актуальной. Учитывая что пользователи ежедневно проводят многие часы, смотря на свои мониторы, не следует ли нам рассмотреть долгосрочные последствия как воспринимаемого, так и незаметного мерцания?
Ослабление побочных эффектов ШИМ
Если для вас ШИМ-мерцание подсветки неприятно или вы просто хотите проверить, станет ли легче читать, если мерцание уменьшить, я рекомендовал бы вам попробовать следующее. Установите яркость вашего монитора на максимум и отключите все механизмы автоматической подстройки яркости. Теперь уменьшите яркость до нормального уровня (обычно с помощью ползунка контрастности) с помощью цветокоррекции, доступной в драйверах вашей видеокарты, или с помощью устройства калибровки. Это уменьшит яркость и контрастность вашего монитора, при этом подсветка будет включена в течение максимально продолжительного времени на протяжении ШИМ-циклов. Хотя из-за уменьшенной контрастности этот способ в качестве долгосрочного решения многим не подойдёт, эта техника может помочь определить степень положительного влияния уменьшения использования ШИМ.
Гораздо лучшим методом, конечно, было бы приобрести дисплей, не использующий ШИМ для управления яркостью или хотя бы использующий гораздо более высокую частоту ШИМ. К сожалению, похоже, ни один из производителей пока не реализовал ШИМ, работающую на частотах, которые находились бы за пределами воспринимаемых зрительных дефектов (вероятно, значительно выше 500 Гц для CCFL и выше 2 КГц для светодиодов). Кроме того, в некоторых дисплеях, в которых применяется ШИМ, коэффициент заполнения не равен 100% даже на полной яркости, в результате чего они мерцают в любом случае. Возможно, в некоторых из доступных сейчас дисплеев со светодиодной подсветкой ШИМ не используется, но до тех пор, пока частоту подсветки и модуляцию не станут указывать в технических характеристиках, каждый конкретный дисплей необходимо проверять лично.
Проверка и анализ
Было бы здорово, если бы существовал простой способ измерения ШИМ-частоты подсветки, и, к счастью, для этого достаточно фотоаппарата с возможностью ручной настройки выдержки. Использование этого способа описано далее.
- Установите на мониторе настройки, которые вы хотите проверить.
- (Необязательно) Установите баланс белого на фотоаппарате при отображении на экране только белого цвета. Если это невозможно, установите баланс белого вручную примерно на уровне 6000 K.
- Выведите на монитор узкую белую вертикальную полосу на чёрном фоне (толщины 1-3 точки будет достаточно). Должно быть видно только это изображение.
- Установите выдержку на фотоаппарате в значение из промежутка от 1/2 до 1/25 секунды. Для получения достаточного для съёмки количества света вам может потребоваться установить ISO-чувствительность и диафрагму. Убедитесь, что белая полоса располагается на фокусном расстоянии (при необходимости зафиксируйте его).
- Удерживайте камеру на расстоянии примерно 60 см от монитора и перпендикулярно ему. Нажмите кнопку спуска затвора во время медленного горизонтального перемещения камеры относительно экрана (при движении сохраняйте их взаимно перпендикулярное положение). Вам может потребоваться поэкспериментировать с перемещением фотоаппарата на разных скоростях.
- Подстройте яркость полученного изображения так, чтобы был хорошо различим узор.
- Подсчитайте количество циклов, запечатлённых на изображении.
- Разделите это число на величину выдержки. Например, если вы используете выдержку 1/25 секунды и насчитали 7 циклов, количество циклов в секунду составит 25 * 7 = 175 Гц. Это частота мерцания подсветки.
Смысл данной техники в том, что, перемещая фотоаппарат во время съёмки, мы превращаем временной эффект в пространственный. Единственным существенным источником света при съёмке является узка полоса на экране, которая попадает на светочувствительную матрицу в виде следующих друг за другом столбцов. Если подсветка мерцает, разные столбцы будут иметь разные значения яркости или цвета, определяемые подсветкой в конкретный момент съёмки.
Типичной проблемой при первых попытках использования этой техники является слишком тёмное изображение. Улучшить ситуацию в этом плане может использование большей диафрагмы фотоаппарата (более низкое значение f/число) или увеличение ISO-чувствительности. Выдержка на эскпозицию влияния не оказывает, поскольку мы используем её только для управления общей продолжительностью съёмки. Яркость изображения можно также подстроить путём изменения скорости перемещения фотоаппарата: более высокая скорость обеспечит более тёмное изображение при более высоком разрешении по времени, а следствием более низкой скорости будет более яркое изображение при более низком разрешении.
Другая встречающаяся проблема — неравные расстояния между отдельными полосами на результирующем изображении вследствие изменения скорости перемещения фотоаппарата во время съёмки. Для достижения постоянства скорости начинайте перемещение фотоаппарата за некоторое время до начала съёмки, а заканчивайте — через некоторое время после её окончания.
Изображение, выглядящее слишком ровно, может быть следствием расфокусированности. В некоторых случаях с этим можно справиться путём половинного нажатия кнопки спуска затвора для наведения фокуса и дальнейшего продолжения в обычном режиме.
Изображение слишком тёмное
- Увеличьте экспозицию после съёмки.
- Используйте бОльшую диафрагму.
- Перемещайте фотоаппарат медленнее.
- Перемещайте фотоаппарат на постоянной скорости.
- Попробуйте перемещать фотоаппарат до и после съёмки.
- Зафиксируйте фокусное расстояние.
- Наведите фокус заранее путём половинного нажатия кнопки спуска затвора.
- Убедитесь, что фотоаппарат расположен перпендикулярно экрану.
В зависимости от конкретного монитора могут наблюдаться дополнительные эффекты. Подсветка на основе CCFL часто демонстрирует разные цвета в начале и конце каждого цикла, что означает, что используемые люминофоры реагируют с разной скоростью. Подсветка на основе светодиодов часто использует более высокую частоту, чем CCFL-подсветка, и, чтобы увидеть циклы, может потребоваться перемещать фотоаппарат быстрее. Тёмные полосы между циклами означают, что скважность ШИМ была увеличена в такой степени, что во время этой части цикла свет не излучается.
Далее представлены примеры применения этого метода.
Dell 2007WFP (CCFL)
Яркость = 100
Яркость = 50
Яркость = 0
При выдержке 1/25 секунды отчётливо видны 7 циклов, значит подсветка мерцает на частоте 175 Гц. Даже на полной яркости есть небольшое мерцание, хотя оно, скорее всего, достаточно мало, чтобы быть незаметным. На половинной яркости появляется небольшое мерцание, а при достижении минимальной яркости появляется гораздо более заметное мерцание наряду с цветовым сдвигом.
NEC EA231WMi (CCFL)
Яркость = 100
Яркость = 50
Яркость = 0
На полной яркости видимое мерцание отсутствует. На половинной яркости становятся видны мерцание и цветовой сдвиг. При минимальной яркости наблюдаются более сильное мерцание и значительный цветовой сдвиг. При выдержке 1/25 секунды видно около 8 циклов, что соответствует частоте примерно 200 Гц. При более длительной выдержке получено более точное значение частоты — 210 Гц.
Samsung LN40B550 Television (CCFL)
Яркость = Max
Яркость = Min
Отключить автоматическую подстройку яркости нет возможности, поэтому показаны максимальный и минимальный уровни яркости, которых можно легко достичь. На полной яркости видимое мерцание отсутствует. На минимальной яркости есть сильное мерцание и цветовой сдвиг, за счёт которого видно разделение на жёлтую и синюю составляющие. При выдержке 1/25 секунды видны лишь 6 циклов, значит подсветка мерцает на частоте 150 Гц.
2009 Apple MacBook (LED)
Яркость = 100
Яркость = 50
Яркость = 0
При использовании выдержки 1/25 секунды видимые мерцание и цветовой сдвиг отсутствуют вне зависимости от яркости. Этот дисплей не использует ШИМ. Причиной бороздчатости является зашумлённость изображения.
2008 Apple MacBook Pro (LED)
Яркость = 100
Яркость = 50
Яркость = 0
При выдержке 1/25 секунды наблюдается небольшое мерцание на полной яркости. При яркости 50 и 0 используется очень высокая скважность, дающая сильное мерцание. В этой светодиодной подсветке используется более высокая частота — 420 Гц, но она всё же слишком низка, чтобы устранить эффект мерцания. Видимый цветовой сдвиг в течение циклов отсутствует.
Заключение
Как мы отметили вначале, эта статья написана не для того, чтобы отпугнуть людей от современных ЖК-дисплеев, а для того, чтобы помочь людям узнать о потенциальной проблеме, связанной с ШИМ. С учётом растущей популярности мониторов с подсветкой на основе белых светодиодов (W-LED) довольно вероятно появление большего количества жалоб пользователей по сравнению с более старыми дисплеями, и связано это с использованием ШИМ-метода и, в конечном итоге, с выбранным типом подсветки. Конечно, проблемы, к которым может привести использование ШИМ, заметны не каждому, и в действительности я ожидаю, что людей, которые никогда не испытают описанных симптомов, гораздо больше, чем тех, кто испытает. Для тех, кто страдает от побочных эффектов, включая головные боли и перенапряжение глаз, теперь есть хотя бы объяснение.
Учитывая, что такая технология, как ШИМ, используется давно и успешно, а также многие годы её использования в CCFL-дисплеях, я, откровенно говоря, сомневаюсь, что в ближайшее время в этом плане что-то изменится, даже при усиливающемся переходе к светодиодной подсветке. ШИМ по-прежнему является надёжным способом управления интенсивностью подсветки и, следовательно, предлагает возможности регулирования яркости, необходимые каждому пользователю.
Тем, кто беспокоится о побочных эффектах или имеет проблемы с предыдущими дисплеями, следует попробовать определить частоту ШИМ в их новом дисплее и, возможно, даже попробовать найти экран, в котором ШИМ для управления яркостью подсветки не используется вообще. К сожалению, нам ещё предстоить увидеть, как производители станут указывать какие-либо технические характеристики, касающиеся использования ШИМ, или её частоту при определённых уровнях яркости, поэтому сейчас об этом судить трудно.
Установка максимальной яркости экрана является одним из возможных методов, помогающих уменьшить побочные эффекты благодаря меньшей скважности. Это решение, конечно, не идеально, поскольку многие дисплеи имеют очень высокий заводской или максимальный уровень яркости, но это хотя бы что-то , что может помочь. Управление яркостью на программном уровне или средствами драйвера видеокарты может помочь вернуть более комфортную яркость, но может привести к снижению контрастности.
Переведено и опубликовано с согласия автора исходной статьи — Саймона Бейкера (Simon Baker, TFT Central).
Что такое ШИМ и реально ли эта технология опасна для зрения?
Возможно, вы слышали о ШИМ в контексте новых моделей телевизоров или мобильных устройств. У нее много противоречивых отзывов — разбираемся, почему так.
Современные дисплеи с OLED и AMOLED матрицами становятся популярны во всех устройствах: телевизорах, мониторах, смартфонах. При всех их достоинствах, есть и недостаток, о котором часто не говорят продавцы: пульсация экрана.
Что такое ШИМ?
ШИМ — это широтно-импульсная модуляция, технология, используемая в таких устройствах как мониторы, ноутбуки, смартфоны с OLED и AMOLED матрицами. Аналоговые контроллеры регулируют непосредственно яркость свечения светодиодов в в диапазоне от 0 до 100%. В OLED и AMOLED матрицах применяют цифровые контроллеры, которые используют как раз ШИМ: они могут либо включать, либо выключать светодиоды.
Например, если 100% времени светодиод включен, то яркость будет максимальной, если 50% времени, то яркость снижается вдвое. Поскольку мигание происходит очень быстро, вы визуально этого не замечаете: глаза как раз и «усредняют» картинку.
Чем опасен ШИМ?
Подобная технология, использующая высокочастотное мерцание светодиодов, негативно влияет на зрение, поскольку создает дополнительную нагрузку для глаз. Хотя вы не замечаете мерцания, глаза их тем не менее улавливают. У некоторых пользователей индивидуальная реакция может быть крайне негативной: резь в глазах, головокружение, тошнота и так далее.
Почему технологию ШИМ продолжают использовать?
Дело в том, что цифровые контроллеры гораздо меньше по размеру, чем аналоговые. А, значит, устройство можно делать более тонким и легким. Таким образом, в погоне за элегантным дизайном и снижением веса устройства производители считают, что с недостатками технологии вполне можно мириться.
Если вы заметили, что ваши глаза сильно устают после долгой работы за ноутбуком, компьютером или даже мобильным устройством, попробуйте увеличить яркость экрана. Часто пользовали идут по прямо противоположному пути: снижают яркость, тем самым делая мерцание еще более заметным. ШИМ в значительной степени ощущается в темноте — в темное время суток не забывайте включать освещение или хотя бы фоновую подсветку в комнате. Тем более, что при высокой яркости пользоваться экраном без дополнительного освещения будет некомфортно.
Контролировать время проводимое за гаджетом полезно, прочитайте в нашем материале, как это сделать.
Что такое шим в телевизоре
ШИМ, все вокруг говорят про ШИМ. Ну фиг знает — я его не вижу. Что хотите сказать, если понижу яркость дисплея, это как-то будет меня утомлять? Кажется тут есть в чём разобраться!
Сегодня мы объясним как на самом деле работает ШИМ. Узнаем сколько FPS видит человек, а сколько муха. Проведём тесты ШИМ на осциллографе. И, конечно, расскажем как избавиться от ШИМа на Samsung и на iPhone.
OLED дисплеи фактически во всём превзошли IPS. Но некоторые люди просто физически не могут пользоваться OLED, ведь они чувствуют усталость глаз, сухость и даже головные боли.
Почему так? Дело в том, что в отличие от большинства IPS-экранов большинство OLED-матриц мерцают. Примерно как дешевые люминесцентные лампы. И это не очень хорошо сказывается на зрении.
Но стоп! Лично у меня нет никаких проблем с OLED-дисплеями, да и мои друзья ходят с OLED и не жалуются.
Действительно, по статистике большинство (примерно 90%) людей не ощущают мерцания OLED-дисплеев. Мы даже провели опрос: Устают ли у Вас глаза от OLED дисплеев? Устают ли у вас глаза от IPS дисплеев? И получили вот такие результаты: примерно четверть — 27% сообщила, что у них глаза устают. Меньшинство, но всё же — четверть!
Тем не менее есть люди, которые не просто чувствуют ШИМ, но даже отчетливо его видят. Как так получается?
ШИМ в кинопроекторах
Чтобы ответить на этот вопрос давайте поговорим про кино. В старых кинопроекторах, в которых еще были бобины с плёнкой, крутили кино со скоростью 24 кадра в секунду.
Так вот, для того чтобы при смене кадров изображение не смазывалось и вы не видели момент перемотки пленки, в этот момент поток света перекрывался. Это приводило к адскому мерцанию, так как изображение постоянно обрывал «черный кадр».
Так как ускорить процесс смены кадров не было технической возможности киноделы придумали другой хак. Они стали перекрывать изображение дважды: не только во время смены кадра, но и когда на экране отображался статический кадр. Ммм. И какой в этом смысл?
Такое чередование изображения и дополнительных “черных кадров” позволяло искусственно увеличить частоту мерцания до 48 раз в секунду. Чего было достаточно, чтобы обмануть мозг. Видя постоянно мелькающую картинку, мозг просто «отключает» восприятия мерцания и мы видим плавную картинку. Кстати в немом кино, где использовалась частота 16 К/с, вообще перекрывали 3 раза и получилось мерцание — 48 раз в секунду.
Сколько мы видим кадров?
Этот невероятный эффект человеческого зрения называется порогом слияния мерцаний и этот порог равен 60 Гц. Это значит, всё что мерцает чаще чем 60 раз в секунду человек будет воспринимать как непрерывное изображение.
Кстати, у собак и кошек этот порог выше — в районе 70-80 Гц, а у мух так вообще 250-300 Гц.
Что же это получается, игровые мониторы 144 Гц и выше — это всё маркетинг? Нет, 60 кадров в секунду — это минимальный порог, при котором человек перестает видеть мерцание.
А люди с натренированным зрением, например, пилоты истребителей на тестированиях различают кадры, появившиеся на 4 мс. Что соответствует 250 кадрам в секунду. К хардкорным геймерам это тоже относится.На самом деле есть исследования, где люди смогли различить и 480 к/с и даже больше в некоторых условиях.
Но в целом если верить ГОСТАм: Пульсация освещенности свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность. ГОСТ Р 54945-2012
Зачем нужен ШИМ?
Итак, со зрением разобрались. Но зачем вообще мерцают OLED-дисплеи и на какой частоте?
Сначала ответим на вопрос “Зачем?”
Существует два способа регулировки яркости дисплея:
Первый и самый очевидный способ, при помощи понижения напряжения. Чем меньше мы подаем энергии на дисплей, тем меньше он светится.
Именно так регулируется яркость в большинстве IPS-дисплеев в наших смартфонах, ноутбуках и мониторах.
Но почему бы на OLED-дисплеях не делать также? На самом деле можно, и так даже делали раньше. Например в смартфоне LG G Flex 2 использовался именно такой подход. Но есть проблема! На OLED-дисплеях при уменьшении напряжения сильно страдает картинка. Возникает так называемый мура-эффект, более известный как эффект “наждачной бумаги”. Мы подробно рассказывали об этом в материале про OLED.
Поэтому чтобы избежать такой деградации изображения используется второй подход: регулировка яркости при помощи мерцания или ШИМ. ШИМ — это широтно-импульсная модуляция, или PWM по-английски. Это буквально значит — регулировка ширины, ну или длительности, импульса.
Так, стоп, что еще за импульс? Дело в том, что напряжение в дисплеях, использующих ШИМ, не постоянное, а прерывистое. Оно подаётся при помощи вот таких всплесков или импульсов.
Количество импульсов в секунду называется частотой и измеряется в Гц. А время, которое занимает каждый цикл пульсации, называется периодом.
К примеру, возьмем частоту 250 Гц, в этом случае период будет 4 мс. Частота и период — это фиксированные значения, и с изменением яркости дисплея они не меняются. А вот ширина каждого импульса — это как раз то, что мы можем регулировать. Это значение называется рабочим циклом, и он выражается в процентах.
Если рабочий цикл 100%, импульс будет длиться 100% своего периода, то есть 4 мс. Это соответствует 100% яркости дисплея. Если мы сократим ширину импульса до 50% или 2 мс, воспринимаемая яркость дисплея также упадет до 50%. А на яркости 1% фактически 99% будет отображаться просто черный экран, но наше зрение это интерпретирует как просто очень тусклую картинку. Получается, чем меньше яркость дисплея, тем более выражен эффект мерцания. И тем это вреднее для глаз.
Частота ШИМ в разных дисплеях
На самом деле ШИМ используется не только в OLED-дисплеях, но и в IPS. Но в отличие от OLED в IPS-экранах используют очень высокую частоту мерцания, свыше 2000 Гц. Естественно, столь быстрое мерцание не сможет заметить ни человек, ни муха. А значит и глазки уставать не будут.
А какая частота ШИМ в OLED?
Тут всё зависит от конкретной модели, но есть определенные закономерности. Во-первых, желательно чтобы частота ШИМ была кратной частоте обновления дисплея. Потому на 60 Гц или 120 Гц дисплеях, как правило частота ШИМ — 240 Гц, а на 90 Гц дисплеях 360 Гц.
Мы решили убедиться в этом самостоятельно и отправились в Санкт-Петербург. Там ребята из компании ЛЛС подготовили для нас осциллограф с высокоскоростным фотодетектором.
Так мы проверили на ШИМ на iPhone 11 Pro и Pixel 4.
Тесты показали, что iPhone 11 Pro, вопреки общему мнению, немного мерцает даже на максимальной яркости, с частотой 240 Гц. При снижении яркости до 50%, мерцание становится менее выраженным, а значит до этого момента на iPhone используется уменьшение напряжения. Ну а дальше в бой вступает ШИМ. На осциллографе очень хорошо видно, как при снижении яркости уменьшается ширина импульса, а значит увеличивается мерцание.
В Pixel 4 вплоть до 70% яркости мы не обнаружили ШИМа совсем, видно только обновление экрана 90 Гц. А дальше начинается ШИМ с частотой 360 Гц. Но так как частота обновления экрана в Pixel 4 после 40% падает до 60 Гц, видно как каждый четвёртый импульс немного скачет. Это потому что частота обновления не совпадает с частотой модуляции.
- Galaxy S20 — 242.7 Гц
- Galaxy S20 Ultra — 240.4 Гц
- Google Pixel 2 — 245.1 Гц
- Google Pixel 2 XL — 242.7 Гц
- Google Pixel 3a — 271.1 Гц
- Google Pixel 3a XL — 242.7 Гц
- Google Pixel 4 — 367.6 Гц
- Google Pixel 4 XL — 367.6 Гц
- Huawei P30 — 240.4 Гц
- Huawei P30 Pro — 231.5 Гц
- Huawei P40 — 245 Гц
- Huawei P40 Pro — 365 Гц
- iPhone 11 Pro — 290.7 Гц
- iPhone 11 Pro Max — 245.1 Гц
- iPhone XS — 240.4 Гц
- iPhone XS Max — 240.4 Гц
- OnePlus 5T — 242.7 Гц
- OnePlus 6T — 240 Гц
- OnePlus 7 — 200 Гц
- OnePlus 7 Pro — 122 Гц
- OnePlus 7T Pro — 294 Гц
- OnePlus 8 Pro — 258 Гц
- Samsung Galaxy A50 — 119 Гц
- Samsung Galaxy A51 — 242.7 Гц
- Samsung Galaxy A71 — 247.5 Гц
- Samsung Galaxy S10e — 232 Гц
- Xiaomi Mi 10 — 362.3 Гц
- Xiaomi Mi 8 — 238 Гц
- Xiaomi Mi 8 Explorer Edition — 100 Гц
Samsung Galaxy A50:
На самом деле, частоту мерцания OLED-дисплеев можно увеличить, пусть не до 2000 Гц, но хотя бы до 500 Гц. Кстати, именно такая частота ШИМ была в древнем Windows Phone — Lumia 950. Но это удорожает производство, а так как страдающих людей мало, производители воровать у себя из кармана не готовы.
Кстати, практически все современные LCD-телевизоры тоже ШИМят на частоте 240 Гц. И в теликах этот эффект даже более заметен, чем в телефонах.
Разве что SONY не поскупились установить в свои LCD модели контроллеры управления яркостью либо совсем без мерцания, либо с мерцанием на частоте 720 Гц.
Как проверить ШИМ самому?
Но как проверить ШИМ на вашем телефоне, ноутбуке или телевизоре самостоятельно? Если у вас нет под рукой осциллографа с высокоскоростным кремниевым фотодетектором.
На самом деле очень просто! Вам нужно снять экран на видео в замедленной съемке 240 к/с или больше. Сейчас почти любой телефон так может. Если на всех значениях яркости вы не увидите мерцания в виде перемещающихся полос. Значит ШИМа нет.
Что такое DC Dimming?
Тем не менее проблема есть и первой её осознал Xiaomi, представив функцию DC Dimming в Black Shark 2 Pro. Эта тема настолько хорошо зашла, что очень быстро подсуетились OnePlus, OPPO и Huawei. И начиная с прошлого года во всех флагманах точно есть DC Dimming.
Само название расшифровывается как Direct Current Dimming, что переводится как затемнение постоянным током. Иными словами в этом случае яркость регулируется как и положено снижением напряжения.
СТОП! Но также нельзя! Картинка же убьется! На самое деле, так нельзя было делать раньше, потому как качество OLED-дисплеев оставляло желать лучшего. Но теперь всё иначе.
Уже давно многие производители стали использовать гибридный способ регулировки яркости. Например на iPhone до 50% яркости используется снижение напряжения, и только потом включается ШИМ. А телефоны с функцией DC Dimming пошли дальше и стали регулировать яркость исключительно снижением напряжения.
Да, включив DC Dimming на низких яркостях могут немного поплыть цвета и появиться шум. Но это совсем не критично.
И тесты показывают, что функция реально работает. Хотя колебания яркости и не сглаживаются полностью, всё равно такой подход позволяет многократно снизить нагрузку на наши с вами глаза.
По нашим замерам на Xiaomi Mi 10 ШИМ с включенным DC Dimming исчезает полностью! А значит ваши глазки смогут отдохнуть.
Убираем ШИМ для всех
Но что делать, если вам DC Dimming не завезли? Например у вас Samsung, который ШИМит даже на 100% яркости, или iPhone который начинает ШИМить на 50%?
На самом деле решение есть и оно программное. Имя ему экранные фильтры!
Android. Например, на любой Android можно поставить программу OLED Saver. Она умеет накладывать полупрозрачный серый фильтр поверх всего изображения. Регулируя прозрачность фильтра, регулируется яркость. Это программа умеет имитировать функцию автояркости. Можно довольно быстро из шторки регулировать прозрачность фильтра и настроить автозапуск после перезагрузки.
Не могу сказать что это очень удобно. Но может быть очень полезно, если любите позалипать в телефон перед сном в темноте.
iPhone. А на iPhone вообще есть специальный режим встроенный в систему. Он называется “понижение точки белого” и прячется в разделе “Универсальный Доступ”. Путь такой: Настройки > Универсальный доступ > Дисплей и размер текста > Понижение точки белого
А чтобы постоянно не лезть в настройки можно назначить включение режима на тройное нажатие кнопки питания с помощью такого пути: Настройки > Универсальный доступ > Быстрая команда.
В iOS 14 можно даже назначить тоже самое на постукивание по задней крышке. Но я бы не рекомендовал так делать, будут ложные срабатывания.
Ну и напоследок можно вынести ярлык с этой функцией в пункт управления. Для этого идём в Настройки > Пункт управления и перетаскиваем иконку “Команды для универсального доступа”.
Итоги
Что в итоге? ШИМ, конечно, зло. Хоть я его и не вижу, и мои глаза не устают, эта штука всё равно напрягает мозг. А с возрастом может появиться и усталость глаз.
С другой стороны, благодаря ШИМ вообще стал возможен прогресс в развитии технологии OLED. Если б его не было сидели бы мы на IPS и о всех прелестях классных OLED-дисплеев даже бы и не знали.
Очень надеемся, что DC Dimming станет стандартом и мы забудем о ШИМ в смартфонах и телевизорах точно также, как забыли о нём в настольных мониторах с появлением Flicker Free мониторов от BenQ. Это, кстати, та же самая технология что и DC Dimming.
В основу ролика легла статья с портала deep-review.com и материал Олега Афонина для журнала Хакер. Ребята проделали отличную работу, а мы продолжаем их дело.
Спасибо компании ЛЛС за оборудование и теплый приём в Питере! Очень приятно вместе с вами делать крутой науч-поп контент. На этом сегодня всё!
Большой тест ЖК-телевизоров: ищем модель без пульсации
Все современные телевизоры с ЖК-экранами используют светодиодную подсветку – лампы остались в прошлом. Когда яркость подсветки установлена на 100%, пульсация обычно отсутствует – светодиоды питаются от постоянного напряжения. Но стопроцентная подсветка хороша лишь в магазине – дома такая яркость оказывается избыточной, ее приходится уменьшать.
Для регулировки яркости подсветки почти всегда используется широтно-импульсная модуляция (ШИМ) – светодиоды включаются и выключаются с частотой от ста до нескольких тысяч раз в секунду. Соотношение времени, когда светодиоды горят (длина импульса включения), и времени, когда они выключены (длина паузы между импульсами), определяет среднюю яркость.
Когда частота импульсов небольшая (100 или 120 герц), пульсацию света можно заметить боковым зрением или при быстром переводе взгляда с одной точки на другую. Считается, что пульсация с частотой до 300 Гц вызывает усталость глаз и мозга и может приводить к головным болям и обострению нервных заболеваний. Кроме того, есть мнение, что снижение яркости с помощью ШИМ вызывает раздражение сетчатки глаза из-за того, что зрачок расширяется, ориентируясь на средний уровень освещения, а сетчатка получает «удары» импульсами света максимальной яркости.
Вооружившись камерой Nikon 1 V1, снимающей видео со скоростью 1200 кадров в секунду, я отправился в магазины электроники и проверил, как работает подсветка матрицы у 42 моделей телевизоров шести производителей.
На витринах магазинов все телевизоры всегда работают со стопроцентной яркостью подсветки, поэтому перед измерениями я снижал яркость подсветки у каждого телевизора до 30-50%.
Начну с хорошего – у всех протестированных телевизоров Sony пульсации подсветки не обнаружено. Скорее всего, там используется очень высокая частота ШИМ (десятки тысяч переключений в секунду). Я проверил следующие модели:
- Sony KDL-32RE303,
- Sony KDL-32RE403,
- Sony KDL-32WD752,
- Sony KDL-32WD756,
- Sony KDL-40WE633,
- Sony KDL-43WF665,
- Sony KDL-43WE755,
- Sony KDL-43WF804,
- Sony KDL-43XF8096.
На видео, замедленном в 40 раз, экраны телевизоров LG 32LH570U (слева) и Sony KDL-32RE303 (справа) с подсветкой 30% выглядят так:
Пульсации не было также у китайских телевизоров Haier, но причина этого весьма банальна: у них просто нет регулировки яркости подсветки – она всегда горит на полную мощность. Я протестировал две модели:
- Haier LE32B8500T,
- Haier LE39B8550T.
Телевизоры Panasonic теперь сложно встретить в магазинах, но две 32-дюймовые модели мне все же удалось обнаружить. Причем они оказались совершенно разными. У дешевого Panasonic TX-32DR300 подсветка мигает с троекратной частотой сигнала (150/180 Гц), у более дорогого Panasonic TX-32ESR50 пульсация подсветки полностью отсутствует.
Пульсация подсветки телевизоров Samsung зависит от модели. У относительно дешевых телевизоров, в том числе в младших моделях шестой серии, наблюдается стопроцентная пульсация на частоте 100/120 Гц (частота пульсации подсветки вдвое больше частоты входного сигнала). В центре замедленного в 40 раз видео Samsung UE43NU7140U:
Такая пульсация обнаружена у следующих моделей телевизоров:
- Samsung UE32J4710,
- Samsung UE43J5202,
- Samsung UE43M5513,
- Samsung UE43NU7140,
- Samsung UE43NU7170,
- Samsung UE49M5500.
Модели шестой серии Samsung 2017 года ведут себя совсем по-другому. У них отсутствует пульсация при снижении яркости подсветки до определенного уровня (предположительно, регулируется ток, идущий через светодиоды), а при дальнейшем снижении уровня подсветки включается ШИМ. У младших моделей (MU61**) пульсации нет при уровнях подсветки 13-20, а при уровнях 0-12 частота ШИМ составляет 100/120 Гц. У старших моделей (MU64**, MU65**) пульсации нет при уровнях подсветки 10-20, а при уровнях 0-9 частота ШИМ 200/240 Гц.
Samsung 49MU6650U, яркость подсветки 50% (10 из 20 по шкале настройки):
Тот же телевизор при яркости подсветки 25% (5 из 20 по шкале настройки):
Я протестировал следующие модели:
- Samsung UE40MU6100,
- Samsung UE40MU6400,
- Samsung UE40MU6470,
- Samsung UE55MU6470,
- Samsung UE49MU6650.
Эти телевизоры вполне можно отнести к категории flicker free, так как снижения уровня подсветки до 50-65% по большей части вполне достаточно – а в этом случае пульсация отсутствует.
У QLED-телевизора Samsung QE49Q7 по экрану 100 или 120 раз в секунду пробегает темная полоса, ширина которой тем больше, чем меньше установлена яркость подсветки:
Гораздо лучше это видно, если замедлить видео не в 40, а в 120 раз:
Это гораздо более щадящая для глаз пульсация, чем полное выключение и включение подсветки.
Больше всего меня удивил телевизор восьмой серии Samsung UE55NU8000U. Смотрите сами (замедление в 120 раз):
С частотой 180 Гц подсветка меняется на красную. Судя по всему, для подсветки в этом телевизоре применяются RGB-светодиоды.
У всех протестированных мной ЖК-телевизоров LG нижнего и среднего ценового диапазона при снижении яркости подсветка пульсирует с частотой 100/120 Гц. Вот, к примеру, LG 32LJ610V:
Такая работа подсветки зафиксирована у следующих моделей:
- LG 32LJ500,
- LG 32LJ510,
- LG 32LH570,
- LG 32LJ600,
- LG 32LJ610,
- LG 32LK6190,
- LG 43UK6750,
- LG 49UJ634.
Совсем по-другому работает подсветка у старших моделей LG. От центра экрана в стороны расходятся темные полосы. Вот как это выглядит у LG 49SJ810 при 40-кратном замедлении:
Весь цикл повторяется 100/120 раз в секунду. При 120-кратном замедлении можно увидеть, что подсветка разбита на шесть зон, погасающих парами.
Такая работа подсветки зафиксирована у следующих моделей:
- LG 43UJ750,
- LG 49UJ740,
- LG 49SJ810.
Недавно в России появились телевизоры китайского бренда Hisense. У дешевых моделей подсветка мигает с троекратной частотой сигнала (150/180 Гц).
Среди протестированных мной так работают следующие модели:
- Hisense H32A5600,
- Hisense H43A6100,
- Hisense H50A6100.
На видео, замедленном в 48 раз, видно, как быстро мигает Hisense H50A6100, слева от него бегают полосы на дорогом LG, справа на Samsung QLED.
У более дорогих моделей Hisense частота ШИМ еще выше. При 40-кратном замедлении пульсация Hisense H55N6800 выглядит как быстрое мельтешение:
При 120-кратном замедлении видно, что так же, как в Samsung восьмой серии, используется изменение цвета подсветки. Частота, скорее всего, 500/600 Гц, но для точного анализа скорости съемки 1200 fps уже не хватает.
Так работает подсветка у двух протестированных телевизоров:
- Hisense H43A6500,
- Hisense H55N6800.
Помимо множества ЖК-телевизоров, я для сравнения протестировал OLED-телевизор LG 55EG9A7V. В отличие от ЖК-телевизоров, здесь подсветки нет – светятся сами пиксели матрицы. Видимой пульсации тоже нет. На скоростной съемке (замедление в 40 раз) видно лишь пробегающую 100/120 раз в секунду узкую горизонтальную полосу, которая чуть бледнее остального изображения.
Все протестированные телевизоры:
Я не знаю, почему производители большинства телевизоров используют ШИМ, работающую с частотой 100/120 Гц. На первый взгляд, ничто не мешает увеличить эту частоту в десять или даже в сто раз. Возможно, через несколько лет так и произойдет, после чего нам начнут рассказывать про «революционную технологию» Flicker Free.
Вы сами можете проверить наличие видимой пульсации экрана телевизора без специального оборудования. Уменьшите уровень подсветки до минимального (именно уровень подсветки, не яркость!). Покрутите карандашом перед экраном (см. карандашный тест). Если стробоскопического эффекта нет и вы видите размытое изображение карандаша, видимой пульсации нет (или ее нет совсем, или частота ШИМ выше 300 Гц). Если вы видите стробоскопический эффект – карандаш «распадается» на много карандашей – пульсация есть.
Способ избавиться от пульсации экрана ЖК-телевизора без его переделки только один – отключить все экорежимы, установить уровень подсветки на 100% и снизить яркость для достижения комфортной картинки. Черный цвет при этом, скорее всего, станет серым и картинка будет более блеклой, но глаза без пульсации будут уставать меньше.
Пульсация экранов телевизоров
У подавляющего большинства современных телевизоров экраны мерцают, причём уровень пульсации составляет 100% (экран полностью гаснет и загорается). Это может приводить к усталости глаз, головным болям и обострению нервных заболеваний.
Если Вы посмотрите через камеру телефона на ряды телевизоров в магазине, скорее всего их экраны будут гореть ровно и никакой пульсации в виде бегущих по экрану полос видно не будет. Дело в том, что в магазинах интенсивность подсветки всех телевизоров всегда ставят на 100%. Дома это оказывается слишком ярко и интенсивность подсветки приходится снижать. И тут появляется пульсация.
На видео, замедленном в 60 раз (съёмка 1200 fps) экраны телевизоров LG 32LH570U (слева) и Sony KDL-32RE303 (справа) с подсветкой 30% выглядят так:
C помощью прибора Uprtek MK350D я измерил уровень пульсации экранов девятнадцати телевизоров в трёх магазинах. При измерении уровень подсветки устанавливался на 50% и на экран выводилось белое поле.
Результаты замеров неутешительны. 100-процентная пульсация подсветки обнаружена у следующих телевизоров:
У телевизора Hisense H32A5600 прибор показал уровень пульсации 36%, у телевизора LG 49SJ810U — 89%.
У всех протестированных телевизоров Sony пульсация оказалась меньше 5%:
Sony 32RE303 — 1.6%
Sony 32RE403B — 1.3%
Sony 32WD752S — 1.1%
Sony 32WD756BR — 1%
К моему удивлению, пульсация полностью отсутствовала у дешёвых китайских телевизоров Haier LE32B8500T и Haier LE39B8550T, но оказалось, что у них просто физически нет регулировки яркости подсветки, которая всегда горит на полную мощность.
Откуда же берётся пульсация? Источником света в ЖК-экранах современных телевизоров являются белые светодиоды. Когда яркость подсветки установлена на 100% и отключены эко-режимы, светодиоды питаются от постоянного напряжения и пульсация отсутствует. Регулировка яркости делается с помощью ШИМ (широтно-импульсной модуляции) — обычно светодиоды включаются и выключаются 100 раз в секунду. Когда 50% времени они горят, а 50% времени выключены, получается яркость 50%. Если горят одну десятую часть общего времени, получается 10%.
Важно понимать, что частота ШИМ не имеет ничего общего с частотой обновления экрана телевизора, которую часто указывают в характеристиках. Тип матрицы и расположение светодиодов также никак не связаны с пульсацией подсветки.
Чем выше частота ШИМ, тем менее заметна пульсация, но учёные считают, что на мозг влияют даже высокочастотные пульсации, которые не заметны визуально.
Из всех протестированных телевизоров обнаружился один — Hisense H32A5600, у которого частота ШИМ 200 Гц, а не 100. На замедленном видео отлично видно разницу.
Именно поэтому прибор, рассчитанный на пульсацию с частотой 100 Гц, показал 36%. На самом деле уровень пульсации у Hisense H32A5600 составляет те же 100% (экран полностью гаснет).
Очень интересное явление обнаружилось при тестировании довольно дорогого телевизора LG 49SJ810U, у которого прибор показал уровень пульсации 89%. По экрану с периодичностью 100 Гц идут волны затемнения. Судя по всему, это сделано для улучшения плавности движения.
Видно, как по экрану этого телевизора бегут тёмные волны, а телевизор рядом просто мигает ШИМ.
На самом деле нет никаких технических проблем в том, чтобы регулировать яркость светодиодов без ШИМ, просто меняя ток их питания. Судя по всему, в SONY сделано именно так. Увы, производители остальных телевизоров почему-то продолжают использовать ШИМ.
Кстати, на Youtube даже есть видео, где радиолюбитель объясняет, как переделать блок управления подсветкой телевизора, чтобы избавиться от пульсаций.
Проверить наличие видимой пульсации экрана телевизора очень просто. Уменьшите уровень подсветки до минимального (именно уровень подсветки, не яркость!). Покрутите карандашом перед экраном (см. карандашный тест: http://lamptest.ru/page/penciltest/ ). Если стробоскопического эффекта нет и вы видите размытое изображение карандаша, видимой пульсации нет (или её нет совсем или частота ШИМ выше 300 Гц). Если вы видите стробоскопичекий эффект — карандаш «распадается» на много карандашей, увы пульсация в наличии.
Способ избавиться от пульсации экрана ЖК-телевизора без его переделки только один — отключить все эко-режимы, установить уровень подсветки на 100% и снизить яркость для достижения комфортной картинки. Чёрный цвет при этом скорее всего станет серым и картинка будет более блёклой, зато не будет пульсации и глаза будут уставать меньше.
(c) 2018, Алексей Надёжин
Вот только при яркости 100% диодная подсветка сгорит немного позже истечения гарантийного срока. При 70% диодов хватит на весь срок службы ТВ. На этой ерунде замечены LG и Samsung, в инете полно информации на этот счёт.
Народный измеритель пульсации света
Пульсация — главный параметр света, влияющий на здоровье, но, увы, доступных приборов для измерения коэффициента пульсации нет в продаже. Я решил исправить эту ситуацию и разработать недорогой прибор.
Пульсация света неприятна визуально, от неё устают глаза, она может вызывать головные боли и обострение нервных заболеваний. Считается, что пульсация до 5% совершенно безвредна. Пульсация до 30% почти незаметна и скорее всего не оказывает негативное влияние на человека.
Многие используют камеру смартфона для определения пульсации (если пульсация есть, на экране появляются полосы), но этот метод не позволяет оценить уровень пульсации и часто люди, увидев полосы, решают, что такой источник света опасен, а на самом деле у него может быть пульсация менее 5%.
Чуть лучше карандашный тест — он позволяет зафиксировать только видимую пульсацию.
В двух словах о том, что вообще такое пульсация. Пульсация это частое изменение яркости света, в худшем случае свет может полностью гаснуть и загораться 100 раз в секунду. Пульсация может быть вызвана упрощённой схемой питания светодиодов от сети или использованием широтно-импульсной модуляции (ШИМ) для регулировки яркости света.
Существует две формулы расчета коэффициента пульсации. Первую формулу часто называют упрощённой.
Коэффициент пульсации, рассчитанный по этой формуле, может принимать значения от 0 до 100%. 0 — пульсации нет, 100% — свет полностью гаснет и загорается.
Вторую формулу часто называют ГОСТ, так как она приведена в ГОСТ Р 54945-2012.
Формула выглядит страшно, но на самом деле всё проще:
Коэффициент пульсации, рассчитанный по этой формуле, может принимать значения выше 100%. Это происходит в том случае, когда свет не только полностью гаснет, но и время темноты дольше времени света.
Разные приборы, измеряющие коэффициент пульсации, рассчитывают его по разным формулам. Люксметр-пульсметр-яркомер «Люпин» использует формулу ГОСТ, спектрометр UPRtek MK350D использует упрощённую формулу. В проекте Lamptest я измеряю пульсацию с помощью прибора UPRtek MK350D, поэтому значения коэффициента пульсации у ламп не превышают 100%. Я перешёл на упрощённую формулу по двум причинам: многих удивляла пульсация больше 100% и они думали, что с измерениями что-то не так, кроме того по большому счёту совершенно не важно, пульсация 90, 100 или 146%. Во всех этих случаях свет плохой и его использовать нельзя.
Считается, что пульсация с частотой более 300 Гц никак не влияет на человека и во многих приборах есть фильтрация, исключающая фиксацию пульсации с более высокой частотой.
Возможности
Народный измеритель пульсации отображает на экране сразу два коэффициента пульсации: Kp1 — формула ГОСТ, Kp2 — упрощённая формула.
В нижней части экрана отображается осциллограмма яркости во всём диапазоне, в верхней части — увеличенная осциллограмма только самой пульсации (если она есть).
Значение минимума яркости для верхней осциллограммы отображается под ней справа.
Под верхней осциллограммой отображается цветная полоса. Когда она зелёная, пульсации низкие и свет безопасен, желтый цвет говорит о небольшой пульсации, незаметной визуально. Оранжевый цвет — пульсация, заметная визуально. Красный цвет — сильная видимая пульсация.
Дополнительно отображаются три параметра:
Emax — текущая максимальная яркость света в условных единицах;
Emin — текущая минимальная яркость;
Eenv — Уровень фоновой засветки и шума АЦП.
На нижней осциллограмме есть синяя горизонтальная линия, соответствующая Eenv.
Красными точками показывается контур осциллограммы со сглаживанием (программной фильтрацией).
Уровень фоновой засветки измеряется при включении прибора, когда на экране выводится сообщение «Auto calibration». Для повторной калибровки нужно просто выключить и включить прибор. Самые точные измерения получаются при измерении в полной темноте, но и при обычном освещении результаты достаточно точны.
Прибор работает в диапазоне освещенности
100-2000 лк. Если света недостаточно для точного измерения, выводится сообщение «Low Light», если свет слишком яркий, выводится «Over Light».
При измерении располагайте прибор на таком расстоянии от источника света, чтобы ни одного из этих сообщений не было на экране. Лучше, чтобы значение Emax при этом было больше 500.
На экране отображаются осциллограммы за 40 мс. У большинства ламп пульсация имеет частоту 100 Гц, при этом на экране видны четыре волны. Если пульсация имеет более высокую частоту, количество волн на экране будет больше. Максимальная частота, которую «видит» прибор —
800 Гц. Какой-либо фильтрации по частоте пульсации в приборе нет.
Комплектующие
Все основные комплектующие можно купить на Aliexpress у одного продавца. Нам понадобится:
1. Датчик света TEMT6000.
2. Микроконтроллер NodeMCU (выбираем второй вариант Nodemcu-CH340).
3. Экран TFT 1.77″. Можно взять TFT 1.8″ (сам экран там точно такой же, в том числе по размеру, отличие в слоте для SD-карты сзади и в том, что у 1.8 выводы под экраном, а у 1.77 над экраном). 1.77″ лучше тем, что модуль тоньше из-за отсутствия слота под SD.
4. Провода с разъёмами Dupont (выбираем первый вариант 10C Female TO Female). Разумеется, можно не использовать провода с разъёмами, а просто всё спаять обычными проводами. Паять в любом случае придётся — датчик света приходит с неприпаянным разъёмом, лежащим отдельно в пакетике).
На последнем этапе перед оплатой поменяйте у всех позиций способ доставки на «Aliexpress Saver Shipping», тогда общая стоимость доставки уменьшится.
Остаётся выключатель, корпус, разъём для батарейки Крона и сама батарейка.
Выключатель можно использовать любой, такие, как на фото, я заказывал здесь.
Разъём для батарейки Крона выдирается из старой батарейки такого типа. Батарейку можно использовать как щелочную (Alkaline), так и солевую (её хватит на два часа непрерывной работы). Кстати, если места в корпусе совсем не хватает, можно разобрать щелочную батарейку Крона, вынуть из неё шесть соединённых последовательно батареек AAAA и расположить их в корпусе, как удобно.
Для того, чтобы не вырезать окошко под экран, лучше использовать корпус из прозрачного пластика. Я использовал в качестве корпуса «Органайзер для мелочей «Каждый день» 125х75х30 мм», купленный в Ашане за 30 рублей. Подойдут также коробки от детских ушных палочек, от зубочисток-скобок. Можно использовать и губки для обуви с прозрачной половиной, но у них очень тонкий пластик, который легко трескается.
Прошивку для прибора совершенно бескорыстно создал Станислав Грицинов, за что ему огромное спасибо!
Скачайте архив https://ammo1.ru/aa/pic22a/Lamptest_Flicker.rar и распакуйте его в любую папку. В архиве два файла — прошивка и программа ESP8266Flasher.
Подключите плату NodeMCU к компьютеру (датчик и экран подключать к плате необязательно). Если требуется, установите драйвер CH340. На компьютере должен появится новый COM-порт.
Запустите ESP8266Flasher, выберите появившийся COM-порт, нажмите Config, нажмите верхнюю шестерёнку, выберите файл прошивки (LAMP_PULSE_TEMT6000_15_2_ST7735_4_1_ESP_18_filter_1.ino.nodemcu.bin), нажмите Operation, нажмите Flash. Начнётся процесс прошивки, который займёт около 30 секунд. Когда внизу появится зелёная галочка, плату можно отключать.
Для тех, кому удобней прошивать прибор через Arduino IDE и тех, кто хочет изучить, как работает программа и, возможно, улучшить её, публикую скетч: https://ammo1.ru/aa/pic22a/LAMP_PULSE_TEMT6000_15_2_ST7735_4_1_ESP_18_filter_1.ino.
VCC (V) — 3V (любой контакт из трех)
GND (G) — G (лучше тот, что рядом с A0)
+ — VIN (через выключатель)
— — G (лучше тот, что рядом с VIN)
5 RES — 3V (можно подключить к D6)
RESET — 3V (можно подключить к D6)
Экран приклеивается изнутри к прозрачному корпусу термоклеем. Важно не перепутать верх и низ (у 1.77″ контакты сверху, у 1.8″ снизу). Датчик приклеивается тем же термоклеем к торцу корпуса.
Лучше сначала всё собрать и запустить, а потому уже размещать в корпусе.
Самый простой вариант — питание от батарейки «Крона»;. Можно вообще обойтись без встроенного питания и подключать прибор через разъём MicroUSB к любому источнику питания с выходом USB или пауэрбанку. Можно использовать одну или две батарейки AA/AA и повышающий преобразователь. Делать питание от аккумулятора смысла нет, ведь прибор вряд ли будет использоваться очень часто.
Не обязательно использовать именно TEMT6000. В продаже есть датчики OPT101, у которых можно менять чувствительность изменением номинала шунтирующего резистора. В качестве датчика можно даже использовать маленькие солнечные батареи от игрушек (точность измерения будет ниже, но отсутствие пульсации и пульсацию под 100% будет отлично видно).
Характеристика датчика TEMT6000 не совсем линейна. Я даже думал делать таблицу коэффициентов пересчёта, но оказалось, что показания прибора и так достаточно точны (по большому счёту не очень важно пульсация 30% или 35%, главное, что видно, когда пульсация менее 1% и более 90%).
Я планировал сделать красивый интерфейс с крупными цифрами значений пульсации. Был нарисован вот такой макет.
К сожалению из-за текущих событий Станислав пока оказался вдали от «железок» и неизвестно, когда он сможет и сможет ли вернуться к разработке. Если кто-то из вас возьмётся доделать интерфейс, будет очень здорово. Возможно я и сам этим займусь, когда переделаю все накопившиеся дела.
Можно ли купить готовый прибор
У меня нет цели зарабатывать на приборе. Я придумал этот проект для общественной пользы. Сейчас прибор существует в двух экземплярах (один в корпусе, второй просто в виде макетной сборки). Есть человек, который готов их собирать. Какую цену вы готовы заплатить за прибор в таком же корпусе, как на заглавном фото?
Если появятся люди или компании, которые захотят выпускать прибор, я не против. Если они сочтут нужным отчислять процент на развитие Lamptest будет хорошо, но я ничего не требую.
Я знаю, что многие купили комплектующие, соберут и запустят прибор в эти выходные. Я прошу вас сфотографировать ваши приборы и опубликовать фото здесь в комментариях или в Телеграм @ammochat. Мне будет очень приятно и я буду знать, что всё это не зря.
© 2022, Алексей Надёжин
Ипохондрик
Когда все местные дети играли в казаков-разбойников, хали-хало, Джимми и царя горы, Вася играл в диету. Нет, Вася не был полным ребёнком и не был больным. Папа не пил, а маму уважал, да и денег у родителей было достаточно, чтобы Вася мог хоть каждый день есть блины с мясом и пить газировку вместо чая, но мальчуган не ел и не пил.
В то время, как его сверстников заставляли жевать гречневую кашу через угрозы и мольбы, Вася уже умел эту самую гречку проращивать. Мальчишку этого боялись все местные и те, кому местные про Васю рассказывали. Дело в том, что парень сам вёл мать в больницу, чтобы ему там поставили все необходимые уколы и даже больше — на случай, если родителям вдруг кольнёт поехать в тропики или в китайскую провинцию.
В десять лет Васю исследовало больше десяти врачей и по итогу диспансеризации парню был поставлен диагноз – ипохондрия в средней форме.
Ему бы поставили и тяжелую форму, но врача-сомнолога ещё не было в их городке, его только собирались направить туда и его прибытие ожидалось через три года, когда для поликлиники построят новое крыло. Вася сильно расстроился, потому что проблемы со сном у него точно были, а терапевт и детский психолог, по его мнению, слишком некомпетентны в таких узких вопросах.
Друзей у Васи не было. Вечно сопливые пацаны и перемазанные зелёнкой девчонки пугали Васю больше, чем фильмы по романам Стивена Кинга.
Родители били тревогу. Их сын был умным и здоровым ребёнком, но его помешательство на собственном здоровье сводило всех с ума. Отец бросил курить, потому что Вася не пускал его домой пока от того пахнет табаком, угрожая родителю, что сдаст маме все папкины заначки. Маму Вася доводил до слёз, когда пугал её разными болезнями, если та не сходит на флюорографию или не будет раз в два месяца сдавать весь перечень анализов и есть овощи вместо яичницы и жареной колбасы.
Психолог, которого Вася не любил, но уважал, посоветовал искать корень проблемы вне дома. Но мальчик вне дома бывал только в случае острой необходимости, и когда в город приезжали со своими лекциями новые врачи с узкими специальностями. Для Васи эти люди были круче, чем герои Marvel и DC, вместе взятые. Он свято верил, что случись на земле межгалактическое вторжение, от смерти его сможет спасти не какой-то там супер-герой в пёстром трико, а нефролог — врач, специализирующийся на лечении болезней почек.
Всё встало на свои места, когда Васю в очередной раз забирали от бабушки, что жила в соседнем городе. Женщина эта была ходячей энциклопедией, которая годами записывала и запоминала все выпуски медицинских телепередач. В своё время она даже заряжала воду вместе с Кашпировским, а уже много позже появились такие гиганты медицины как Малышева и доктор Мясников.
Бабушка вела конспекты, составляла списки и состояла более чем в ста группах о здоровье и медицине на сайте «одноклассники». Женщина несколько раз пыталась привлечь дочь к своим увлечениям, но та даже не слушала, называя телевизор зомбоящиком. Другое дело — Васька. Девственный сосуд, который можно наполнять любой информацией, а уж такие авторитетные люди как родная бабушка, точно будут иметь популярность и уважение в мире детского восприятия.
Было принято решение сократить встречи родственников либо проводить их только в сопровождении всей семьи, чтобы, не дай Бог, разговор не зашёл в левое русло.
Постепенно Вася стал забываться. По первой масло сливочное в кашу стал добавлять, затем — варенье, а после и вовсе котлет попросил. Зимой, когда наступал пик заболеваемости среди населения, папа вывез Ваську на горку, естественно, соврав, что они едут на приём к гастроэнтерологу.
— Один раз прокатишься и поедем к любому врачу, обещаю! — уговаривал он сына и тряс ватрушкой.
— А к мануальному терапевту сводишь? — с надеждой в глазах спрашивал Васька.
Отец закатил глаза, но согласился.
Васька спустился с горки. А потом ещё раз и ещё двадцать пять раз. Вечером, набрав полные штаны и ботинки снега, он вдруг вспомнил, что им нужно к врачу, но отец сказал, что поликлиника уже закрыта и ехать придётся завтра. Васька не расстроился и попросил завтра проехать снова через горку: кататься не обязательно, можно просто посмотреть, как другие это делают.
Горкотерапия длилась неделю. Потом Ваське подарили коньки и он впервые понял, как иногда бывает весело столкнуться с кем-то лбом или шлёпнуться на задницу.
А потом Васька заболел. Горло красное, сопли зелёные — и тут родители пригорюнились. Вот, кажется, и всё. Сейчас он им устроит заседание суда с выявлением всех причинно-следственных и вынесением приговора.
Но Васька молчал. Он переписывался со своими новыми друзьями, с которыми познакомился на катке. Те его подначивали и шутили, что Вася — слабак и нюня, а тот, в свою очередь, заявлял, что слабаки с температурой в кровати лежат и над картошкой дышат, а он уже всю комнату убрал и даже сходил коньки наточил, хоть родители были и против. За два дня до получения больничного листа Вася уже покорил самую большую горку в городе, а ездил он туда с бабушкой, которая впервые нажарила блинов с мясом.
Что такое ШИМ и реально ли эта технология опасна для зрения?
Все привыкли к мысли, что мерцают только старые большие мониторы на основе электронно-лучевой трубки (ЭЛТ), но на самом деле, для глаз гораздо более вредно мерцание современных ЖК и OLED-дисплеев!
Да, вам не показалось, большинство современных дисплеев мерцают и это мерцание обычно проявляется при понижении яркости.
Посмотрите на эту анимацию, левый символ яркости неприятно мерцает при уровне 50%
Анимация, показывающая работу ШИМ
И такое можно наблюдать не только на мониторах настольных компьютеров, то же самое происходит и со многими ноутбуками, смартфонами и планшетами.
Управление многоуровневыми синусоидальными ШИМ (СШИМ)[править | править код]
Напряжение на участке инвертора.(а) Выходное напряжение с применением СШИМ. (b) Выходное напряжение с добавлением синусоидальной третьей гармоники.
Несколько методов были разработаны для сокращения искажения в многоуровневых инверторах, на основе классического СШИМ с треугольным носителем. Некоторые методы используют расположение источника, другие используют сдвиг фазы из нескольких несущих сигналов . Рисунок справа показывает типичное напряжение, сгенерированное одной секцией инвертора путем сравнения синусоидального сигнала с треугольным несущим сигналом.
Множество Nc-каскадов в одной фазе с их источниками, смещенными на угол θс = 360°/Nc и использующими то же управляющее напряжение, производят напряжение нагрузки с самым маленьким искажением. Этот результат был получен для многоэлементного инвертора в семи-уравневой конфигурацией, которая использует три подключенных последовательно сегмента в каждой фазе. Самое маленькое искажение получено, когда источник смещен на угол в θс = 360°/3 = 120 °.
Советуем изучить — Что такое прозвонка и как правильно прозванивать провода, кабели и различное электрооборудование
Довольно обыденной практикой в промышленном применении для многоуровневого инвертора является вставка третьей гармоники в каждый сегмент, как показано на Рисунок справа(b), для увеличения выходного напряжения. Еще одна положительная сторона многоуровневого СШИМ -эффективная частота переключения напряжения нагрузки в Nc-количество раз, и частота переключения каждого сегмента, в зависимости от ее несущего сигнала. Это свойство позволяет сокращать частоты переключения каждого сегмента, таким образом уменьшая потери на переключении.
Метод опорных векторов (MOB)править | править код
Пространственно-векторная диаграмма :(а) для двух-уровневого ,(b) трех-уровневого, и (c) пяти-уровневого инвертора.
Техника МОВ может быть легко применима для всех многоуровневых инверторов. Рисунок справа показывает векторы пространства для традиционных двух-, трёх- и пятиуровневых инверторов. Эти векторные диаграммы универсальны независимо от типа многоуровневого инвертора. Другими словами, рисунок справа действителен для пятиуровневого зафиксированного на диод, зафиксированного на конденсатор, или расположенного каскадом инвертора. Смежные три вектора могут синтезировать желаемый вектор напряжения путем вычисления рабочего цикла (Tj, Tj+1, и Tj+2) для каждого вектора.
Пространственно-векторные методы ШИМ обычно имеют следующие преимущества: хорошее использование напряжения источника постоянного тока, низкая пульсация и относительно легкая аппаратная реализация цифровым сигнальным процессором (DSP). Эти функции делают его подходящим для высоковольтных и мощных потребителей.
С увеличением количества уровней, существенно увеличиваются перегрузки и сложность переключения . Некоторые авторы использовали разложение пятиуровневой пространственно-векторной диаграммы в две трехуровневые пространственно-векторные диаграммы с фазовым сдвигом, чтобы минимизировать пульсации и упростить управление. Кроме того, простой пространственно-векторный метод был представлен без вычисления рабочего цикла смежных трех векторов .
Что такое ШИМ в мониторах?
Понизить яркость монитора можно двумя способами:
а.) Уменьшить интенсивность свечения лампы подсветки (лампа уменьшает свечение) б.) Светить с перерывами, чтобы за единицу времени света было меньше (лампа начинает мерцать)
С технической точки зрения оказалось проще сделать так, чтобы яркость регулировалась мерцанием, часть времени лампа горит, а часть времени не светится.
Широтно-импульсная модуляция (ШИМ) — процесс управления мощностью, путём изменения длительности импульсов, при постоянной частоте.
В мониторах с ШИМ при уменьшении яркости экрана уменьшается длительность импульса свечения ламп подсветки или светодиодов, в результате более заметно мерцание, которое может отрицательно повлиять на наше зрение.
На рисунке вы может увидеть сравнение двух способов регулировки яркости:
Сравнение способов регулировки яркости у мониторов
ШИМ работает следующим образом: на яркости 50% мы половину времени видим импульс света, а вторую половину времени видим черный экран, глаз усредняет увиденное и мы воспринимаем серое свечение. Когда яркость меньше – мерцание заметно больше.
Вот только глазу такое мерцание совсем не идёт на пользу.
Почему болят глаза от смартфона с AMOLED-экраном или что такое ШИМ и DC Dimming?
Оценка этой статьи по мнению читателей: 5
Сегодня AMOLED-экраны используются не только во всех флагманах, но и все чаще встречаются в среднем ценовом сегменте (Galaxy A-серия от Samsung — отличный тому пример). А это значит, что все большее число пользователей открывает для себя эту прекрасную технологию.
Но вместе с яркими цветами, превосходными углами обзоров и бесконечной контрастностью, пользователи открывают для себя еще одну интересную особенность OLED — неприятные ощущения в глазах, усталость и даже головные боли.
И самое обидное (или лучше сказать — опасное?) в этой ситуации то, что далеко не каждый человек ощущает этот негативный эффект, хотя и подвержен его влиянию наряду с теми, кому повезло меньше.
В этой статье мы подробно разберемся, что же не так с AMOLED-дисплеями и можно ли как-то с этим справиться.
В чем суть проблемы?
Суть проблемы заключается в том, что экран смартфона постоянно мерцает. Это мерцание подобно тому, что возникает при использовании дешевых люминесцентных ламп, особенно когда они уже доживают свой срок. Это мерцание действительно вызывает очень неприятные ощущения — многие могли не раз убедиться в этом лично.
Разница со смартфоном лишь в том, что частота мерцания экрана намного выше и потому не заметна глазу.
Почему некоторые люди ощущают мерцание, в то время, как большинство — нет?
Если мы будем каждую секунду включать и выключать лампочку, то, естественно, увидим мерцание света. И чем быстрее мы будем это делать, тем быстрее будет казаться мерцание. Однако на определенной частоте (примерно 60 раз в секунду, то есть, 60 Гц) мозг перестанет воспринимать мерцание и нам будет казаться, что лампочка горит непрерывно.
Этот эффект называется порогом слияния мерцания. У человека он равен 60 герцам, у собак — 70-80, у мух и того больше — 250-300 Гц. Однако, у некоторых людей восприимчивость бывает выше, например, некоторые пилоты истребителей при тестировании различают кадры, появившиеся на 4 мс (что соответствует 250 кадрам в секунду). То же касается и людей, слишком много времени проводящих за компьютерными играми с высоким FPS.
Другими словами, не нужно обладать супер-способностью, чтобы различить мерцание свыше 60 Гц. Но даже те люди, которые не воспринимают такой частоты и не ощущают никаких проблем с AMOLED-экранами, подвергаются негативному влиянию низкочастотного мерцания (или пульсации света).
Зрительные рецепторы способны улавливать пульсацию света с частотой вплоть до 300 Гц (или 300 раз в секунду), а мозг непрерывно обрабатывает полученные данные, находясь в возбужденном состоянии. Именно такой порог (300 Гц) является рекомендуемым минимумом по ГОСТу Р 54945-2012:
Пульсация освещенности свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность
ГОСТ Р 54945-2012
Таким образом, даже если мерцание AMOLED-экрана вашего смартфона не вызывает у вас болевых ощущений в глазах, оно вполне может влиять на эмоциональное состояние и работоспособность.
Любопытный факт №1
Все мы помним старые кинопроекторы, в которые помещалась пленка с серией неподвижных кадриков. Эта пленка передвигалась с определенной скоростью, сменяя кадр за кадром 24 раза в секунду.
Чтобы движение пленки не смазывало изображение, поток света перекрывался в момент смены кадра. Это приводило к сильному мерцанию, так как изображение постоянно обрывал «черный кадр».
Но вместо того, чтобы как-то ускорить процесс смены кадров, поток света стали просто перекрывать дважды — в момент смены кадра и вхолостую, когда пленка не двигалась и кадр отображался на экране. Это искусственно увеличило мерцание до 58 раз в секунду (чередование «черного кадра» с изображением).
Учитывая порог слияния кадров (50-60 Гц), мозг просто «отключал» восприятие мерцания и зритель наблюдал плавную картинку. А еще раньше, во времена немого кино, использовалась частота 16 кадров в секунду. Поэтому свет перекрывали трижды — один раз для смены кадра и два раза вхолостую, чтобы увеличить мерцание до 48 раз в секунду.
Что такое ШИМ или почему OLED-экран смартфона мерцает?
Мерцание экрана связано лишь с одной единственной задачей — управлением яркостью. Есть два способа регулировать яркость экрана и оба они успешно применяются в IPS-матрицах:
- Понижать/повышать напряжение
- Использовать пульсацию света
С первым пунктом все понятно — чем сильнее напряжение, тем ярче горит лампа и наоборот. А вот со вторым мы и разберемся подробнее.
ШИМ расшифровывается как широтно-импульсная модуляция. И означает этот термин буквально следующее: регулировка ширины (длительности) импульса. Пока что это ни о чем не должно вам говорить.
Импульс, говоря простым языком, — это всплеск напряжения в определенном промежутке времени. Его можно изобразить так:
У импульса есть длина, мы можем сделать его короче или длиннее (шире). Также можно генерировать несколько таких импульсов с определенной периодичностью. К примеру, представим, что мы будем периодически посылать на светодиоды OLED-экрана несколько импульсов:
Они идут с определенной постоянной частотой, скажем, 4 импульса в секунду. Получается, каждый из этих импульсов длится 0.25 с (1 секунда, разделенная на 4 импульса).
Когда через светодиод OLED-экрана проходит напряжение (импульс), он начинает светиться. Импульс появился — светодиод загорелся, импульс пропал — светодиод потух. В реальном AMOLED-экране количество таких импульсов может быть 200 в секунду (говорят «частота 200 Гц») или 250, а может и 500! Все зависит от производителя.
Но как же нам теперь снизить яркость на 50%? Достаточно всего лишь, не меняя напряжение, сократить длительность (ширину) импульса в 2 раза. Частота при этом сохраняется, то есть, каждый новый импульс из нашего примера будет проходить все также через 0.25 секунд, но длина самого импульса будет уже не 0.25 секунд, а примерно 0.12 секунд (в 2 раза короче):
Получается, импульсы и дальше поступают каждые 0.25 секунд, вот только половину этого времени светодиод горит, а вторую половину — не горит. Это приведет к тому, что мы будем воспринимать яркость в 2 раза ниже первоначальной.
Если нужно сделать минимальную яркость, можно вообще сократить ширину импульсов из нашего примера до 0.01 секунды. Это приведет к тому, что большую часть времени экран просто не будет гореть: включается на 0.01 секунду, а потом отключается на 0.24 секунды, затем снова все повторяется. И так каждые 0.25 секунд.
Именно так и работает подсветка, только вместо 4 импульсов в секунду, мы имеем 200-300 импульсов. И подавляющее большинство людей визуально никак не замечает, что на минимальной яркости экран большую часть времени буквально выключен. Но некоторые, все же, это хорошо ощущают.
Подведем небольшой итог
Широтно-импульсная модуляция (ШИМ) — это способ изменения яркости экрана смартфона. Конечно же, ШИМ используется далеко не только для регулировки яркости, но в рамках статьи нас интересует только это.
Включая и выключая экран очень быстро (200-300 раз в секунду), человеческий мозг воспринимает это за непрерывное свечение. Получается, если частота составляет 250 Гц (то есть, за секунду поступает 250 импульсов напряжения), длина каждого такого импульса составит 4 миллисекунды (1000/250).
Если все эти 4 миллисекунды экран будет гореть, тогда яркость дисплея будет максимальной. Ведь, по сути, все время будет подаваться максимальное напряжение. Но как только мы будем сокращать время работы экрана в течение этих 4 миллисекунд, яркость начнет падать.
Другими словами, если 2 мс экран будет включен, а 2 мс — выключен (и так каждые 4 мс), тогда яркость экрана будет восприниматься вдвое ниже. Хотя в реальности мы подаем ровно такое же максимальное напряжение, просто более короткими порциями, из-за чего начинает проявляться мерцание, которое мы не воспринимаем.
Зачем использовать ШИМ вместо прямого управления напряжением?
С помощью ШИМ можно получить гораздо более широкий диапазон яркости, чем при изменении напряжения. Также ШИМ является более простой в плане реализации технологией.
Ну а главная причина кроется в особенностях органических светодиодов. Во-первых, постоянное напряжение приведет к нагреву светодиодов и их более быстрому выходу из строя. Во-вторых, подобрать для одного экрана миллионы светодиодов с идентичными характеристиками практически нереально. У каждого из них будут небольшие отличия, которые и проявятся при низком напряжении.
Точная цветопередача OLED-экранов достигается при максимальном напряжении. Если его слишком сильно снизить, тогда на экране вместо серого фона мы получим «грязный» неравномерный фон с фактурой «наждачной бумаги»:
На фото выше — снимок OLED-экрана смартфона LG G Flex 2 на минимальной яркости, у которого отсутствовал ШИМ. Но в те далекие времена никто не оценил такой заботы компании о здоровье своих пользователей.