Полупроводниковые диоды, p-n-переход, виды пробоев, барьерная емкость, диффузионная емкость
Полупроводниковым диодом называется электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющий 2 вывода.
Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 1.2, а, б.
Буквами p и n обозначены слои полупроводника с проводимостями соответственно p-типа и n-типа.
Обычно концентрации основных носителей заряда (дырок в слое p и электронов в слое n ) сильно различаются. Слой полупроводника, имеющий большую концентрацию, называют эмиттером, а имеющий меньшую концентрацию — базой.
Далее рассмотрим основные элементы диода (p-n-переход и невыпрямляющий контакт металл-полупроводник), физические явления, лежащие в основе работы диода, а также важные понятия, использующиеся для описания диода.
Глубокое понимание физических явлений и владение указанными понятиями необходимо не только для того, чтобы правильно выбирать конкретные типы диодов и определять режимы работы соответствующих схем, выполняя традиционные расчеты по той или иной методике.
В связи с быстрым внедрением в практику инженерной работы современных систем схемотехнического моделирования эти явления и понятия приходится постоянно иметь в виду при выполнении математического моделирования.
Системы моделирования быстро совершенствуются, и математические модели элементов электронных схем все более оперативно учитывают самые «тонкие» физические явления. Это делает весьма желательным постоянное углубление знаний в описываемой области и необходимым понимание основных физических явлений, а также использование соответствующих основных понятий.
Приведенное ниже описание основных явлений и понятий, кроме прочего, должно подготовить читателя к систематическому изучению вопросов математического моделирования электронных схем.
Рассматриваемые ниже явления и понятия необходимо знать при изучении не только диода, но и других приборов.
Структура p-n-перехода.
Вначале рассмотрим изолированные друг от друга слои полупроводника (рис. 1.3).
Изобразим соответствующие зонные диаграммы (рис. 1.4).
В отечественной литературе по электронике уровни зонных диаграмм и разности этих уровней часто характеризуют потенциалами и разностями потенциалов, измеряя их в вольтах, например, указывают, что ширина запрещенной зоны ф5 для кремния равна 1,11 В.
В то же время зарубежные системы схемотехнического моделирования реализуют тот подход, что указанные уровни и разности уровней характеризуются той или иной энергией и измеряются в электрон-вольтах (эВ), например, в ответ на запрос такой системы о ширине запрещенной зоны в случае кремниевого диода вводится величина 1,11 эВ.
В данной работе используется подход, принятый в отечественной литературе.
Теперь рассмотрим контактирующие слои полупроводника (рис. 1.5).
В контактирующих слоях полупроводника имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n (существует градиент концентрации дырок). Аналогичная причина обеспечивает диффузию электронов из слоя n в слой p.
Диффузия дырок из слоя p в слой n, во-первых, уменьшает их концентрацию в приграничной области слоя p и, во-вторых, уменьшает концентрацию свободных электронов в приграничной области слоя n вследствие рекомбинации. Подобные результаты имеет и диффузия электронов из слоя n в слой p. В итоге в приграничных областях слоя p и слоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.
Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют нескомпенсированные объемные заряды, создающие электрическое поле с напряженностью E , указанной на рис. 1.5. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n.
В установившемся режиме дрейфовый поток равен диффузионному, обусловленному градиентом концентрации. В несимметричном p-n-переходе более протяженным является заряд в слое с меньшей концентрацией примеси, т. е. в базе.
Изобразим зонную диаграмму для контактирующих слоев (рис. 1.6), учитывая, что уровень Ферми для них является единым.
Рассмотрение структуры p-n-перехода и изучение зонной диаграммы (рис. 1.6) показывают, что в области перехода возникает потенциальный барьер. Для кремния высота Аф потенциального барьера примерно равна 0,75 В.
Примем условие, что потенциал некоторой удаленной от перехода точки в слое p равен нулю. Построим график зависимости потенциала Ф от координаты x соответствующей точки (рис. 1.7). Как видно из рисунка, значение координаты x = 0 соответствует границе слоев полупроводника.
Важно отметить, что представленные выше зонные диаграммы и график для потенциала Ф (рис. 1.7) строго соответствуют подходу, используемому в литературе по физике полупроводников, согласно которому потенциал определяется для электрона, имеющего отрицательный заряд.
В электротехнике и электронике потенциал определяют как работу, совершаемую силами поля по переносу единичного положительного заряда.
Построим график зависимости потенциала Фэ, определяемого на основе электротехнического подхода, от координаты x (рис. 1.8).
Ниже индекс «э» в обозначении потенциала будем опускать и использовать только электротехнический подход (за исключением зонных диаграмм).
Прямое и обратное включение p-n-перехода. Идеализированное математическое описание характеристики перехода.
Подключим к p-n-переходу внешний источник напряжения так, как это показано на рис. 1.9. Это так называемое прямое включение p – n -перехода. В результате потенциальный барьер уменьшится на величину напряжения u (рис. 1.10), дрейфовый поток уменьшится, p – n -переход перейдет в неравновесное состояние, и через него будет протекать так называемый прямой ток.
Подключим к p-n-переходу источник напряжения так, как это показано на рис. 1.11. Это так называемое обратное включение p-n -перехода. Теперь потенциальный барьер увеличится на напряжение u (рис. 1.12). В рассматриваемом случае ток через p-n-переход будет очень мал. Это так называемый обратный ток, который обеспечивается термогенерацией электронов и дырок в областях, прилегающих к области p-n-перехода.
Обозначим через u напряжение на p-n-переходе, а через i — ток перехода (рис. 1.13).
Для идеального p-n-перехода имеет место следующая зависимость тока i от напряжения u:i = is · e u/φr – 1), причем φ т = kT/q где is – ток насыщения (тепловой ток), индекс s — от английского “saturation current”, для кремниевых диодов обычно is = 10 -15 … 10 -22 А;
к — постоянная Больцмана, к = 1,38 •10 -23 Дж/К = 8,62 • 10 -5 эВ/К;
Т — абсолютная температура, К;
q — элементарный заряд, q = l,6•10 -19 Кл;
φт— температурный потенциал, при температуре 20°С (эта температура называется комнатной в отечественной литературе) φт = 0,025 В, при температуре 27°С (эта температура называется комнатной в зарубежной литературе) φт = 0,026 В.
Изобразим график зависимости тока i от напряжения u , которую называют вольтамперной характеристикой p-n-перехода (рис. 1.14).
Полезно отметить, что, как следует из приведенного выше выражения, чем меньше ток is, тем больше напряжение u при заданном положительном (прямом) токе. Учитывая, что ток насыщения кремниевых ( Si ) переходов обычно меньше тока насыщения германиевых ( Ge) переходов, изобразим соответствующие вольтамперные характеристики (рис. 1.15).
Пробой p-n-перехода.
Пробоем называют резкое изменение режима работы перехода, находящегося под обратным напряжением. Характерной особенностью этого изменения является резкое уменьшение дифференциального сопротивления перехода rдиф , которое определяется выражением: r диф=du/di где u — напряжение на переходе; i— ток перехода (см. рис. 1.13).
После начала пробоя незначительное увеличение обратного напряжения сопровождается резким увеличением обратного тока.
В процессе пробоя ток может увеличиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление оказывается отрицательным).
Изобразим соответствующий участок вольтамперной характеристики p-n-перехода (рис. 1.16).
В основе пробоя p-n-перехода лежат три физических явления:·-туннельного пробоя p-n-перехода (эффект, явление Зенера);
– лавинного пробоя p – n-перехода;·
– теплового пробоя p – n -перехода.
Термин «пробой» используется для описания всей совокупности физических явлений и каждого отдельного явления.
И туннельный, и лавинный пробой принято называть электрическим пробоем.
Туннельный пробой.
Его называют также зенеровским пробоем по фамилии (Zener) ученого, впервые описавшего соответствующее явление в однородном материале. Ранее явлением Зенера ошибочно объясняли и те процессы при пробое перехода, в основе которых лежал лавинный пробой.
В иностранной литературе до сих пор называют диодами Зенера стабилитроны (диоды, работающие в режиме пробоя) независимо от того, используется туннельный или лавинный пробой.
Напряжение, при котором начинается пробой, называют напряжением Зенера. Для объяснения механизма туннельного пробоя схематически изобразим соответствующую зонную диаграмму p-n-перехода (рис. 1.17).
Если геометрическое расстояние между валентной зоной и зоной проводимости (ширина, толщина барьера) достаточно мало, то возникает туннельный эффект — явление прохождения электронов сквозь потенциальный барьер. Туннельный пробой имеет место в p – n-переходах с базой, обладающей низким значением удельного сопротивления.
Лавинный пробой.
Механизм лавинного пробоя подобен механизму ударной ионизации в газах, схематично явление лавинного пробоя изобразим на рис. 1.18.
Лавинный пробой возникает, если при движении до очередного соударения с атомом дырка (или электрон) приобретает энергию, достаточную для ионизации атома. Расстояние, которое проходит носитель заряда до соударения, называют длиной свободного пробега. Лавинный пробой имеет место в переходах с высокоомной базой (имеющей большое удельное сопротивление).
Тепловой пробой.
Увеличение тока при тепловом пробое объясняется разогревом полупроводника в области p -n-перехода и соответствующим увеличением удельной проводимости. Тепловой пробой характеризуется отрицательным дифференциальным сопротивлением. Если полупроводник — кремний, то при увеличении обратного напряжения тепловой пробой обычно возникает после электрического (во время электрического пробоя полупроводник разогревается, а затем начинается тепловой пробой).
После электрического пробоя p-n-переход не изменяет своих свойств. После теплового пробоя, если полупроводник успел нагреться достаточно сильно, свойства перехода необратимо изменяются (соответствующий полупроводниковый прибор выходит из строя).
Явление изменения нескомпенсированных объемных зарядов в области p-n-перехода.
Барьерная емкость.
Как уже отмечалось, вследствие диффузии электронов и дырок через p-n-переход в области перехода возникают нескомпенсированные объемные (пространственные) заряды ионизированных атомов примесей, которые закреплены в узлах кристаллической решетки полупроводника и поэтому не участвуют в процессе протекания электрического тока.
Однако объемные заряды создают электрическое поле, которое в свою очередь самым существенным образом влияет на движение свободных носителей электричества, т. е. на процесс протекания тока.
При увеличении обратного напряжения область пространственных зарядов (главным образом за счет базы) и величина заряда в каждом слое (p и n) полупроводника увеличиваются. Это увеличение происходит непропорционально: при большом по модулю обратном напряжении заряд увеличивается при увеличении модуля напряжения медленнее, чем при малом по модулю обратном напряжении.
Дадим поясняющую иллюстрацию (рис. 1.19), где используем обозначения:
Q — пространственный заряд в слое n полупроводника;
u — внешнее напряжение, приложенное к p – n -переходу.
Обозначим через f функцию, описывающую зависимость Q от u . В соответствии с изложенным
В практике математического моделирования (и при ручных расчетах) удобно и поэтому принято пользоваться не этим выражением, а другим, получаемым из этого в результате дифференцирования. На практике широко используют так называемую барьерную емкость С6арp-n-перехода, причем по определению С6ар = | dQ / du | Изобразим графики для Q (рис. 1.20) и C бар (рис. 1.21).
Явление возникновения и изменения объемного заряда неравновесных носителей электричества. Диффузионная емкость.
Если напряжение внешнего источника напряжения смещает p-n-переход в прямом направлении (u> 0), то начинается инжекция (эмиссия) — поступление неосновных носителей электричества в рассматриваемый слой полупроводника. В случае несимметричного p-n-перехода (что обычно бывает на практике) основную роль играет инжекция из эмиттера в базу.
Далее предполагаем, что переход несимметричный и что эмиттером является слой p , а базой — слой n . Тогда инжекция — это поступление дырок в слой n . Следствием инжекции является возникновение в базе объемного заряда дырок.
Известно, что в полупроводниках имеет место явление диэлектрической релаксации (релаксации Максвелла), которое состоит в том, что возникший объемный заряд практически мгновенно компенсируется зарядом подошедших свободных носителей другого знака. Это происходит за время порядка 10 -12 с или 10 -11 с.
В соответствии с этим поступивший в базу заряд дырок будет практически мгновенно нейтрализован таким же по модулю зарядом электронов.
Q — объемный заряд неравновесных носителей в базе;
u — внешнее напряжение, приложенное к p – n -переходу;
f — функция, описывающая зависимость Q от u.
Дадим поясняющую иллюстрацию (рис. 1.22).
В соответствии с изложенным Q = f( u ) На практике удобно и принято пользоваться не этим выражением, а другим, получаемым из этого в результате дифференцирования. При этом используют понятие диффузионной емкости C диф p-n-перехода, причем по определению C диф = dQ / du Емкость называют диффузионной, так как рассматриваемый заряд Q лежит в основе диффузии носителей в базе.
C диф удобно и принято описывать не как функцию напряжения u , а как функцию тока i p-n-перехода.
Сам заряд Q прямо пропорционален току i (рис. 1.23, а). В свою очередь ток i экспоненциально зависит от напряжения u (соответствующее выражение приведено выше), поэтому производная di / du также прямо пропорциональна току (для экспоненциальной функции ее производная тем больше, чем больше значение функции). Отсюда следует, что емкость Сдиф прямо пропорциональна току i (рис.1.23,6):
Cдиф=i·τ/φт где φт — температурный потенциал (определен выше);
τ — среднее время пролета (для тонкой базы), или время жизни (для толстой базы).
Среднее время пролета — это время, за которое инжектируемые носители электричества проходят базу, а время жизни — время от инжекции носителя электричества в базу до рекомбинации.
Общая емкость p-n-перехода.
Эта емкость Спер равна сумме рассмотренных емкостей, т. е. Спер = Сбар + Сдиф.
При обратном смещении перехода ( u < 0 ) диффузионная емкость практически равна нулю и поэтому учитывают барьерную емкость. При прямом смещении обычно Сбар < Сдиф .
Невыпрямляющий контакт металл-полупроводник.
Для подключения внешних выводов в диодах используют так называемые невыпрямляющие (омические) контакты металл-полупроводник. Это такие контакты, сопротивление которых практически не зависит ни от полярности, ни от величины внешнего напряжения.
Получение невыпрямляющих контактов — не менее важная задача, чем получение p-n-переходов. Для кремниевых приборов в качестве металла контактов часто используют алюминий. Свойства контакта металл-полупроводник определяются разностью работ выхода электрона. Работа выхода электрона из твердого тела — это приращение энергии, которое должен получить электрон, находящийся на уровне Ферми, для выхода из этого тела.
Обозначим работу выхода для металла через Aм, а для полупроводника — через Aп. Разделив работы выхода на заряд электрона q, получим соответствующие потенциалы:
Введем в рассмотрение так называемую контактную разность потенциалов φmn:φmn=φm-φn
Для определенности обратимся к контакту металл-полупроводник n-типа. Для получения невыпрямляющего контакта необходимо выполнение условия φmn< 0. Изобразим соответствующие зонные диаграммы для неконтактирующих металла и полупроводника (рис. 1.24).
Как следует из диаграммы, энергетические уровни в полупроводнике, соответствующие зоне проводимости, заполнены меньше, чем в металле. Поэтому после соединения металла и полупроводника часть электронов перейдет из металла в полупроводник. Это приведет к увеличению концентрации электронов в полупроводнике типа n.
Таким образом, проводимость полупроводника в области контакта окажется повышенной и слой, обедненный свободными носителями, будет отсутствовать. Указанное явление оказывается причиной того, что контакт будет невыпрямляющим. Для получения невыпрямляющего контакта металл-полупроводник p-типа необходимо выполнение условия φмп> 0
Пробой диода. Виды пробоя и их обратимость
Пробоем называется резкое увеличение обратного тока при достижении обратным напряжением определенного уровня, выше которого обратный ток возрастает с большим градиентом в узком диапазоне обратного напряжения.
Пробои переходов могут быть двух видов:
1) тепловой пробой;
2) электрический пробой.
В свою очередь электрический пробой делится на два типа: лавинный и туннельный.
Тепловой пробой является необратимым. Возникает он при нарушении баланса выделяемой в переходе мощности и мощности, рассеиваемой в окружающую среду.
Лавинным пробоем называют явление резкого повышения обратного тока в узком диапазоне прироста обратного напряжения, которое вызвано лавинообразным размножением носителей заряда в результате ударной ионизации атомов в области перехода.
Туннельным пробоем называется явление перехода электронов через энергетический барьер, высота которого больше энергии электрона. Туннельный пробой возможен в диодах, у которых в электронно-дырочных переходах:
1) толщина перехода меньше диффузионной длины свободного пробега электрона;
2) напряженность результирующего электрического поля не менее 108В/м;
3) на том же самом энергетическом подуровне, котором соответствует энергетическому состоянию электрона в соседней области, куда должен перейти электрон существует вакантное место, т.е. дырка.
Лавинный и туннельный пробои, в отличие от теплового пробоя, являются обратимыми. Это означает, что они не приводят к повреждению диода и при снижении напряжения его свойства сохраняются.
2. Назначение резистора в цепи коллектора. Нарисуйте изменения напряжения на выходе усилителя при изменении Rк от 100 Ом до 10 Мом.
Служит для ограничения коллекторного тока и для обеспечения необходимого коэффициента усиления.
Задание №23
1. Пробой диода. Виды пробоя и их обратимость.
пробоем диода- явление когда обратное напряжение диода достигает определенного критического значения, ток диода начинает резко возрастать. Заметим, что пробой сопровождается выходом диода из строя лишь в том случае, когда возникает чрезмерный разогрев перехода, и происходят необратимые изменения его структуры. Если же мощность, выделяющаяся в диоде, поддерживается на допустимом уровне, он сохраняет работоспособность и после пробоя.
Напряжение, при котором наступает пробой перехода, зависти от типа диода и может иметь величину от единиц до сотен вольт.
Различают два основных вида пробоя электронно-дырочного перехода: электрический и тепловой. В обоих случаях резкий рост тока связан с увеличением числа носителей заряда в переходе. При электрическом пробое число носителей заряда в переходе возрастает под действием сильного электрического поля и ударной ионизации атомов решетки, при тепловом пробое – за счет термической ионизации атомов.
Пробой диода
Когда обратное напряжение диода достигает определенного критического значения, ток диода начинает резко возрастать. Это явление называют пробоем диода. Заметим, что пробой сопровождается выходом диода из строя лишь в том случае, когда возникает чрезмерный разогрев перехода, и происходят необратимые изменения его структуры. Если же мощность, выделяющаяся в диоде, поддерживается на допустимом уровне, он сохраняет работоспособность и после пробоя. Более того, для некоторых типов диодов пробой является основным рабочим режимом.
Напряжение, при котором наступает пробой перехода, зависти от типа диода и может иметь величину от единиц до сотен вольт.
Различают два основных вида пробоя электронно-дырочного перехода: электрический и тепловой. В обоих случаях резкий рост тока связан с увеличением числа носителей заряда в переходе. При электрическом пробое число носителей заряда в переходе возрастает под действием сильного электрического поля и ударной ионизации атомов решетки, при тепловом пробое — за счет термической ионизации атомов.
Электрический пробой
Обычно длина свободного пробег электрона в полупроводнике значительно меньше толщины электронно-дырочного перехода. Если за время свободного пробега электроны успевают набрать достаточную энергию, то возникает ударная ионизация атомов электронами. В результате ударной ионизации наступает лавинное размножение носителей заряда.
Величина напряжения пробоя зависит от рода материала. Когда приложенное напряжение приближается к напряжению пробоя, коэффициент размножения носителей резко возрастает, растет число носителей заряда в переходе, сильно увеличивается ток через переход, наступает лавинный пробой.
При значительных напряженностях электрического поля (порядка 200 кВ/см), возможен туннельный пробой, обусловленный прямым переходом электронов из валентной зоны в зону проводимости смежной области, происходящим без изменения энергии электрона.
Практически при электрическом пробое могут иметь место в той или иной степени одновременно оба вида пробоя — туннельный и лавинный.
Величина напряжения пробоя существенно зависит от состояния поверхности перехода, где могут образовываться заряды того или иного знака, которые уменьшают или увеличивают результирующую напряженность поля у поверхности по сравнению ее значением в объеме. В неблагоприятном напряжении пробоя по поверхности может быть в несколько раз ниже, чем по объему. Это еще раз подчеркивает важность стабилизации свойств поверхности полупроводника, защиты ее от воздействий окружающей среды.
Тепловой пробой диода возникает вследствие перегрева перехода проходящим через него током при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.
В режиме постоянного тока мощность, подводимая к переходу, определяется обратным напряжением и обратным током:
Эта мощность идет на разогрев перехода, в результате чего температура перехода возрастает. При этом увеличиваются концентрации носителей заряда в p-n-структуре и обратный ток перехода, что в свою очередь приводит к увеличению подводимой мощности, новому повышению температуры перехода и т. д.
Выделяющееся тепло в переходе рассеивается преимущественно за счет теплопроводности, поэтому отводимая от перехода мощность пропорциональна разности температур перехода и окружающей среды:
где RT — общее тепловое сопротивление диода.
Вольтамперная характеристика диода в режиме теплового пробоя соответствует кривой б на рис.. Она имеет падающий характер, так как вследствие повышения температуры перехода концентрация носителей заряда в нем сильно увеличивается и электрическое сопротивление перехода уменьшается относительно быстрее, чем растет ток перехода.
Полупроводниковый диод обладает емкостными свойствами, т.е. способностью накапливать и соответственно отдавать заряд при увеличении или уменьшении приложенного напряжения. Накопление заряда происходит в переходе и базе диода, в соответствии с этим различают две емкости диода — барьерную и диффузионную. При этом:
Диоды (часть 2). Виды и особенности. Основные неисправности
Существуют полупроводники в зависимости от их применения и назначения. Рассмотрим основные виды диодов.
Диоды Шоттки
Эти полупроводниковые диоды имеют незначительное падение напряжения, имеют высокую скорость работы, в отличие от обычных диодов, которые не смогут заменить в действии диод Шоттки и выйдут из строя. Свое название диод имеет по изобретателю из Германии. В конструкции в качестве потенциального барьера используется переход «металл-полупроводник» вместо р-n перехода. Его допустимое напряжение при обратном подключении 1200 В. Практически они применяются в цепях низкого напряжения.
Стабилитроны
Они предотвращают увеличение напряжения свыше допустимого значения на участке схемы, могут защищать и ограничивать схему от повышенных значений тока. Стабилитроны могут работать только на постоянном токе, поэтому при включении их в цепь соблюдение полярности является обязательным. Стабилитроны одного типа можно соединять по последовательной схеме для увеличения напряжения, либо создания делителя напряжения.
Основным свойством таких полупроводников является стабилизирующее напряжение.
Варикапы
Этот полупроводник еще называют емкостным диодом. Он изменяет значение сопротивления при изменении напряжения питания. Используется в качестве управляемого конденсатора с изменяемой емкостью. Может применяться для настраивания контуров колебаний высокой частоты.
Тиристоры
Полупроводники могут находиться в двух устойчивых положениях:
- Закрытое (низкая проводимость).
- Открытое (высокая проводимость).
То есть, он может переходить под воздействием сигнала из одного состояния в другое.
У тиристора имеется три электрода. Кроме обычных катода и анода, есть еще и электрод управления, который служит для подачи сигнала управления для перевода полупроводника в состояние включения. Современные тиристоры иностранного производства производятся в различных корпусах.
Такие полупроводники включают в схемы для регулирования мощности, плавного запуска электромоторов, подключения освещения. Тиристоры дают возможность включать большие токи, достигающие наибольшего тока 5 кА, напряжением до 5 киловольт в закрытом виде. Мощные силовые приборы на основе тиристоров используются в управляющих панелях электромоторами и других устройствах.
Симисторы
Эти полупроводники применяются в схемах, подключенных к переменному напряжению. Прибор условно состоит из двух тиристоров, подключенных встречно-параллельно, и пропускающих ток в любую сторону.
Светодиоды
Они испускают световой поток при подключении к ним напряжения, используются для создания индикации параметров, в электронных схемах, различных электронных гаджетах, дисплеях, в качестве источников света, при этом бывают многоцветными и одного цвета.
Инфракрасные диоды
Это светодиоды, выдающие световой поток в инфракрасном спектре. Они используются для измерительных и контрольных приборов оптического вида, в пультах управления, коммутационных устройствах, линиях связи без проводов и т.д. Обозначаются на схемах как обычные светодиоды. Инфракрасные лучи не видны человеку. Их можно увидеть с помощью смартфона в камеру.
Фотодиоды
Они работают при попадании на их чувствительный элемент света, преобразуя его в электрический ток. Используются для преобразования потока света в сигнал электрического тока.
Фотодиоды обычно сравнивают по принципу работы с батареями на солнечных элементах.
Неисправности диодов
Полупроводники иногда могут выходить из строя вследствие естественного старения и амортизации внутренних материалов, либо по другим причинам:
- Пробивание перехода кристалла. Его следствием является то, что по сути полупроводник приобретает свойства обычного проводника, так как он лишен основных качеств полупроводимости и уже пропускает ток практически в любую сторону. Такая неисправность быстро обнаруживается с помощью обычного мультитестера. Измерительный прибор выдает сигнал звука и на дисплее видно значение очень малого сопротивления диода.
- Обрыв. В этом случае действует обратный процесс – полупроводник не пропускает ток ни в каком направлении, так как внутри кристалла нарушена проводимость, вследствие полного обрыва проводника, то есть, диод, по сути, стал диэлектриком. Чтобы точно выяснить обрыв, нужно применять мультиметры с исправными щупами. Иначе можно получить ложную диагностику этой неисправности. У диодов на основе сплавов эта неисправность является редкой.
- Утечка. Эта поломка возникает из-за повреждения корпуса полупроводника, вследствие чего нарушается герметичность корпуса диода, и его нормальное функционирование становится невозможным.
Пробой перехода
При чрезмерном повышении обратного напряжения может возникнуть пробой электронного прибора. Существуют специальные полупроводники, в которых используется это свойство, которые называются стабилитронами.
Такие неисправности возникают в случаях, когда величина обратного тока резко возрастает из-за достижения обратного напряжения чрезмерных значений, выше допустимых.
Существует несколько типов пробоя переходов:
- Тепловые пробои. Они вызываются внезапным возрастанием температуры с дальнейшим перегревом.
- Электрические пробои. Появляются от действия большого электрического тока на полупроводниковый переход.
Электрический пробой
Такой вид пробоя не является фатальным, и является обратимым процессом, так как при этом не произошло разрушения кристалла полупроводника. Поэтому при медленном снижении напряжения возможно восстановление характеристик диода и его рабочего состояния.
Такие пробои разделяют на два подвида:
- Туннельные пробои. Они возникают при протекании повышенного напряжения по узким проходам кристалла полупроводника. Это позволяет отдельным электронам проскакивать через него. Чаще всего туннельные пробои образуются в случае наличия в полупроводнике большого числа различных недопустимых примесей. При таком пробое обратный ток внезапно стремится к возрастанию, а напряжение продолжает оставаться на прежнем уровне.
- Лавинные пробои. Они могут возникнуть вследствие действия повышенных значений электрических полей, которые разгоняют электроны выше допустимой границы скорости. Поэтому они выбивают из атомов некоторое количество валентных электронов, вылетающих в область проводимости. Такой процесс происходит с лавинообразной скоростью, поэтому и получил такое название.
Тепловой пробой
Образование теплового пробоя может происходить из-за возникновения различных причин. Это может быть недостаточный отвод тепла от корпуса полупроводника, а также перегрева перехода кристалла, возникающего по причине прохождения электрического тока повышенной величины, выше допустимого.