Как выбрать бесколлекторный мотор для квадрокоптера
Наши квадрокоптеры летают на бесколлеторных моторах постоянного тока, это специальные типы двигателей, у которых нет основных компонентов с повышенным износом.
Все бесколлекторные (безщеточные) двигатели состоят из 4 компонентов:
Статор. Статор это обмотка двигателя, состоящая из 3 фаз длинных тонких проводков, которые обматываются вокруг сердечника. Провода покрыты эмалью, чтобы предотвратить короткое замыкание при обмотке и работе. Если вы хорошо учили физику, то знаете, что ток, протекающий по проводу, создает магнитное поле. Когда провод обмотан вокруг чего-то, то магнитное поле увеличивается. Чем больше ток, тем больше сила магнитного поля и больше крутящий момент от вашего двигателя. Однако, большие токи сильно нагревают обмотку, особенно вот такие тонкие провода и защитная эмаль может оплавиться при сильном нагреве, тогда произойдет короткое замыкание и двигатель станет нерабочим.
Неодимовые магниты. Эти магниты из редкоземельных металлов генерируют фиксированное магнитное поле, они маленькие, но создают очень сильное магнитное поле. Они приклеены эпоксидной смолой или цианокрилатом к корпусу мотора.
Корпус двигателя защищает магниты и обмотку. Обычно он изготовлен из легкого металла, такого как алюминий. Более продвинутые двигатели имеют корпусы, которые сделаны как вентиляторы, т.е. при вращении нагоняют воздух на обмотку сердечника, чтобы охлаждать ее.
Вал мотора жестко прикреплен к верхней части. Это рабочий компонент мотора, который передает крутящий момент на пропеллеры.
Итак, как работает бесколлекторный мотор?
Слишком далеко заходить и углубляться не буду, просто основы — магниты и обмотка создают движущую силу благодаря взаимодействию и созданию магнитного поля между ними. Это происходит благодаря подаче постоянного тока на определенную обмотку (у нас 3 фазы, т.е. 3 отдельных провода на обмотке), ток подается и прекращает подаваться на определенные обмотки в короткий промежуток времени, тысячные доли секунды, заставляя крутиться верхнюю часть с магнитами. Этим процессом полностью управляет ESC-регуляторы, это мозг моторов, он решает, когда подавать ток, а когда нет и с какой частотой.
Как выбрать двигатель для квадрокоптера
Итак, теперь вы знаете основы работы и из чего он состоит, теперь узнаем, как выбрать мотор для дрона.
Размер двигателя
Первое, что вы должны выбрать, это размер двигателя, который вы будете использовать. К счастью, большинство производителей в нашем хобби установили стандартную схему именования своих двигателей. Обычно это 4-значное число, которое выглядит примерно как «2205». Первые две цифры этого числа — это диаметр (в мм) статора, а второй — это высота (также в мм). В общем, чем больше из этих чисел, тем больше мощности двигатель может обрабатывать и чем больше крутящего момента он будет генерировать. Однако нюанс заключается в том, что большие цифры означают более тяжелый двигатель — в основном благодаря тому, что он просто «больше».
Вот общие размеры двигателей для квадрокоптеров:
- 1806 – используются в минидронах, на них ставятся 3-х или 4-х дюймовые пропеллеры.
- 2204 – Одни из самых популярных двигателей в течение долгого времени. На них ставят 5-и дюймовые пропеллеры. 2204 начали терять популярность в 2015 году и сейчас почти не используются.
- 2205 – самые популярные моторы, на них можно ставить 5-и дюймовые трехлопастные пропеллеры.
- 2206 – набирающая популярность модель двигателей, имеет немного большие габариты за счет увеличения мощности на 15% в сравнении с 2205.
- 2207 / 2407 – Еще более мощные двигатели, гонка мощностей я бы сказал. По характеристикам, они могут выдавать тягу на 50% больше, чем 2205. Используются редко и еще не популярны.
RPM константа (kV)
Все моторые имеют рейтинг Kv. Этот рейтинг показывает то, насколько быстро будут крутиться ваши пропеллеры. Максимальное количество оборотов в минуту, которое сможет выдать ваш мотор, можно узнать, если умножить kV на напряжение аккумулятора. Так, если у вас двигатель 2300kV и батарея lipo 4s, то будет такая формула, так как у 4s lipo напряжение 14.8 вольт:
Но не стоит брать эту цифру как фактическое значение, которое будет развивать мотор, лучше использовать эту цифру как справочное число для ориентира — на что будет способен квадрокоптер на этих двигателях. Общая информация, какие пропеллеры нужно ставить на двигатели 2204 и 2205:
- 4-х дюймовые пропеллеры для двигателя 2600kV или с большим kV.
- 5-х дюймовые пропеллеры для двигателя 2300-2600kV моторы.
- 6-х дюймовые пропеллеры для двигателя 2300kV или с более меньшим kV.
Обратите внимание, что это не жесткие правила, а лишь рекомендации, но если вы будете придерживаться их, то ваш дрон будет летать с наилучшими характеристиками.
Вес
Единственное, что нужно помнить про вес, это то, что каждый сэкономленный грамм нужно умножать на 4 (или больше, смотря какой дрон будете собирать). Тяжелые моторы обычно довольно мощные и компенсируют свой вес тягой.
Цена
Цена одно из важных значений, чем выше цена, тем качественнее компоненты и сборка, а значит и результаты по скоростям и маневренности. В среднем цены от 600 до 2 000 рублей.
Вал
Вал должен быть достаточно длинным, но не менее 13 мм в длину и 5мм в диаметре. 5мм это самый распростроненный диаметр у пропеллеров, в противном случае вам придется рассверливать или покупать новые проппы, так как они или не налезут или будут маленькие. А насчет длины — нужно не забывать, что пропеллеры закрепляются контргайками, а она должна полностью пройти вал по резьбе.
Как выбрать моторы для квадрокоптера или гоночного дрона?
В этом руководстве вы найдете основную информацию о видах моторов для коптеров, особенностях их конструкции; описание всего того, что влияет на летные характеристики и эффективность. Это поможет вам выбрать оптимальные моторы для следующего коптера.
Содержание
Ищите моторы? С чего начать?
Не важно какого размера будет у вас коптер, перед выбором моторов нужно определиться с рамой и знать примерный вес коптера. Однако, если вы планируете собирать 5″ коптер, тогда можете смело переходить к разделу «размер мотора«.
Если вы новичок, тогда рекомендую начать со статьи про то, что такое FPV гонки.
Есть два вида моторов: коллекторные и бесколлекторные. Как правило бесколлекторные используются на более крупных моделях, а коллекторные только на очень мелких. Позже я опубликую статью с более подробным описанием их отличий.
Размер рамы и вес
Общий вес коптера — это вес всех комплектующих, которые планируется поставить на модель: рама, полётные контроллер (ПК), плата распределения питания (PDB), приёмник, видеопередатчик, антенна, моторы, пропеллеры, регуляторы скорости, LiPo аккумулятор, дополнительная нагрузка типа GoPro и т.д.
Скорее всего вы не получите точный вес, лучше его переоценить и иметь запас по мощности, чем недооценить и получить нелетающий коптер. Не забудьте добавить 10-20 грамм для учета веса проводов, пищалки, нейлоновых стяжек и т.д.
Зная размер рамы, мы получаем максимально допустимый диаметр пропеллеров. Как только вы узнаете вес коптера, то сможете оценить необходимую тягу, и комбинацию мотор-проп (винтомоторная группа).
Соотношение тяги и веса коптера
Общее правило такое: макс. тяга должна быть как минимум в 2 раза больше веса коптера. Запомните, это действительно минимум необходимый для того, чтобы коптером можно было легко управлять во время висения. Если тяга слишком маленькая, тогда коптер будет плохо слушаться управления, и, возможно, будет довольно сложно взлететь.
Например, если вес коптера 1 кг, тогда тяга всех моторов при 100% газе, должна быть как минимум 2 кг (500 г на мотор). Конечно, хорошо, если тяга ещё выше…
Чтобы летать быстро, у гоночных коптеров соотношение тяги к весу значительно больше. Нет ничего необычного в том, что у кого-то миникоптер имеет это соотношение 10:1 или даже 13:1. В общем и целом, для акробатики я рекомендую иметь соотношение как минимум 5 к 1.
Чем больше это число, тем лучше управляется и ускоряется коптер. Однако, если оно слишком большое, тогда коптером становится сложно управлять. Небольшого движения стика газа будет достаточно чтобы «выстрелить коптером на орбиту, как ракетой». Конечно, всё очень сильно зависит от навыков пилота.
Даже если вы планируете заниматься только медленной аэрофотосъемкой, нужно рассчитывать на 3:1 или 4:1. Это даст вам не только надежное управление, но и позволит в будущем увеличить полезную нагрузку. Например, более тяжелую камеру или дополнительные аккумуляторы для увеличения длительности полёта. Если вы хотите заняться гонками, то ограничений на это соотношение нет выбирайте на столько большое значение, на сколько вам будет удобно управлять!
Размеры моторов
Размер бесколлекторного моторы обычно обозначается 4 цифрами: AABB, где «АА» — это диаметр статора (stator width / stator diameter), а «BB» — высота статора (stator height), оба значения в миллиметрах.
Что такое статор (stator) у бесколлекторного мотора? Статор — это стационарная (неподвижная) часть мотора, у нее есть полюса (poles), на которые намотан медный провод (обмотка). «Полюса» (по сути, сердечник) сделаны из тонких металлических пластин собранных в стопку, между ними тонкий слой диэлектрика.
- Чем «выше» статор, тем больше мощность на больших оборотах
- Чем «шире» статор, тем больше крутящий момент при низких оборотах
Увеличение диаметра и высоты мотора требует увеличения как обмоток (электромагнитов), так и постоянных магнитов. Разница в том, что при увеличении высоты статора размеры постоянных магнитов увеличиваются сильнее, чем катушки; а при увеличении диаметра статора обмотки увеличиваются сильнее, чем магниты.
Размеры пропеллеров совместимых с мотором определяются диаметром вала. Валы моторов для 3″, 4″, 5″ и 6″ пропов имеют резьбу M5 (т.е. диаметр 5 мм). У современных моторов вал встроен в сам колокол, для более ранних моторов нужно было использовать адаптер (англ).
На 5″ коптерах чаще всего применяются моторы размера 2204, 2205, 2206, 2207, 2305, 2306, 2307, 2407.
Высокий или широкий статор?
У более высокого статора больше «площадь поверхности» (обращенной к магнитам) следовательно через него проходит «больше» магнитных полей. Большая площадь также способствует хорошему охлаждению. Высокие моторы дают большую мощность и имеют высокие обороты.
Чем больше диаметр статора, тем больший объем железа и меди в нём, в результате мы получаем мотор с большим крутящим моментом, а также более эффективный мотор.
«KV» — это количество оборотов в минуту (RPM) на единицу напряжения (более правильное определение KV, англ).
Это очень важный параметр бесколлекторных моторов, он показывает на сколько увеличатся обороты мотора (RPM) при увеличении напряжения на 1 вольт, при отсутствии нагрузки на валу (без пропа). Например, если подключить мотор 2300 KV к аккумулятору 3S LiPo (12,6 вольт), тогда без пропеллера он будет вращаться со скоростью 28980 оборотов в минуту (2300 * 12,6). Обычно это примерное значение, указываемое производителем.
Как только вы поставите пропеллер, обороты снизятся из-за сопротивления воздуха. Моторы с более высоким KV будут стараться раскрутить проп быстрее, но могут потреблять большой ток. Именно поэтому мы обычно ставим большие пропы на моторы с небольшим KV, а мелкие и легкие пропы отлично подходят для моторов с высоким значением KV.
Значение KV определяется числом витков обмоток статора. Обычно увеличение числа витков уменьшает KV мотора, а уменьшение числа витков — увеличивает KV.
Сила магнитов тоже влияет на KV, чем они сильнее, тем больше KV
Если установить очень большой пропеллер на мотор с большим KV, тогда он попробует раскручивать его также быстро, как будто это маленький проп, но для этого требуется гораздо большее усилие. А чтобы получить требуемое усилие, мотор начнет потреблять гораздо больший ток, а следовательно выделять больше тепла. Что ведет к его перегреву, и может повредить мотор. При перегреве мотора изоляция в обмотках сгорает и получается короткое замыкание.
Общее правило: чем тяжелее коптер, тем ниже KV его моторов, на мелких коптерах обычно используются моторы с очень большим KV
Крутящий момент
Иногда говорят, что у моторов с небольшим KV высокий крутящий момент, а если у мотора высокое значение оборотов на вольт, то крутящий момент небольшой. Хотя это и возможно, но не всегда правда. KV почти ничего не говорит о крутящем моменте, а влияет на максимальный потребляемый ток и макс. допустимое напряжение.
Как уже указывалось выше, у моторов с высоким KV обмотки короче, а значит и ниже сопротивление. Это снижает макс. допустимое напряжение и увеличивает потребляемый ток (при прочих равных характеристиках, при том же пропеллере).
Крутящий момент в основном определяется:
- размером статора, чем он больше, тем выше момент
- материалами: тип магнитов, качество медной обмотки
- конструкцией мотора: расстояние между ротором и статором, числом полюсов и т.д.
Если всё одинаково, тогда два мотора с разным KV будут иметь одинаковый крутящий момент. Небольшое значение KV просто означает, что вам нужно более высокое напряжение чтобы получить те же обороты. На самом деле все несколько сложнее, но это довольно простое и точное описание.
Причина, по которой пилотам кажется, что у моторов с небольшим KV большой момент, в том, что падение напряжения у таких моторов ниже, чем у моторов с высоким KV, именно это падение напряжения и снижает крутящий момент. Теоретически, момент должен быть одинаков, но на практике такого не бывает.
Крутящий момент — это палка о двух концах.
Моторы с большим крутящим моментом позволяют менять обороты быстрее, благодаря этому будет меньше паразитных вибраций, а реакция на стики — мгновенной. Коптер с такими моторами будет очень резким, а его движения будут менее естественными, более похожими на дерганые движения роботов. В противном случае коптер ощущается более плавным. Выбор зависит от вашего стиля, личных предпочтений, высокий крутящий момент — это не всегда хорошо.
В наши дни всё больше и больше пилотов сталкивается с паразитными вибрациями, и корнем проблемы могут быть как раз современные, сверхмощные моторы. Они настолько мощные, что могут создавать петли обратной связи, от которых очень трудно избавиться. Демпфирование полетного контроллера может помочь, но лучше искать настоящую причину вибраций и не использовать чрезмерно мощные моторы.
Схема крепления
Обычные схемы крепления (расстояние между отверстиями) моторов 22xx, 23xx и 24xx: 16 х 16 мм или 16 х 19 мм. Большинство рам для 5″ коптеров рассчитано именно на это.
N и P в «формуле» мотора (полюса и магниты)
Вы, наверное, уже видели в описаниях моторов значения типа «12N14P». Число перед «N» (12) означает количество электромагнитов в статоре, а «14P» — количество постоянных магнитов в роторе (в колоколе).
У разных типоразмеров моторов разное числю полюсов, например, моторы типа 22XX и 23XX обычно имеют 12 полюсов (12N) и 14 магнитов (14P).
Количество полюсов определяет расстояние между ними, если их мало, тогда в статоре поместится больше железа, поэтому мощность будет выше. Если мы увеличим количество полюсов, тогда магнитное поле будет более равномерным, и, следовательно, мотор будет вращаться более плавно, т.к. управление будет более точным.
- Больше полюсов — плавность
- Меньше полюсов — выше мощность
Количество полюсов всегда кратно трем, т.к. по сути, это 3х-фазный мотор и имеет 3 провода, поэтому число будет 9, 12, 15, 18 и т.д. Число полюсов сложно изменить и при выборе двигателя для коптера на это можно не обращать внимание.
Обмотка
Число витков в обмотках статора влияет на то, какой максимальный ток будет потреблять мотор, а толщина провода определяет максимально допустимый ток, который не вызовет перегрев мотора.
Меньше витков = меньше сопротивление = выше kv. Недостаток — магнитное поле статора будет слабее, а усилие на валу — меньше.
Все происходит наоборот при увеличении числа витков. Чем больше витков, тем сильнее магнитное поле статора и больше усилие. Но из-за более длинных проводов увеличивается сопротивление и KV мотора уменьшается.
Чтобы получить большую мощность моторов, производители часто увеличивают число полюсов и при этом используют более толстый провод. Благодаря этому сопротивление обмоток уменьшается, а мощность увеличивается (не жертвуя при этом эффективностью и крутящим моментом). Такой мотор без перегрева может потреблять довольно большой ток.
Однако более толстый провод и увеличение числа обмоток приводят к увеличению массы мотора, а обмотки занимают больше места, что требует увеличения статора. Поэтому и появляются всё более крупные моторы, и по вышеуказанным причинам они мощнее.
Одножильные и многожильные обмотки
Одножильная обмотка делается толстым проводом и способна хорошо рассеивать тепло, больше подходит для моторов с большим напряжением питания, типа 5S или 6S. Но, из-за значительных пустот между толстыми витками, плотность обмотки довольно низкая.
Для замены одного толстого провода, в многожильной намотке обычно используют по три более тонких. Т.к. провода тоньше, то теплоотвод хуже, и физически их легче повредить.
Обычно у моторов с многожильной намоткой характеристики лучше, чем с одножильной, это связано с тем, что такая намотка получается плотнее, что дает более сильное магнитное поле (т.е. получается более мощный и эффективный мотор).
Замечу, что ещё очень важна аккуратность намотки, не только в эстетическом плане, но и в электромагнитном. Если провод уложен как попало, есть куча пересечений, тогда провода не будут перпендикулярны статору и магнитное поле будет менее эффективным.
Подшипники
О подшипниках обычно мало говорят, это связано с тем, что про них мало что известно, но я думаю, что должен дать кое-какую базовую информацию.
Размер подшипника это не внешний или внутренний диаметр, это разница между ними. Чем он шире, тем больше шариков помещается. Более крупные шарики прочнее, а значит надежнее в случае аварии. Если шарики меньше, тогда вращение будет более плавным на больших оборотах.
Возможно, вы слышали, что в некоторых моторах используют «керамические подшипники»? В них ставятся керамические шарики, а не металлические; такие подшипники более плавные, но и более хрупкие.
Диаметр отверстия в подшипнике (внутренний диаметр) определяется диаметром вала двигателя.
Какого размера нужен мотор?
Выбирать комплектующие для коптера можно в таком порядке: размер рамы, размер пропов, размер мотора.
Зная размер рамы, мы можем оценить требуемые размеры моторов. Рама ограничивает нас макс. допустимым диаметром пропов, а от характеристик пропеллера зависят характеристики моторов (чтобы эффективность их работы была максимальной), именно тут мы и определяемся с KV моторов.
Также необходимо убедиться, что у моторов достаточная мощность для вращения выбранных пропов, тут уже играет важную роль размер статора. Обычно чем больше статор, и выше KV, тем больший ток потребляет мотор.
В таблице вы найдёте общие рекомендации, это не жесткие правила, одни используют более оборотистые моторы, чем указано; другие, наоборот, менее оборотистые.
Данные предполагают, что на квадрике будет стоять 4S LiPo аккумулятор, а размер рамы — это расстояние между диагонально расположенными моторами (подробнее про рамы читайте тут).
Размер рамы | Диаметр пропеллера | Размер мотора | KV |
150 или меньше | 3″ или меньше | 1105 -1306 или меньше | 3000KV или больше |
180 мм | 4″ | 1806 | 2600KV – 3000KV |
210 мм | 5″ | 2204-2208, 2306 | 2300KV-2600KV |
250 мм | 6″ | 2204-2208, 2306 | 2000KV-2300KV |
350 мм | 7″ | 2208 | 1600KV |
450 мм | 8″, 9″, 10″ или крупнее | 2212 или больше | 1000KV и ниже |
Напряжение и потребляемый ток
Важно понять, что напряжение питания тоже влияет на выбор моторов и винтов. При увеличении напряжения мотор будет пытаться вращать винт быстрее, и поэтому будет потреблять большой ток. Убедитесь, что знаете, какой будет потребляемый ток и какая получится тяга.
После того, как вы определите макс. потребляемый ток, пора переходить к выбору регуляторов скорости.
Основные факторы влияющие на летные характеристики
Определившись с размером мотора, вы увидите, что подходящих моделей очень много. Чтобы выбрать наилучший вариант, нужно учесть несколько моментов:
- Тяга
- Эффективность и потребляемый ток
- Вес
Выбор того или иного мотора очень сильно зависит от целей применения коптера, стиля полета и желаемого поведения.
Пожалуй, это первое, на что обращают внимание при выборе мотора.
Чем выше тяга, тем больше будет ускорение, но при этом может заметно увеличиться потребляемый ток или упасть энергоэффективность. Не перенагружайте аккумуляторы сильно жрущими винтомоторными группами.
Если коптер потребляет очень большой ток при максимальном газе, тогда у аккумулятора должен быть соответствующий допустимый разрядный ток (англ). Не забывайте и про емкость аккумулятора, она должна быть достаточной чтобы летать продолжительное время.
Тяга — важный, но не единственный критерий выбора мотора.
Вес мотора
При выборе мотора часто упускают из вида его вес, хотя это очень важный критерий для фристайла и дронрейсинга.
Поскольку моторы расположены по углам рамы, их вес заметно влияет на отзывчивость управления коптером. Более тяжелые моторы увеличивают угловой момент инерции коптера, т.е. чтобы поменять положение коптера потребуется большее усилие.
На практике это означает, что при выполнении флипов и ролов требуется время чтобы коптер набрал необходимую скорость вращения, а затем время, чтобы снизить эту скорость. Более тяжелые моторы требуют больше времени на изменение скорости. Поэтому коптер с тяжелыми моторами будет менее отзывчивым.
Эффективность и потребляемый ток
Эффективность мотора обычно вычисляется делением тяги (при 100% газе) на потребляемую мощность и измеряется в граммах на ватт (г/Вт). Чем больше число, тем эффективнее мотор.
При выборе мотора нужно смотреть на его эффективность во всем диапазоне мощностей, не только на максимуме. Некоторые моторы лучше всего работают при небольшом газе, и могут терять эффективность при его увеличении.
Ещё один способ оценки эффективности — «грамм на ампер» (тяга/ток).
Обычно, чем больше тяга, тем больше потребляемый ток, поэтому нужно отдавать предпочтение моторам с макс. тягой при минимальном токе. Неэффективные моторы либо дают небольшую тягу, либо потребляют очень много.
Эффективность зависит и от винтов, главное найти компромисс между тягой и эффективностью.
Прочие факторы влияющие на летные характеристики
Производители не указывают многие характеристики, но их можно найти, почитав обзоры и тесты.
- Крутящий момент
- Время реакции
- Температура
- Уровень вибраций и качество балансировки
Крутящий момент
Это сила, которая вращает пропеллер, она определяет скорость, с которой мотор может изменить обороты (RPM). Другими словами, на сколько просто мотору проворачивать массу ротора, винта и, что более важно, воздуха.
Крутящий момент влияет на характеристики коптера, особенно на точность и отзывчивость управления. У мотора с большим крутящим моментом более быстрая реакция, т.к. он может быстрее поменять скорость вращения (RPM). Возможно даже будет меньше проявляться пропвош (propwash — тряска коптера, когда он движется в турбулентном потоке, например при флипах, резких разворотах и т.д.).
Большой крутящий момент позволит использовать более тяжелые винты (ценой увеличения потребляемого тока). Если на мотор с небольшим крутящим моментом поставить слишком тяжелый проп, тогда ему не хватит «сил» вращать его с нормальной скоростью, в результате будет низкая эффективность работы и перегрев мотора.
Недостаток моторов с высоким крутящим моментом — колебания/вибрации. Такой мотор может менять обороты очень быстро, в результате ошибка в PID регуляторе может усиливаться и накапливаться (англ), что вызовет колебания всего коптера, от которых будет сложно избавиться настройкой ПИД коэффициентов, особенно по курсу.
Время реакции
Это время зависит от крутящего момента, чем он выше, тем быстрее реакция. Простой способ измерения — засечь за какое время мотор наберёт макс. обороты.
Время реакции сильно зависит от веса и шага выбранного пропеллера. Помните, атмосфера тут тоже имеет влияние. На уровне моря давление выше, воздух плотнее, т.е. больше молекул воздуха, которые перемещаются винтом для создания тяги. На большой высоте винты будут вращаться быстрее и время реакции на стики будет ниже, но общая тяга тоже снизится (т.к. плотность воздуха ниже).
Температура
Она тоже влияет на моторы, т.к. при большой температуре снижается сила магнитного поля постоянных магнитов ротора, а при очень большой температуре они быстро размагничиваются, что снижает срок службы моторов.
Использование слишком тяжелых пропов и постоянная эксплуатация на больших оборотах может привести к перегреву. Постоянный перегрев ухудшит характеристики магнитов и поэтому конструкция моторов, обеспечивающая хорошее охлаждение, также гарантирует большой срок эксплуатации (конечно если вы не будете падать и ломать моторы).
Уровень вибраций и качество балансировки
Вибрации моторов могут вызвать кучу разных нежелательных побочных эффектов, и скажутся на летных характеристиках коптера.
Если мотор плохо отбалансирован, тогда вибрации могут влиять на PID-контроллер. Такой коптер будет довольно сложно настроить, т.к. частота вибраций зависит от газа.
Плохо отбалансированный мотор генерирует гораздо больше электрического шума, по сравнению с плавно вращающимся. Такие помехи тоже влияют на гироскопы, что снижает возможности коптера ещё больше, а также создают шумы на видео (если FPV оборудование питается от того же аккумулятора, что и моторы, а так бывает в 99% случаев, прим. перев).
Многие пилоты используют демпферы и антивибрационное крепление моторов и полётного контроллера, это позволяет снизить уровень вибраций и дает неплохие результаты.
Помните, что поврежденный, погнутый или несбалансированный пропеллер также создает нежелательные вибрации.
Особенности моторов для квадрокоптеров
Очень много параметров влияют на характеристики мотора, они могут быть очень сложными и противоречивыми. Например, моторы с одинаковым размером статора и KV, могут давать совершенно разную тягу, потреблять разный ток и по-разному реагировать на стики, всё это даже при использовании одинаковых пропеллеров. Отличия в дизайне, материалах, это тоже важно.
Ниже я покажу вам разные конструктивные особенности, которые влияют на основные характеристики моторов.
Конструкция вала постоянно меняется. Раньше это был алюминиевый пруток, затем производители стали делать вал полым, а вместо алюминия стал использоваться титан. Вес примерно такой же, но вал получился жёстче и прочнее. Однако, сверление отверстия строго по центру титанового вала заметно увеличило стоимость производства.
В последнее время всё чаще используется другой вариант: стальной штырь внутри трубки.
Магниты в бесколлекторных моторах
Магниты различаются по силе магнитного поля, например: N52, N54 и т.д. Чем больше число, тем сильнее магнит.
Более сильные магниты теоретически дадут больший крутящий момент и высокую эффективность.
При повороте мотора руками вы почувствуете «щелчки» или «шаги», чем отчетливее они ощущаются, тем хуже, т.к. это показывает силу магнитного поля и то, на сколько она слабая между магнитами, т.к. поле очень неравномерно. Если «щелчки» более слабые, то мотор будет вращаться плавнее.
При определенной температуре магниты ослабевают, N52H нужны чтобы справиться с высокой температурой. Буква H в конце, означает высокую рабочую температуру. Говорят, что N52SH в этом плане ещё лучше, но в настоящее время не известно на сколько N52SH лучше N52H и N52.
Есть вероятность, что при аварии или от вибрации магниты вообще оторвутся. Их можно приклеить обратно клеем Loctit 438.
Толщина пластин статора (lamination)
Статор собирается из отдельных пластин, чем меньше толщина пластины, тем больше их требуется для сборки статора.
Если кратко, то чем тоньше пластины, тем лучше. Сборный статор позволяет снизить вихревые токи (токи Фуко), из-за которых меняется магнитное поле и выделяется лишнее тепло. Тем тоньше пластины, тем меньше энергии тратится на вихревые токи (из-за которых появляются нежелательные магнитные поля), а мотор получается более эффективным и мощным.
Воздушный зазор (air gap)
Воздушный зазор между ротором и статором. С увеличением расстояния магнитное поле ослабевает нелинейно, так что уменьшение этого зазора заметно увеличивает мощность мотора.
Небольшой зазор не только делает мотор более мощным, но и увеличивает крутящий момент и уменьшает время реакции. Недостаток небольшого зазора: увеличение потребляемого тока и уменьшение эффективности. Ну и появляются опасения на счет долговечности, т.к. при ударе по колоколу, может сместится ротор, который заденет статор, в результате чего магниты могут отвалиться или вообще разрушиться.
Форма магнитов — изогнутые магниты
Использование изогнутых магнитов, позволяет уменьшить расстояние до статора, т.к. зазор становится одинаковым по всей длине магнитов.
Фактически это означает, что точка с самым сильным магнитным полем теперь находится не на поверхности магнита (как у прямоугольных).
«Эпицентр» магнитного поля с внешней стороны будет ниже поверхности, а с внутренней стороны — над поверхностью. Т,е. получается что магнитные поля постоянных магнитов и электромагнитов сближаются без уменьшения воздушного зазора.
Помимо формы магнитов, некоторые производители экспериментируют с их толщиной, иногда более тонкие магниты (с более слабым магнитным полем) дают лучший результат.
Стопорное кольца / стопорный винт
Чтобы зафиксировать вал на основании мотора, производители используют либо стопорное кольцо, либо винт. У каждого способа есть как достоинства, так и недостатки, сложно сказать, что лучше.
Крепление вала стопорным кольцом и винтом
В общем и целом, использование винтика упрощает обслуживание мотора, т.к. его легче открутить, чем снять и поставить стопорное кольцо. При использовании винта есть риск перетянуть его и тогда вал будет вращаться с доп. усилием.
Были и случаи отстрела стопорных колец прямо во время полета, при этом колокол сразу улетает в сторону, а коптер падает. Однако, и с винтами такое тоже случается.
Открытый или закрытый низ мотора?
Нижняя часть мотора (основание) может быть сделана в «традиционном», закрытом стиле или в более новом, открытом. У обоих вариантов есть и плюсы, и минусы.
Открытый низ мотора
Закрытый низ мотора
У моторов с закрытым низом более прочное основание, однако если низ открытый, то и вес меньше, разница около 2 грамм.
В мотор с закрытым низом реже попадает грязь, но открытые моторы легче чистить.
Если низ открытый, то хорошо видны крепежные винты, поэтому шанс закоротить обмотки ниже (чаще всего коротят обмотки новички, если у моторов закрытый низ).
В мотор с открытым низом легко попадает грязь, но такие моторы легче чистить
Однако, закрытый низ лучше защищает обмотки от повреждения.
Форма кольца для фиксации магнитов
Внутри колокола есть кольцо для фиксации магнитов. Сам колокол обычно изготавливают из алюминия, а кольцо — из стали, т.к. оно должно взаимодействовать с магнитным полем.
В современных моторах это не просто кольцо, его форма специально разрабатывается для оптимизации магнитного поля и увеличения крутящего момента.
«PoPo» — способ крепления пропеллеров
«Pop on Pop off» (PoPo) — это вал, в котором есть подпружиненные шарики для быстрой установки пропеллера. Более подробно читайте тут (англ).
Прочие фишки
- Контактные площадки для пайки
- Интегрированные регуляторы скорости
- Дизайн системы охлаждения
Производители моторов постоянно экспериментируют как с дизайном, так и с интеграцией с другим железом, это ведет к улучшению системы охлаждения и даже интеграции регуляторов в моторы. Лично я считаю, что контактные площадки для пайки проводов питания довольно удобны, они позволят вам использовать более тонкий провод там, где не нужны большие токи, а значит сэкономят вес. В случае обрыва провода ремонт тоже упрощается.
Моторы прямого и обратного вращения (CW и CCW)
Иногда можно встретить маркировку «CW» и «CCW«, что расшифровывается как “ClockWise” (по часовой стрелке) и “Counter-ClockWise” (против часовой стрелки).
Направление вращения важно для коллекторных моторов, т.к. щетки очень быстро стираются при вращении в обратную сторону, у бесколлекторных моторов такой проблемы нет.
CW и CCW бесколлекторные моторы это как правило полностью одинаковые моторы, единственное их отличие — направление резьбы на валу (англ).
Моторы на квадрокоптере вращаются в разных направлениях, важно то, что при их вращении все 4 гайки удерживающие винты сами затягиваются.
Как проверить, что вы поставили мотор с нужной резьбой? Просто держитесь за гайку на валу, и начните вращать мотор в том направлении, в котором он должен вращаться на коптере. Если гайка затягивается, тогда вы правильно выбрали направление резьбы
Лично я предпочитаю использовать одинаковую резьбу на всех моторах, так что никогда не запутаюсь с гайками. Когда придется искать дополнительные гайки в магазинах, вы поймете, как сложно найти гайки с левой резьбой.
Балансировка моторов
Первое что нужно сделать при получении новых моторов — это отбалансировать их. На самом деле это очень правильный шаг несмотря на то, что он не всегда необходим. Лично я балансирую крупные моторы типа 2212.
Практика показала, что моторы многих брендов балансировать не нужно, их качество и так отличное. Однако, если вы выбрали дешевые моторы, то не удивляйтесь более низкому качеству и необходимости балансировки.
Рекомендации по выбору
На выбор доступно огромное число моторов, это реально проблема. В моем списке комплектующих для миникоптеров я указал наиболее популярные модели.
А вот топ 5 лучших моторов для миникоптеров по версии нашего сообщества.
История изменений
- Октябрь 2016 — первая версия статьи
- Ноябрь 2016 — добавлена новая информация
- Май 2017 — добавлены характеристики моторов
- Январь 2018 — исправлены грамматические ошибки
- Март 2018 — добавлены разделы про обмотки, полюса, подшипники и крутящий момент
- Октябрь 2018 — добавлены информация о схемах крепления и PoPo-технологии
Как выбрать моторы для квадрокоптера или гоночного дрона? : 4 комментария
Спасибо. Хорошая статья для новичков. Жаль ее три года назад не было. Когда собирал свой коптер, был абсолютно не в теме и, по по сути «тыкал пальцем в небо» или смотрел аналоги… Почти угадал — оно летает :).
Статья — бла-бла-бла. Автор упорно шарахается от цифр и не приводит никакую конкретику.
Какие цифры вам нужны?
Тяга? Потребляемый ток? Ищите в обзорах конкретных моторов.
Конкретика? Посоветовать какой-то мотор? Все зависит от целей и размера коптера. Список рекомендованных для гоночных есть. есть статья про комплектующие для тинивупов и синевупов.
О, искал давно такие разъяснения, все понятно, спасибо! Основы основ, а остальное все а калькуляторах делается.
Как выбрать бесколлекторный мотор для модели
#SWT делится опытом и наработками.
Посвящается новичкам.
Итак.
Выбор электромотора для трофи модели.
Существует два варианта электродвигателей
1. Коллекторный/brushed
2. Бесколлекторный/brushless
а) сенсорный/sensored
б) безсенсорный/sensorless
Плюсы-минусы можете почитать на других ресурсах.
От себя скажу: БК надёжнее и живучее- значительно. С появлением бюджетных БК моторов выбор очевиден(несогласных владельцев надежных коллекторов приглашаю к нам на покатушку)
Сенсорный vs Безсенсорный мотор в триал-трофи
(не буду спорить, что-то там кто-то настраивает и катает «плавно», но без свидетелей. Но мы то знаем, что их плавно- это не плавно).
Итак.
Усвоили что безколлекторный сенсорный мотор. Хотите что-то своё? Не вопрос.
Как выбрать безколлекторный сенсорный мотор.
Основной параметр, который нам важен для подбора-> kV. kV- это оборот/вольт, то есть сколько оборотов выдаёт вал двигателя на один вольт.
1. Меньше kV-> больше тяги
2. Больше kV-> меньше тяги
Мотор с малым kV похож на мощный дизель с огромной тягой, но низкой максималкой. Мотор с избытком kV- похож на корч для драгрейсинга с нулевой эластичностью.
В трофи оптимальны моторы, которые укладываются в диапазон 1500-2400kV
Второй параметр для ориентира «Т», Т- количество витков. Нас интересуют моторы 25.5т-17.5т. Но встречаются моторы, которые подходят по «т», но не подходят по kV. Например «21.5т 2960kV»-> такой мотор с большой долей вероятности не подходит. Так же рекомендую не рассматривать БК двигатель без указания kV, он может быть и 21.5т и 17.5т, но это «кот в мешке»
Скорость вашей модели всегда можно подогнать под свои нужды спур-пиньеном(за исключением моделей с планетарным редуктором).
Скорость не должна быть заоблачной, это не f1.
Используйте данный калькулятор: http://scriptasylum.com/rc_speed/top_speed.html весьма полезная и удобная вещь
Последовательно заполняем пустые строки. Данные разные под каждую модель.
1: передаточное отношение в мостах
2: передаточное отношение в редукторе
а) на первой передаче
б) на второй передаче
3: передаточное отношение дополнительной раздатки если есть(на моделях с КПП, на gelande/TF)
4: число зубьев(«Т») спур
5: число зубьев(«Т») пиньен
6: напряжение АКБ/тип акб. изменяя этот параметр можно увидеть разные скорости на свежезаряженном и севшем акб
7: kV мотора
8: диаметр покрышек(вводится в дюймах)
Вот почему при выборе мотора важен именно kV а) указан на 99% моторов, б)можно просчитать скорость в)можно подобрать спур/пиньен под конкретный мотор(допустим у вас был мотор 2000kV- в поведении модели все устраивало, по каким-то причинам новый мотор отличается по kV(другой бренд/модель и тд)- с помощью этого калькулятора можно узнать какой спур/пин поставить, чтоб получить +/- похожее поведение модели.
Продолжение следует.
Читайте также: Из чего делается мотор в рафте
«Бесколлекторные двигатели» ЛикБез и проектирование
Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера, которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.
Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части — Статора и подвижной части — Ротора. Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).
Бесколлекторный двигатель — это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от «порций» коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)
Устройство бесколлекторного двигателя:
Inrunner (произносится как «инраннер»). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.
Outrunner (произносится как «аутраннер»). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.
Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.
Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.
Что бы измерить это напряжение изпользуется метод «виртуальной точки». Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально «переложить провод» в место соединения всех обмоток:
Читайте также: Лодочные моторы джонсон в беларуси
Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники — просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости — это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения
Принципиальная схема регулятора скорости (вентильная):
Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).
Достоинства и недостатки бесколлекторных двигателей:
Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.
Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки
Ход работы:
1) С самого начала решаем:
Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?
В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.
Читайте также: Огсе 0693 аномальный мотор
2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:
1А — 0.05мм; 15А — 0.33мм; 40А — 0.7мм
3А — 0.11мм; 20А — 0.4мм; 50А — 0.8мм
10А — 0.25мм; 30А — 0.55мм; 60А — 0.95мм
3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)
5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.
Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.
Чтобы увидеть отличия соединений «звезда» и «треугольник» я соединял по разному обмотки:
В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.
Характеристики полученного двигателя:
Потребляемый ток: 34.1А
Ток холостого хода: 2.1А
Сопротивление обмоток: 0.02 Ом
Количество полюсов: 14
Обороты: 8400 об/мин
Видеоотчет испытания двигателя на самолете. Мягкой посадки
Расчет КПД двигателя:
Очень хороший показатель. Хотя можно было еще выше добиться.
Выводы:
1) У бесколлекторных двигателей высокая эффективность и КПД
2) Бесколлекторные двигатели компактны
3) Бесколлекторные двигатели можно использовать во взрывоопасных средах
4) Соединение звездой дает больший крутящий момент, но меньшее количество оборотов в 1.73 раза, чем соединение треугольником.
Таким образом, изготовить собственный бесколлекторный мотор для пилотажной модели самолета- задача выполнимая
Если у вас есть вопросы или вам что-то не понятно, задавайте мне вопросы в комметариях этой статьи. Удачи всем)
Моторы для моделей. Немного теории. Часть 1
Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).
Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе.
коллекторный и бесколлекторный
Давайте сначала узнаем, как работает коллекторный двигатель.
Чтобы узнать, почему бесколлекторные двигатели настолько эффективны и имеют высокую мощность, необходимо знать, как работает стандартный коллекторный мотор.
Обычные коллекторные электродвигатели, имеют всего два провода (положительный и отрицательный), которыми двигатель подключается к регулятору скорости. Внутри корпуса двигателя можно увидеть два изогнутых постоянных магнита, а по центру установлен вал с якорем, на котором намотаны обмотки из медной проволоки. С одной стороны вала якоря устанавливается моторная шестерня, с другой стороны вала расположен так называемый коллектор из медных пластин, через который с помощью угольных щеток ток подается к обмоткам якоря.
коллекторный мотор
Две угольные щетки постоянно скользят по вращающемуся медному коллектору. Как вы можете видеть на рисунке выше, напряжение по проводам через щетки и коллектор поступает к обмоткам якоря, возникает электромагнитное поле, которое взаимодействует с постоянными магнитами статора и заставляет якорь вращаться.
Как начинает вращаться стандартный коллекторный двигатель.
Когда на обмотки якоря поочередно поступает постоянный электрический ток, в них возникает электромагнитное поле, которое с одной стороны имеет «северный» а с другой «южный» полюс. Поскольку «северный» полюс любого магнита автоматически отталкиваются от «северного» полюса другого магнита, электромагнитное поле одной из обмоток якоря, взаимодействуя с полюсами постоянных магнитов статора, заставляет якорь вращаться. Через коллектор и щетки ток поступает на следующую обмотку якоря, что заставляет якорь вместе с валом мотора продолжать вращение, и так до тех пор, пока к мотору подается напряжение. Как правило, якорь коллекторного мотора имеет три обмотки (три полюса) — это не позволяет двигателю застревать в одном положении.
Недостатки коллекторных двигателей выявляются, когда нужно получить огромное количество оборотов от них. Поскольку щетки должны постоянно находиться в контакте с коллектором, в месте их соприкосновения возникает трение, которое значительно увеличивается, особенно на высоких оборотах. Любой дефект коллектора приводит к значительному износу щеток и нарушению контакта, что в свою очередь снижает эффективность мотора. Именно поэтому серьезные гонщики протачивают и полируют коллектор двигателя и меняют щетки почти после каждого заезда. Коллекторный узел стандартного мотора так же является источником радиопомех и требует особого внимания и обслуживания.
Теперь посмотрим, как работает бесколлекторный двигатель.
Основной особенностью конструкции бесколлекторного двигателя является то, что он по принципу работы похож на коллекторный мотор, но все устроено как бы "наизнанку", и в нем отсутствуют коллектор и щетки. Постоянные магниты, которые в коллекторном моторе установлены на неподвижном статоре, у бесколлекторного мотора расположены вокруг вала, и этот узел называется ротор. Проволочные обмотки бесколлекторного мотора размещены вокруг ротора и имеют несколько различных магнитных полюсов. Датчиковые бесколлекторные моторы имеют на роторе сенсор, который посылает сигналы о положении ротора в процессор электронного регулятора скорости.
бесколлекторный мотор
Из-за отсутствия коллектора и щеток в бесколлекторном моторе нет изнашивающихся деталей, кроме шарикоподшипников ротора, а это автоматически делает его более эффективным и надежным. Наличие сенсора контроля вращения ротора также значительно повышает эффективность. У коллекторных двигателей не возникает искрения щеток, что резко снижает возникновение помех, а отсутствие узлов с повышенным трением благоприятно сказывается на температуре работающего мотора, что так же повышает его эффективность.
Единственный возможный недостаток бесколлекторной системы – это несколько более высокая стоимость, однако каждый, кто испытал высокую мощность бесколлекторной системы, почувствовал прелесть отсутствия необходимости периодической замены щеток, пружин, коллекторов и якорей, тот быстро оценит общую экономию и не вернется к коллекторным моторам … никогда!
Помимо базовых размеров и различных параметров, бесколлекторные двигатели могут подразделяться по типу: с датчиком и без датчика. Двигатель с датчиком используют очень маленький сенсор на роторе и кроме трех толстых кабелей, по которому мотор получает питание, имеют дополнительный шлейф из тонких проводов, которые соединяют двигатель с регулятором скорости. Дополнительные провода передают информацию с датчика о положении ротора сотни раз в секунду. Эта информация обрабатывается электронным регулятором скорости, что позволяет мотору работать плавно и эффективно, насколько это возможно. Такие моторы используют профессиональные гонщики, однако такие двигатели намного дороже и сложнее в использовании.
Бездатчиковая бесколлекторная система, как можно догадаться, не имеет датчиков и дополнительных проводов, а ротор таких двигателей вращается без точной регистрации его положения и оборотов регулятором скорости. Это позволяет сделать двигатель и регулятор скорости проще в изготовлении, проще в установке и в целом дешевле. Бездатчиковые системы способны обеспечить такую же мощность, как датчиковые, просто с чуть-чуть меньшей точностью, а это идеальное решение для любителей и начинающих спортсменов.