Что является определением термина «Искусственный заземлитель»?
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты. Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
Какое определение соответствует термину «искусственный заземлитель»?
Ответы Ростехнадзора по электробезопасности (ЭБ) для электротехнического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей по аттестационным вопросам на тестовые задания. Вопросы с правильными ответами подтверждаются выдержкой из нормативной документации по которым составлены тесты Олимпокс.
Какое определение соответствует термину «искусственный заземлитель»?
• Заземлитель, специально выполняемый для целей заземления
• Преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством
• Сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления
Выдержка из нормативной документации:
Правила устройства электроустановок-1
1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.
На сайте Тест24.ру подготовлены и размещены тесты по электробезопасности актуальные на 2020 год. Вы можете пройти онлайн тестирование по курсам ЭБ 1260.9, ЭБ 1259.8, ЭБ 1258.8, ЭБ 1257.8, ЭБ 1256.8, ЭБ 1255.8, ЭБ 1254.8 и ЭБ 1547.3 для подготовки к сдаче экзамена на едином портале тестирования Ростехнадзора на группу допуска до и выше 1000 В.
Заземляющие устройства. Термины и определения.
Судя по интересу к теме «Зазмляющих устройств», я решил опубликовать целый ряд статей по данной теме. Сегодня первая из большого цикла. Назовем ее: ВВОДНАЯ . Я в ней раскрою смысл понятий используемых профессионалами. Напоминаю, что если у Вас имеются какие-то вопросы, Вы всегда их можете мне задать или на сайте или по электронной почте.
Электроустановки в отношении мер электробезопасности разделяются на:
1. электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью;
2. электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;
3. электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;
4. электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.
В этой статье и последующих будем рассматривать только установки из пункта 3 как наиболее часто встречаемые как на производстве так и в бытовых условиях.
Для электроустановок напряжением до 1 кВ приняты следующие обозначения:
система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
Рис. 1. Система TN—C переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:
1 — заземлитель нейтрали (средней точки) источника питания;
2 — открытые проводящие части; 3 — источник питания постоянного тока
система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1.);
система TN—S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2);
система TN—C—S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 3);
система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены ;
система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Первая буква — состояние нейтрали источника питания относительно земли:
Т — заземленная нейтраль;
I — изолированная нейтраль.
Вторая-буква — состояние открытых проводящих частей относительно земли:
Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);
N — — нулевой рабочий (нейтральный) проводник;
РЕ — — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);
PEN — — совмещенный нулевой защитный и нулевой рабочий проводники.
Рис. 2. Система TN—S переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники разделены:
1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — источник питания
Рис. 3. Система TN—C—S переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:
1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части, 3 — источник питания
Далее я приведу основные определения используемые специалистами;
Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.
Проводящая часть — часть, которая может проводить электрический ток.
Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.
Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.
Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.
Заземляющее устройство — совокупность заземлителя и заземляющих проводников.
Зона нулевого потенциала (относительная земля) — часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.
Зона растекания (локальная земля) — зона земли между заземлителем и зоной нулевого потенциала.
Термин земля, следует понимать как земля в зоне растекания.
Замыкание на землю — случайный электрический контакт между токоведущими частями, находящимися под напряжением, и землей.
Напряжение на заземляющем устройстве — напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.
Сопротивление заземляющего устройства — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
Эквивалентное удельное сопротивление земли с неоднородной структурой — удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
Защитное заземление — заземление, выполняемое в целях электробезопасности.
Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).
Защитное зануление в электроустановках напряжением до 1 кВ — преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов.
Защитное уравнивание потенциалов — уравнивание потенциалов, выполняемое в целях электробезопасности.
Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.
Защитный (РЕ) проводник — проводник, предназначенный для целей электробезопасности.
Защитный заземляющий проводник — защитный проводник, предназначенный для защитного заземления.
Защитный проводник уравнивания потенциалов — защитный проводник, предназначенный для защитного уравнивания потенциалов.
Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.
Нулевой рабочий (нейтральный) проводник ( N ) — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.
Совмещенные нулевой защитный и нулевой рабочий ( PEN ) проводники — проводники в электроустановках напряжением до 1 кВ, совмещающие функции нулевого защитного и нулевого рабочего проводников.
Главная заземляющая шина (ГЗШ) — шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.
Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.
На этом на сегодня все. Надеюсь, информация в статье оказалась Вам полезной. Напоминаю, что Вы можете задавать мне свои вопросы. На основании их будут мною писаться статьи, т.к. сайт создан не для того чтобы просто быть, а для того чтобы быть полезным читателям, т.е. Вам.
4 мысли о “Заземляющие устройства. Термины и определения.”
Доброго времени суток!
При изучении сметы на производство электроиспытаний обнаружил две позиции «Измерение сопротивления растеканию тока заземлителя» и «Измерение сопротивления растеканию тока контура с диагональю, м, до 20». Что-то я не понял в чем разница «заземлителя» и «контура»? Я так понимаю. что заземлитель это (скорее всего имеется ввиду) грубо говоря — штырь. А «контур» — это система таких «штырей».
Добрый вечер Сергей.
Совершенно верно Вы понимаете.Хотя под заземлителем могут пониматься несколько электродов расположенных недалеко друг от друга.
Если ЗУ имеет небольшие размеры, а вокруг него имеется обширная площадь, свободная от линий электропередачи и подземных коммуникаций,то расстояния до электродов выбираются следующим образом: rзт= 5Д; rзп=0,5 rзт. Здесь Д — наибольший линейный размер ЗУ, характерный для данного типа заземлителя (для заземлителя в виде многоугольника — диагональ ЗУ, для глубинного заземлителя — длина глубинного электрода, для лучевого за-землителя — длина луча), rзп — расстояние от края ЗУ до потенциального электрода, rзт — расстояние от края ЗУ до токового электрода.
Если ЗУ имеет большие размеры и отсутствует возможность размещения электродов, как указано выше, токовый электрод следует разместить нарасстоянии rзт=3Д. Потенциальный электрод размещается последовательно на расстоянии rзп = 0,1 rзт, 0,2 rзт, 0,3 rзт, 0,4 rзт, 0,5 rзт, 0,6 rзт, 0,7 rзт, 0,8 rзт, 0,9rзт и производят измерение значений сопротивления. По данным измерений строят кривую зависимости сопротивления от расстояния потенциального электрода до ЗУ. Если вид полученной зависимости соответствует изображенной на рис., а значения сопротивлений, измеренных при положении потенциального электрода на расстояниях 0,4 Lт и 0,6 Lт отличаются не более,чем на 10%, то за сопротивление ЗУ принимают значение сопротивления на расстоянии 0,5 Lт. Если кривая немонотонная, что является следствием влияния различных коммуникаций (подземных и надземных), измерения повторяют при расположении электродов в другом направлении от ЗУ.
Что является определением понятия искусственный заземлитель?
Как сделать монтаж контура заземления самостоятельно
Монтаж заземления можно сделать своими руками. Все шаги будут описаны ниже.
Выбираем место
Оно должно находиться в той части участка возле дома, куда не заходит человек без острой необходимости и домашние животные. Контур располагается не ближе 1 м от фундамента постройки. Лучше, если этот участок будет огорожен невысокой изгородью. На земле отмечаются все точки нахождения электродов. Обычно строится правильный, равнобедренный треугольник.
Земляные работы
Вдоль всей разметки копается траншея глубиной 0,5-0,6 м. Аналогичная траншея роется по ходу укладки шины, соединяющей контур с вводным электрошкафом.
Собираем конструкцию
Вначале, согласно схемы вбиваются штыри на заданную глубину (обычно 2-2,5 м). К вершинам стержней приваривается металлосвязь. Одна полоса приваривается к крайнему электроду (вершине треугольника) и укладывается в траншею, идущую к дому.
Ввод в дом
Шина от контура вводится во входной электрощит. На конце сверлится отверстие для болтового соединения. Сюда присоединяется соответствующая жила кабеля. При TN-C-S-системе шина соединяется с шиной-расщепителем.
Как производится расчет параметров основных заземляющих элементов
На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.
Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления. Основа вычислений — допустимые пределы напряжения шага и прикосновения
На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения
Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.
Выполняются расчеты на основании таких данных:
- Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
- Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
- Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
- Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
- Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
- Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
- Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
- При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.
Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы
Принцип работы
Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.
Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:
- плотность;
- влажность;
- соленость;
- площадь контакта с заземлителем.
Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».
Наглядная демонстрация заземления
На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:
- для подключения шины заземления;
- для засыпки нового реагента;
- для заливки воды (провоцирует химическую реакцию в засушливый период).
Другой современный вариант заземлителя — модульный. Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.
Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:
- в вершинах равностороннего треугольника рядом с объектом;
- по углам объекта;
- по периметру объекта.
Число стержней и расстояние между ними определяются расчетом.
Сопротивление заземлителя периодически проверяют. Максимально допустимая величина — 30 Ом.
Материалы для контура заземления
Контур заземления должен иметь высокую механическую прочность, низкое электрическое сопротивление и возможность надежного соединения. Кроме того, немаловажную роль при выборе материала играет его стоимость.
Параметры и материалы штырей
Электроды или штыри обычно делаются из стального профиля. Данный материал привлекает возможностью заглубления стержней путем простого вбивания. При этом электрическое сопротивление его вполне удовлетворяет требованиям при достаточном поперечном сечении. Штыри могут выполняться из таких материалов:
- Пруток. Наиболее распространенный вариант – стержень диаметром 16-18 мм. Арматуру использовать не рекомендуется, т.к. она подвергается калению, что приводит к увеличению удельного сопротивления. Кроме того, рифленая поверхность приводит к нерациональному использованию сечения стержня.
- Уголок. Чаще всего применяется уголок размером 50х50 мм с толщиной стенки 4-5 мм. Нижняя часть заостряется для упрощения забивания.
- Труба диаметром более 50 мм с толщиной стенки 4-5 мм. Толстостенные трубы рекомендуются для твердых грунтов и регионов с частыми засухами. В нижней части такого штыря сверлятся отверстия. При пересыхании почвы в трубу заливается соленая вода, что повышает рассеивающую способность грунта.
Из чего делать металлосвязь
Электроды, забитые в землю, соединяются между собой металлосвязью. Она может выполняться из следующих материалов:
- Медная шина или провод сечением не менее 10 мм2.
- Алюминиевая полоса или провод сечением не менее 16 мм2.
- Стальная полоса сечением не менее 48 кв.мм.
Наиболее часто используется стальная полоса размером (25-30)х5 мм. Основное ее преимущество возможность надежной сварки с электродами. Когда в качестве связи используется проводник из цветных металлов, к штырям привариваются болты, на которых закрепляются шины.
Совокупная защита заземляющих устройств и предохранителей
Как сделать заземление в частном доме: виды контуров и инструкция по монтажу
Заземление не только отводит опасный ток, но при наличии аппарата защиты вызывает отключение аварийного оборудования. При контакте фазного проводника с заземленным корпусом сеть работает в режиме, близком к короткому замыканию (КЗ), сопровождающемся резким увеличением силы тока в цепи. На это реагирует выключатель автоматический (ВА), обязательно устанавливаемый на вводе электрической линии на объект.
Правда, подобное возможно лишь при очень низком сопротивлении заземлителя, что бывает крайне редко. В большинстве случаев вероятность отключения ВА довольно низкая. К примеру, при сопротивлении заземлителя в 10 Ом ток в цепи составит I = 220 / 10 = 22 А. Автоматы, согласно требованиям ГОСТ, выдерживают в течение часа ток, в 1,42 раза превышающий номинальное значение. То есть автомат на 16 А при силе тока в 22 А не отключится в течение почти 60-ти мин (16 * 1,42 = 22,72 А).
Более надежный автомат защиты — выключатель дифференциального тока или устройство предохранительного отключения (УЗО). Этот прибор сравнивает токи в фазном и нулевом проводниках и при обнаружении разницы, свидетельствующей об утечке, разъединяет цепь. По чувствительности, то есть минимальной величине утечки тока, вызывающей срабатывание, УЗО делятся на несколько категорий:
- Защищающие от поражения электротоком: 10 мА – устанавливаются в помещениях с высокой влажностью и 30 мА – в сухих.
- Противопожарные – на 100, 300 и 500 мА.
Противопожарные УЗО применяют на объектах, где короткое замыкание может вызвать пожар. Ими защищают участки сети, где поражение током практически исключено, например, цепи освещения.
УЗО и ВА не являются взаимозаменяемыми. ВА защищает от коротких замыканий и перегрузок, УЗО — от поражения электротоком. В идеале ввод и каждая группа потребителей должны быть защищены и ВА, и УЗО.
Виды заземлителей
Заземление и зануление: в чем разница по уровню безопасности
Если проводимость у последнего низкая, приходится усложнять конструкцию заземлителя.
Есть еще сложности: среда грунта оказывает на электроды корродирующее воздействие, в некоторых случаях металл «вымывается» в результате электролиза.
Все это побуждает разрабатывать самые разные конструкции заземлителей.
Естественные, искусственные заземлители
Естественными заземлителями называют конструкции, у которых отведение электричества в грунт не является основной функцией. Например:
- Фундаменты, сооруженные из железобетона.
- Подземные инженерные сети: трубопроводы, оболочка и броня кабелей.
- Рельсы железной дороги и прочие коммуникации наземной прокладки.
Использование ж/б фундаментов в качестве заземлителей допускается при следующих условиях:
- Влажность грунта — не менее 3%. В сухой почве бетон обладает высоким сопротивлением.
- Отсутствует гидроизоляция (битумное покрытие допускается).
- Монолитная конструкция. Можно использовать и сборные, но для этого необходимо соединить электросваркой арматуру соседних блоков. Также поступают со свайным фундаментом: арматуру свай приваривают к арматуре ростверка.
Заземлитель ЗР 10/630 УХЛ3
Применение естественных заземлителей позволяет значительно удешевить устройство заземления.
Если это невозможно, используют заземлители искусственные — специальные конструкции, нацеленные только на обеспечение электроконтакта с высокой проводимостью между заземленным элементом и грунтом.
Искусственный заземлитель, состоящий из нескольких соединенных между собой электродов, называют сложным. Если он смонтирован вокруг объекта, то применяют название «контур заземления».
В основном электроды изготавливают из стали:
- черной (низкоуглеродистой – Ст.0, Ст.3 и пр.);
- нержавеющей;
- черной с покрытием из меди, алюминия или цинка.
Электроды из «черной» стали в расчете на коррозию делают более крупными, но они все равно стоят дешевле нержавеющих или с покрытием. Однако, у них есть важный недостаток: при появлении ржавчины на поверхностном слое его сопротивление возрастает.
Эффективность сложного заземлителя зависит от расстояния между электродами. При близком расположении они экранируют друг друга.
Горизонтальные, вертикальные заземлители
Если проводимость поверхностного слоя грунта высока и имеется достаточно свободного места, электроды искусственного заземлителя укладывают горизонтально в неглубоких траншеях. На пахотных землях глубина закладки составляет 1 м, на прочих — 0,5 м.
Достоинство метода: минимальная доля ручного труда.
На каменистых и вечномерзлых грунтах горизонтальная закладка — единственно возможный вариант. Если проводимость поверхностного слоя грунта невысока, что бывает довольно часто, применяют электролитический заземлитель. Это согнутая Г-образно труба с отверстиями в стенке, заполненная минеральной солью.
При растворении солей в грунтовой влаге образуется электролит, что дает двойной эффект:
- повышается проводимость грунта;
- снижается температура замерзания (промерзший грунт обладает высоким сопротивлением).
В засушливый период через выведенную наружу короткую часть в заземлитель наливают воду. В соль добавляют вещества, тормозящие их вымывание весной.
Засыпку периодически обновляют.
В подавляющем большинстве случаев поверхностный грунт обладает рядом недостатков:
- слабая проводимость — из-за низких: плотности и влажности;
- неравномерное растекание тока — из-за низкой и нестабильно распределенной плотности;
- значительное содержание воздуха, способствующего коррозии;
- температурные перепады;
- промерзание.
Плотные и влажные глубинные слои этих недостатков лишены, потому чаще электроды размещают вертикально. Термин «вертикально» условен: проводники могут располагаться под углом до 45 градусов.