Как найти последовательное сопротивление
Перейти к содержимому

Как найти последовательное сопротивление

  • автор:

Последовательное, параллельное и смешанное соединение резисторов (сопротивлений)

Все разнообразие схем построено на двух типах соединения — параллельном и последовательном. Для разных соединений действуют разные законы, что и дает возможность создания устройств с различными характеристиками. Рассмотрим последовательное и параллельное соединение резисторов.

Что такое резистор и для чего он нужен

Резистор — это радиоэлемент, который увеличивает сопротивление цепи. Ставят его обычно для того, чтобы понизить/ограничить напряжение или ток. Есть сопротивления постоянные и переменные.

Например, светодиоды требуют небольшого тока, иначе перегревается и быстро выходит из строя. Чтобы ограничить ток, перед светодиодом поставьте сопротивление. Ток в цепи станет меньше.

Для чего ставят сопротивления

Для чего нужны резисторы: для подстройки параметров питания

Постоянные сопротивления — это те, которые не меняют своего номинала в процессе работы. Если это и происходит, то считается выходом из строя.

Внешний вид резисторов переменных и постоянных

Так выглядят переменные и постоянные резисторы

Переменные резисторы, наоборот, отличаются тем, что их сопротивление можно изменять. Они имеют бегунок или поворотную ручку, при помощи которых и изменяется номинал. На основе таких устройств делают регуляторы. Например, регулятор громкости, накала греющего элемента и т.д.

Последовательное соединение сопротивлений

Последовательное соединение характеризуется тем, что элементы идут друг за другом. Конец одного подключается к началу другого. При подключении полученной цепочки к источнику тока получается кольцо.

Пример последовательного соединения

Лампы накаливания соединенные последовательно, можно рассматривать как сопротивления

Теоретическая часть

Последовательное соединение характерно тем, что через все элементы протекает ток одинаковой силы. То есть, если цепочка состоит из двух резисторов R1 и R2 (как на рисунке ниже), то ток протекающий через каждое из них и любую другую часть цепи будет одинаковой (I = I1 = I2).

Схема последовательного соединения

Последовательно соединенные сопротивления. I1 — ток протекающий через резистор R1, I2 — ток протекающий через резистор R2

Суммарное сопротивление всей цепи последовательно соединенных резисторов считается как сумма сопротивлений всех ее элементов. То есть, номиналы складывают.

R = R1 + R2 — это и есть формула расчета сопротивления при последовательном соединении резисторов. Если элементов больше двух, будет просто больше слагаемых.

Еще одно свойство последовательного соединения — на каждом элементе напряжение отличается. Ток в цепи одинаковый, а напряжение на резисторе зависит от его номинала.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В.

Иллюстрация последовательного соединения

Так понятнее, что такое последовательное соединение

Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В.

А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Параллельное соединение резисторов

Параллельное соединение — это когда входы нескольких деталей соединяются в одной точке. Точно так же — в одну точку — соединяют их выходы.

Что такое параллельное соединение

Так выглядит параллельное соединение на схеме и в реальности

Теория и законы параллельного соединения

Если посмотреть на изображение параллельного соединения, заметно, что ко всем элементам прилагается одинаковое напряжение. То есть, при параллельном соединении резисторов, на каждом из них будет одинаковое напряжение.

Получается, что ток разделяется на несколько «ручейков». То есть, при параллельном соединении резисторов сила тока, протекающего через каждый из элементов, отличается. I = I1+I2+I3. И зависит сила тока (согласно тому же закону Ома) от сопротивления каждого участка цепи. В случае с параллельным соединением резисторов — от их номинала.

Схема параллельного соединения резисторов

Так выглядит параллельное соединение резисторов на схеме

Общее сопротивление участка цепи при таком соединении становится ниже. Его высчитывают по формуле:

Такая форма хоть и понятна, но неудобна. Формула расчета сопротивления параллельно подключенных резисторов получается тем сложнее, чем больше элементов соединены параллельно. Но больше двух-трех редко кто объединяет, так что на практике достаточно знать только две формулы приведенные ниже.

Формулы расчета: два резистора соединены параллельно и три резистора соединены параллельно

Формулы расчета сопротивления при параллельном подключении двух и трех резисторов

Если подставить значения в эти формулы, то заметим, что результат будет меньше, чем сопротивление резистора с наименьшим номиналом. Это стоит запомнить: результирующее сопротивление включенных параллельно резисторов будет ниже самого маленького номинала.

Примеры расчета параллельного соединения сопротивлений

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Формула дял соединения резисторов

Как высчитывать сопротивление составных резисторов

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Пример параллельного подключения

Еще один пример с лампочками

При соединении параллельно трех резисторов, считать приходится больше, так как формула сложнее. Но картина не отличается:

  • Если подключить параллельно 150 Ом, 100 Ом и 50 Ом, результирующее будет 27,3 Ом.
  • Попробуем с более низкими номиналами. Если параллельно включены 20 Ом, 15 Ом и 10 Ом. Получим результирующее сопротивление 4,61 Ом.

Вот вам подтверждение правила. Суммарное сопротивление параллельно соединенных резисторов меньше чем самый низкий номинал.

Смешанное соединение

Как быть, если в схеме есть и параллельное, и последовательное соединение резисторов? В таком случае считают общее сопротивление по участкам. Можно при этом перерисовывать схему, заменяя составные сопротивления на один «прямоугольник», но проставляя над ним высчитанный результат.

Расчет сопротивления цепи при смешанном соединении резисторов

Пример расчета сопротивления при смешанном соединении резисторов. Рассматриваем исходную схему как совокупность параллельных и последовательных соединений

Шаг 1. Нашли общее сопротивление последовательно соединенных резисторов R3 и R4:

R3-4 = 3 кОм + 3 кОм = 6 кОм;

Шаг 2. Рассчитали сопротивление параллельно соединенных резисторов R2 и R3-4:

R2-4 = 3 кОм * 6 кОм / (3 кОм + 6 кОм) = 18 кОм/9 кОм = 2 кОм;

Шаг 3. Рассчитали общее сопротивление последовательно соединенных резисторов R1 и R2-4:

R1-4 = R1 + R2-4 = 1 кОм + 2 кОм = 3 кОм.

Практическое применение параллельного и последовательного соединения резисторов

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Применение последовательного и параллельного соединения резисторов

Последовательное и параллельное соединение резисторов применяют для подбора требуемого номинала. Контролировать точное значение получившегося сопротивления можно при помощи цифрового мультиметра

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома для участка цепи, напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

Онлайн-калькулятор расчета последовательного и параллельного соединения резисторов

Онлайн-калькулятор позволяет быстро и удобно произвести расчет общего сопротивления резисторов при последовательном или параллельном соединениях. При расчете можно добавлять до 10 единиц резисторов для подсчета нужного результата, для этого достаточно нажать кнопку “Добавить сопротивление”

Расчет сопротивления при параллельном подключении производится по формуле:

RT = 1 / (1/R1 + 1/R2 + 1/R3 + 1/Rn..)

Расчет сопротивления при последовательном подключении производится по формуле:

Как найти последовательное сопротивление: подробная информация

В этой статье мы изучим методы, как найти последовательное сопротивление. Расчет эквивалентного сопротивления в последовательной цепи относительно прост и не требует сложной математики.

Предположим, у нас есть два резистора, R1 и R2, как показано на рисунке 1. Мы знаем, что ток остается одинаковым в каждой точке последовательной цепи, а потенциал падает на каждом резисторе.

Следовательно, V1 = iR1 и V2 = iR2 .

Общее напряжение в цепи равно V= V1 + V2 = iR1+ ИК2.

Если R эквивалентное сопротивление, то V= iR

Итак, iR=iR1+ ИК2 и R= R1+ R2.

Как найти последовательное сопротивление — часто задаваемые вопросы

Каковы характеристики последовательного сопротивления?

Последовательные сопротивления имеют довольно много особенностей в цепи, из которых наиболее важным является то, что эквивалентное сопротивление представляет собой простое сложение всех резисторов, соединенных последовательным соединением.

Другие характеристики последовательного сопротивления:

  1. Ток, проходящий через каждый последовательно соединенный резистор, одинаков.
  2. Падение напряжения на последовательном резисторе зависит от номинала этого резистора и равно значению тока × сопротивления.
  3. Эквивалентное последовательное сопротивление всегда больше, чем отдельные сопротивления.

Как последовательное сопротивление влияет на силу тока?

В отличие от параллельные сопротивления, ток остается неизменным, когда он проходит через последовательные резисторы. Это отношение напряжения источника и эквивалентного сопротивления, т. е. сумма сопротивлений.

Для протекания тока в цепи необходимо, чтобы в цепи присутствовало некоторое сопротивление. Ток на каждом резисторе, соединенном последовательно, одинаков. Так как при последовательном соединении ответвление отсутствует, то и ток не разделяется. Следовательно, мы получаем везде одинаковый ток в цепи, который является полным током.

Как найти последовательное сопротивление — часто задаваемые вопросы

Чему равно падение напряжения в последовательной цепи?

Из закона Ома мы понимаем падение напряжения в последовательной цепи. Это падение напряжения при прохождении тока через проводник, измеряемое между двумя конечными точками, лежащими вдоль проводника.

Для любого резистора, подключенного последовательно, падение напряжения линейно зависит от значения сопротивления. Падение напряжения между двумя сторонами резистора = сопротивление резистора × ток, протекающий через последовательную цепь. Чем больше сопротивление, тем больше величина падения напряжения.

Какое значение имеет последовательное сопротивление?

В любой цепи сопротивление контролирует и ограничивает ток. Дисбаланс сопротивления может вызвать обрыв цепи (если сопротивление очень мало) или короткое замыкание (если сопротивление очень велико), что приведет к повреждению.

Резисторы в последовательной цепи часто называют «ограничителями тока», поскольку они ограничивают протекание тока. Например, в светоизлучающем диоде (LED) мы ограничиваем ток, проходящий через светодиод, чтобы защитить его от перегрева. Последовательный резистор ограничивает ток, чтобы светодиод мог взорваться без повреждений.

Как найти последовательное сопротивление — числовые задачи

A. Вычислите следующие значения для схемы, показанной на рисунке.

1. Эквивалентное последовательное сопротивление

2. Ток через каждый резистор

3. Падение напряжения на каждом резисторе

На схеме мы видим три последовательно соединенных резистора. Поэтому эквивалентное последовательное сопротивление = R1+ R2 + R3 = 2+3+5 = 10 Ом.

Мы знаем, что общий ток i = напряжение источника/эквивалентное сопротивление = 25/10 = 2.5 А.

Теперь, падение напряжения на любой последовательно включенный резистор = общий ток в последовательной цепи * сопротивление этого резистора.

Следовательно, падение напряжения на резисторе 2 Ом = 2.5 * 2 = 5 В.

Падение напряжения на резисторе 3 Ом = 2.5 * 3 = 7.5 В.

Компания падение напряжения на резисторе 5 Ом = 2.5 * 5 = 12.5 В

B. На рисунке 3 изображена схема с четырьмя резисторами, где R1= 3 р2, R2 = 2 р3и R3= 5R4. Напряжение питания 18 В. По цепи проходит ток силой 2 мА. Найдите номиналы резисторов и эквивалентное последовательное сопротивление.

Эквивалентное сопротивление цепи

По закону Ома V=iR или R=V/i.

Итак, эквивалентное сопротивление = напряжение питания / ток

Теперь мы можем рассчитать номиналы резисторов из приведенных соотношений.

Следовательно,

Эквивалентное последовательное сопротивление = R1 + R2 + R3 + R4 = 200+ 1000+ 2000+ 6000 = 9200 Ом или 9.2 кОм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *