Как характеризуют упорядоченное движение электрических зарядов
Перейти к содержимому

Как характеризуют упорядоченное движение электрических зарядов

  • автор:

Большая Энциклопедия Нефти и Газа

Упорядоченное движение зарядов называют электрическим током. Электрическим током проводимости называют упорядоченное движение свободных зарядов, возникающее в проводнике под действием электрического поля.  [1]

Однако упорядоченное движение зарядов может существовать не только в проводнике, но и в диэлектрике. Если между обкладками конденсатора находится диэлектрик, то О — ъ0Е Р, где Е — напряженность электрического поля; Р — вектор поляризации ( см. § 6, гл.  [2]

Однако упорядоченное движение зарядов может существовать не только в проводнике, но и в диэлектрике.  [3]

В рассматриваемой системе упорядоченное движение зарядов ( электронов) существует только в проводнике, соединяющем обкладки.  [4]

Электрическим током называется упорядоченное движение зарядов в пространстве.  [5]

В рассматриваемой системе упорядоченное движение зарядов ( электронов) существует только в проводнике, соединяющем обкладки.  [6]

Однако на обкладках конденсатора упорядоченное движение зарядов обрывается; возникает вопрос, обрывается ли там и магнитное поле, которое всегда связано с токами и является их важнейшим признаком. Максвелл сделал предположение ( которое было впоследствии подтверждено опытом), что магнитное поле существует и между обкладками конденсатора, но только благодаря тому, что электрическое поле в этом месте изменяется с течением времени.  [7]

Ток проводимости / пр представляет собой упорядоченное движение зарядов : электронов в металле или ионов в электролите.  [8]

Таким образом, средняя скорость упорядоченного движения зарядов в проводнике пропорциональна напряженности электрического поля. Нетрудно перейти от скорости зарядов к силе тока и от напряженности поля Е к приложенному напряжению. Сделав такой переход, мы получили бы для силы тока выражение, аналогичное закону Ома.  [9]

Таким образом, средняя скорость упорядоченного движения зарядов в проводнике пропорциональна напряженности электрического поля.  [10]

В металлических проводниках количество участвующих в упорядоченном движении зарядов ( свободных электронов) весьма велико, до 1023 в 1 см3, но зато средняя скорость их движения очень мала.  [11]

В металлических проводниках количество участвующих в упорядоченном движении зарядов ( свободных электронов) весьма велико, до 102 в 1 см3, но зато средняя скорость их движения очень мала.  [12]

Если источник тока не замкнут, то упорядоченное движение зарядов через него не происходит, и потеря энергии внутри источника тока отсутствует. Сторонняя сила может только вызвать скопление зарядов на полюсах источника тока.  [13]

Если источник тока не замкнут, то упорядоченное движение зарядов через него не происходит и потеря энергии внутри источника тока отсутствует. Сторонняя сила может только вызвать скопление зарядов на полюсах источника тока.  [14]

Если источник тока не замкнут, то упорядоченное движение зарядов через него не происходит, и потеря энергии внутри источника тока отсутствует. Сторонняя сила может только вызвать скопление зарядов на полюсах источника тока.  [15]

Глава 13. Постоянный электрический ток

Электрическим током называется направленное (упорядоченное) движение электрических зарядов (рис.13.1). Сами эти частицы называются носителями тока.

Ток может идти в твёрдых телах, жидкостях и газах. Если среда является проводником с большим количеством свободных электронов, то течение электрического тока осуществляется за счёт дрейфа этих электронов. Дрейф электронов в проводниках, не связанный с перемещением вещества, называют током проводимости. К току проводимости относится упорядоченное движение электронов в проводниках, ионов в электролитах, электронов и дырок в полупроводниках, ионов и электронов в газах. Упорядоченное перемещение электрических зарядов, связанное с перемещением в пространстве заряженного тела, называют конвекционным током.

За направление тока принят дрейф положительных зарядов (электроны проводимости всегда движутся в направлении, противоположном направлению тока (от «+» к «-»)). Это может показаться неудобным, но зато теперь не нужно различать направление тока в проводнике и электростатического поля, вызывающего этот ток: эти направления всегда совпадают.

Сила тока – скалярная величина, равная отношению количества электричества dq, которое за время dt переносится через данное сечение проводника, ко времени dt:

(13.1)

Постоянным током называют электрический ток, сила и направление которого с течением времени не изменяются. Для постоянного тока

где q — электрический заряд, проходящий за время t через поперечное сечение проводника.

Единица силы тока – ампер (А).

Определим скорость, с которой осуществляется дрейф электронов в проводнике с током.

Путь за время Δt через сечение проводника S прошло N электронов с суммарным зарядом Δq = Nе. Если скорость направленного движения электронов равна υ, то за время Δt все они окажутся в пределах участка длиной ℓ = υ Δt и объёмом V=Sℓ. Таким образом,

(13.2)

выразив здесь число носителей тока через их концентрацию (N = nV= nSℓ)

Отношение силы тока І к площади поперечного сечения проводника S, перпендикулярного направленню тока – есть векторная величина называемая плотностью тока.

(13.3)

Тогда скорость электронов в проводнике можно записать , отсюда

Плотность тока может быть вычислена по формуле

Таким образом, плотность тока в проводнике пропорциональна концентрации свободных электронов в нём и скорости их движения.

Вектор j направлен вдоль направления тока, т.е. совпадает с направлением упорядоченного движения положительных зарядов.

Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т.е.

(13.5)

где dS = n∙dS (n = единичный вектор нормали к площадке dS, составляющей с вектором j угол α ).

Электрическое поле постоянного тока называется стационарным. В отличии от электростатического поля стационарное электрическое поле создаётся движущимися зарядами. Однако распределение этих зарядов в проводнике с постоянным током не меняется со временем: на место уходящих электрических зарядов непрерывно приходят новые. Поэтому электрическое поле, создаваемое этими зарядами, оказывается почти таким же, как и поле неподвижных зарядов.

Отличаются же они тем, что электростатическое поле внутри проводника отсутствует, в то время как стационарное поле постоянных токов существует и внутри проводников (иначе по ним не шёл бы ток).

Постоянный электрический ток: определение, механизм, характеристики

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A , действующих на заряд, равна работе сторонних A s t . Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε = A q ( 1 ) , где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε = В .

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S :

Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I = q t ( 3 ) , где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе С И основная единица измерения силы тока – Ампер ( А ) .

Плотность – это векторная локальная характеристика. Вектор плотности тока j → способен показывать, каким образом распределяется ток по сечению S . Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j = d I d S ‘ ( 4 ) , где d S ‘ является проекцией элементарной поверхности d S на плоскость, перпендикулярную вектору плотности тока, d I – элементом силы, которая идет через поверхности d S и d S ‘ .

Представление плотности в металле возможно по формуле:

j → = — n 0 q e υ → ( 5 ) , где n 0 обозначается концентрацией электронов проводимости, q e = 1 , 6 · 10 — 19 К л – зарядом электрона, υ → – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

Закон сохранения заряда

Закон сохранения заряда

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S , изображенной на рисунке 1 , ограничивающей объем V количество выходящего электричества в единицу времени ( 1 секунду) из объема V можно определить по формуле ∮ s j n d S . Такое же количество электричества выражается через заряд — ∂ q ∂ t , тогда получаем:

∂ q ∂ t = — ∮ S j n d S ( 6 ) , где j n считается проекцией вектора плотности на направление нормали к элементу поверхности d S , при этом:

j n = j cos a ( 7 ) , где a является углом между направлением нормали к d S и вектором плотности тока. Уравнение ( 6 ) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S .

Выражение ( 6 ) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮ S j n d S = 0 ( 8 ) .

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ , который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E . Направление скорости движения вдоль оси цилиндра.

Решение

Основой решения задачи берется определение силы тока в виде:

I = d q d t ( 1 . 1 ) .

Из формулы ( 1 . 1 ) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E = σ ε 0 ( 1 . 2 ) , где σ является поверхностной плотностью заряда, ε 0 = 8 , 85 · 10 — 12 К л Н · м 2 . Выразим σ из ( 1 . 2 ) , тогда:

σ = E · ε 0 ( 1 . 3 ) .

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

d q d S = σ ( 1 . 4 ) .

Используя ( 1 . 3 ) , ( 1 . 4 ) , имеем:

d q = E · e 0 d S ( 1 . 5 ) .

Выражение элемента поверхности цилиндра идет через его параметры:

d S = 2 π · R d h ( 1 . 6 ) , где d h является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

d q = E · ε 0 · 2 h · R d h ( 1 . 7 ) .

Произведем подстановку из ( 1 . 7 ) в ( 1 . 1 ) :

I = d ( E · ε 0 · 2 π · Rdh ) d t = 2 πRε 0 E dh dt ( 1 . 8 ) .

Движение цилиндра идет вдоль оси, тогда запишем:

d h d t = υ ( 1 . 9 ) .

I = 2 π R ε 0 E υ .

Ответ: конвективный ток I = 2 π R ε 0 E υ .

Изменение тока в проводнике происходит согласно закону I = 1 + 3 t . Определить значение заряда, проходящего через поперечное сечение проводника, за время t , изменяющегося от t 1 = 3 с до t 2 = 7 c . Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Решение

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I = d q d t ( 2 . 1 ) .

Формула ( 2 . 1 ) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t 1 до t 2 возможно таким образом:

q = ∫ t 1 t 2 I d t ( 2 . 2 ) .

Произведем подстановку имеющегося по условию закона в ( 2 . 2 ) для получения:

q = ∫ t 1 t 2 ( 1 + 3 t ) d t = ∫ t 1 t 2 d t + ∫ t 1 t 2 3 t d t = t 2 — t 1 + 3 · t 2 2 t 1 t 2 = ( t 2 — t 1 ) + 3 2 t 2 2 — t 1 2 ( 2 . 3 ) .

q = 7 — 3 + 3 2 ( 7 2 — 3 2 ) = 4 + 3 2 · 40 = 64 ( К л ) .

Чтобы определить постоянный ток для получения силы используется формула:

I c o n s t = q t ( 2 . 3 ) , где t считается временем, за которое поперечное сечение проводника пройдет заряд q .

Упорядоченное движение заряженных частиц: понятие и характеристики

Огромное множество физических явлений как микроскопического, так и макроскопического характера имеют электромагнитную природу. К ним относятся силы трения и упругости, все химические процессы, электричество, магнетизм, оптика.

Одно из таких проявлений электромагнитного взаимодействия – упорядоченное движение заряженных частиц. Оно представляет собой совершенно необходимый элемент практически всех современных технологий, находящих применение в самых различных областях – от организации нашего быта до космических полетов.

Общее понятие о феномене

Мыс принца Уэльского - крайняя западная материковая точка Северной Америки: координаты Вам будет интересно: Мыс принца Уэльского — крайняя западная материковая точка Северной Америки: координаты

Упорядоченное движение заряженных частиц называют электрическим током. Такое перемещение зарядов может осуществляться в разных средах посредством тех или иных частиц, иногда – квазичастиц.

Обязательным условием тока является именно упорядоченное, направленное движение. Заряженные частицы — это объекты, которые (как, впрочем, и нейтральные) обладают тепловым хаотическим движением. Однако ток возникает, только когда на фоне этого непрерывного беспорядочного процесса происходит общее перемещение зарядов в некотором направлении.

Прогнозирование спроса: понятие, виды и функции Вам будет интересно: Прогнозирование спроса: понятие, виды и функции

При движении какого-либо тела, в целом электрически нейтрального, частицы в составе его атомов и молекул, конечно, движутся направленно, но, поскольку разноименные заряды в нейтральном объекте компенсируют друг друга, никакого переноса заряда нет, и говорить о токе в этом случае также не имеет смысла.

Как возникает ток

Рассмотрим простейший вариант возбуждения постоянного тока. Если к среде, где в общем случае присутствуют носители зарядов, приложить электрическое поле, в ней начнется упорядоченное движение заряженных частиц. Явление называется дрейфом зарядов.

Потенциалы электрического поля

Вкратце его можно описать следующим образом. В различных точках поля возникает разность потенциалов (напряжение), то есть энергия взаимодействия электрических зарядов, расположенных в этих точках, с полем, отнесенная к величине этих зарядов, будет различной. Поскольку всякая физическая система, как известно, стремится к минимуму потенциальной энергии, отвечающему равновесному состоянию, заряженные частицы начнут движение, направленное к выравниванию потенциалов. Иначе говоря, поле совершает некоторую работу по перемещению этих частиц.

Организационная система: определение, основные функции, методы управления, задачи и процессы развития Вам будет интересно: Организационная система: определение, основные функции, методы управления, задачи и процессы развития

Когда потенциалы выравниваются, обращается в нуль напряженность электрического поля – оно исчезает. Вместе с тем прекращается и упорядоченное движение заряженных частиц – ток. Для того чтобы получить стационарное, то есть не зависящее от времени, поле, необходимо использовать источник тока, в котором, благодаря выделению энергии в тех или иных процессах (например, химических), заряды непрерывно разделяются и поступают на полюса, поддерживая существование электрического поля.

Ток можно получать различными способами. Так, изменение магнитного поля воздействует на заряды во внесенном в него проводящем контуре и вызывает их направленное движение. Такой ток называется индукционным.

Движение заряда в электрическом поле

Количественные характеристики тока

Главный параметр, с помощью которого ток описывают количественно, – это сила тока (иногда говорят «величина» или просто «ток»). Она определяется как количество электричества (величина заряда или число элементарных зарядов), проходящее за единицу времени сквозь некоторую поверхность, обычно через сечение проводника: I = Q/t. Измеряется ток в амперах: 1 А = 1 Кл/с (кулон в секунду). На участке электрической цепи сила тока прямой зависимостью связана с разностью потенциалов и обратной – с сопротивлением проводника: I = U/R. Для полной цепи эта зависимость (закон Ома) выражается как I = Ԑ/R+r, где Ԑ — электродвижущая сила источника и r – его внутреннее сопротивление.

Отношение силы тока к сечению проводника, через который происходит перпендикулярно ему упорядоченное движение заряженных частиц, называют плотностью тока: j = I/S = Q/St. Данная величина характеризует количество электричества, которое протекает за единицу времени через единицу площади. Чем выше напряженность поля E и электропроводность среды σ, тем больше и плотность тока: j = σ∙E. В отличие от силы тока, эта величина — векторная, и имеет направление по движению частиц, несущих положительный заряд.

Направление тока и направление дрейфа

Решетнев Михаил Федорович: биография, личная жизнь, разработка космических систем и награды Вам будет интересно: Решетнев Михаил Федорович: биография, личная жизнь, разработка космических систем и награды

В электрическом поле объекты, переносящие заряд, под действием кулоновских сил будут совершать к противоположному по знаку заряда полюсу источника тока упорядоченное движение. Частицы, заряженные положительно, дрейфуют в сторону отрицательного полюса («минуса») и, наоборот, свободные отрицательные заряды притягиваются к «плюсу» источника. Частицы могут перемещаться и в двух противоположных направлениях сразу, если в проводящей среде присутствуют носители зарядов обоих знаков.

По историческим причинам принято считать, что ток направлен так, как движутся положительные заряды – от «плюса» к «минусу». Чтобы избежать путаницы, следует помнить, что хотя в наиболее знакомом всем нам случае тока в металлических проводниках реальное перемещение частиц – электронов – происходит, конечно, в обратном направлении, указанное условное правило действует всегда.

Дрейф электрона в проводнике

Распространение тока и дрейфовая скорость

Нередко возникают проблемы и с пониманием того, насколько быстро движется ток. Не следует путать два разных понятия: скорость распространения тока (электрического сигнала) и скорость дрейфа частиц – носителей зарядов. Первое – это скорость, с которой передается электромагнитное взаимодействие или — что то же самое — распространяется поле. Она близка (с учетом среды распространения) к скорости света в вакууме и составляет почти 300 000 км/с.

Частицы же совершают свое упорядоченное движение очень медленно (10-4–10-3 м/с). Дрейфовая скорость зависит от напряженности, с которой действует на них приложенное электрическое поле, но во всех случаях она на несколько порядков уступает скорости теплового беспорядочного движения частиц (105–106 м/с). Важно понимать, что под действием поля начинается одновременный дрейф всех свободных зарядов, поэтому ток возникает сразу во всем проводнике.

Виды тока

В первую очередь токи различают по поведению носителей заряда во времени.

  • Постоянным называют ток, не изменяющий ни величину (силу), ни направление перемещения частиц. Это самый простой вариант перемещения заряженных частиц, и с него всегда начинают изучение электрического тока.
  • У переменного тока эти параметры изменяются во времени. В основе его генерирования лежит явление электромагнитной индукции, возникающей в замкнутом контуре, благодаря изменению (вращению) магнитного поля. Электрическое поле в этом случае периодически меняет вектор напряженности на противоположный. Соответственно, изменяются знаки потенциалов, а величина их проходит от «плюса» до «минуса» все промежуточные значения, в том числе и нулевое. В результате этого явления упорядоченное движение заряженных частиц все время меняет направление. Величина такого тока колеблется (обычно синусоидально, то есть гармонически) от максимума до минимума. Переменный ток имеет такую важную характеристику скорости этих колебаний, как частота – количество полных циклов изменения в секунду.

Помимо этой важнейшей классификации, различия между токами можно проводить и по такому критерию, как характер движения носителей заряда по отношению к среде, в которой ток распространяется.

Электрический разряд

Токи проводимости

Наиболее известный пример тока – это упорядоченное, направленное движение заряженных частиц под действием электрического поля внутри какого-либо тела (среды). Оно именуется током проводимости.

В твердых телах (металлы, графит, многие сложные материалы) и некоторых жидкостях (ртуть и другие расплавы металлов) электроны являются подвижными заряженными частицами. Упорядоченное движение в проводнике – это их дрейф относительно атомов или молекул вещества. Проводимость такого рода называют электронной. В полупроводниках перенос зарядов также происходит за счет движения электронов, но по ряду причин удобно пользоваться для описания тока понятием дырки – положительной квазичастицы, представляющей собой перемещающуюся электронную вакансию.

В электролитических растворах прохождение тока осуществляется за счет движущихся к разным полюсам – аноду и катоду – отрицательных и положительных ионов, входящих в состав раствора.

Упорядоченное движение зарядов в электролите

Токи переноса

Газ – в обычных условиях диэлектрик – также может стать проводником, если подвергнуть его достаточно сильной ионизации. Газовая электропроводность носит смешанный характер. Ионизированный газ уже представляет собой плазму, в которой перемещаются и электроны, и ионы, то есть все заряженные частицы. Упорядоченное движение их формирует плазменный канал и называется газовым разрядом.

Коннотация - это лексический термин, которым мы пользуем каждый день Вам будет интересно: Коннотация — это лексический термин, которым мы пользуем каждый день

Направленное перемещение зарядов может происходить не только внутри среды. Допустим, в вакууме движется пучок электронов или ионов, испускаемых с положительного или отрицательного электрода. Это явление носит название электронной эмиссии и широко используется, к примеру, в вакуумных приборах. Безусловно, такое движение представляет собой ток.

Еще один случай – перемещение электрически заряженного макроскопического тела. Это – тоже ток, поскольку подобная ситуация удовлетворяет условию направленного переноса зарядов.

Все приведенные примеры необходимо рассматривать как упорядоченное движение заряженных частиц. Называется такой ток конвекционным или током переноса. Его свойства, например, магнитные, совершенно аналогичны таковым у токов проводимости.

Молния - движение зарядов в атмосфере

Ток смещения

Существует явление, не имеющее отношения к переносу зарядов и возникающее там, где наличествует изменяющееся во времени электрическое поле, которое обладает свойством, присущим «настоящим» токам проводимости или переноса: оно возбуждает переменное магнитное поле. Это происходит, например, в цепях переменного тока между обкладок конденсаторов. Явление сопровождается передачей энергии и называется током смещения.

По сути, данная величина показывает, как быстро изменяется индукция электрического поля на некоторой поверхности, перпендикулярной к направлению ее вектора. Понятие электрической индукции включает в себя векторы напряженности поля и поляризации. В вакууме учитывается только напряженность. Что же касается электромагнитных процессов в веществе, то поляризация молекул или атомов, в которых при воздействии поля имеет место движение связанных (не свободных!) зарядов, вносит некоторый вклад в ток смещения в диэлектрике или проводнике.

Название возникло в XIX веке и носит условный характер, так как действительный электрический ток – это упорядоченное движение заряженных частиц. Ток смещения с дрейфом зарядов никак не связан. Поэтому он, строго говоря, током не является.

Проявления (действия) тока

Упорядоченное движение заряженных частиц всегда сопровождается теми или иными физическими явлениями, по которым, собственно, и можно судить о том, протекает данный процесс или нет. Можно разделить такие явления (действия тока) на три основных группы:

  • Магнитное действие. Движущийся электрический заряд обязательно создает магнитное поле. Если поместить компас рядом с проводником, по которому протекает ток, стрелка совершит поворот перпендикулярно направлению этого тока. На основе данного явления действуют электромагнитные устройства, позволяющие, например, преобразовать электрическую энергию в механическую.
  • Тепловое действие. Ток совершает работу по преодолению сопротивления проводника, результатом чего становится выделение тепловой энергии. Это происходит потому, что при дрейфе заряженные частицы испытывают рассеяние на элементах кристаллической решетки или молекулах проводника и отдают им кинетическую энергию. Если бы решетка, скажем, металла, была идеально правильной, электроны практически не замечали бы ее (это следствие волновой природы частиц). Однако, во-первых, атомы в узлах решетки сами подвержены тепловым колебаниям, нарушающим ее правильность, а во-вторых, дефекты решетки – примесные атомы, дислокации, вакансии – тоже влияют на движение электронов.
  • Химическое действие наблюдается в электролитах. Разноименно заряженные ионы, на которые диссоциирован электролитический раствор, при наложении электрического поля разводятся на противоположные электроды, что приводит к химическому разложению электролита.

Электричество в жизни человека

За исключением случаев, когда упорядоченное движение заряженных частиц является предметом научных исследований, оно интересует человека в своих макроскопических проявлениях. Важен для нас не ток сам по себе, а перечисленные выше явления, которое он вызывает, благодаря превращениям электрической энергии в другие виды.

Все действия тока играют двоякую роль в нашей жизни. В одних случаях от них необходимо защищать людей и технику, в других – получение того или иного эффекта, вызываемого направленным переносом электрических зарядов, является прямым назначением самых разнообразных технических устройств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *