Что является источником вч и свч излучения
Перейти к содержимому

Что является источником вч и свч излучения

  • автор:

Электромагнитные поля ВЧ- и СВЧ-диапазонов. Источники излучения

Диапазон частот от десятков до сотен килогерц уже используется в радиотехнике. Так, для связи с подводными лодками в Австралии была построена радиостанция, принадлежащая США, работающая на частотах десятки килогерц, излучающая мощность несколько сотен киловатт.

На частотах, соответствующих длинам волн от десятков метров до долей метра, осуществляются различные виды передачи информации с помощью радио, телевидения, радиотелефонной связи. Этот же диапазон используется в различных приборах и установках, имеющих самое разнообразное предназначение. Так, диапазон волн порядка десятков метров (20— 60 МГц) применяется в технологии обработки различных пластмасс для нагрева, сварки и т. д. Измерения показывают возможность существования полей вблизи таких установок с напряженностью порядка долей киловатт на метр.

Диапазон СВЧ используется не только в технике связи, но и для различных технологических приложений. Генераторы СВЧ нашли широкое применение в электронной промышленности, радиолокации, ядерной физике и т. п. Бытовые СВЧ-печи, переносные радиотелефоны являются в настоящее время широко применяемыми бытовыми приборами.

Поскольку биологическое действие ЭМП СВЧ-диапазона носит ярко выраженный «тепловой» характер, то принято для описания этого диапазона использовать такую величину, как плотность энергии на единицу площади, мВт/см . Значения этого параметра вблизи от установок СВЧ могут изменяться в широких пределах, что в первую очередь зависит от их мощности, а также от конструктивного исполнения.

Персональные компьютеры являются источником электромагнитных излучений в широком диапазоне частот. Вблизи персональных компьютеров ЭМП нормируется в диапазоне до 400 кГц.

Мощные ЭМП могут генерироваться передающими радиолокационными станциями (РЛС). Они работают на частотах от 0,5 до 15 ГГЦ.

Приведенное краткое перечисление источников ЭМП радиочастотного диапазона содержит десятки разнообразных по своим техническим характеристикам объектов. По этой причине в данной работе не имеет смысла приводить значения напряженности полей и другие параметры. Это тема отдельного рассмотрения. Можно только сказать, что в любой части радиочастотного спектра можно указать источники очень мощных излучений, подвергаться которым опасно для здоровья.

Радиоволны

Радиоволны широко используются в радиосвязи, радиовещании, телевидении, медицине, радиолокации, радионавигации, радиоастрономии, ядерной физике, металлургической промышленности (при сварке, закалке, плавке, выбраковке металлических изделий, склейке пластмасс и деревянных изделий и т. д.).

В настоящее время принята следующая классификация радиочастот (таблица 1).

Таблица 1

Частоты Высокие частоты (ВЧ) Ультравысокие частоты (УВЧ) Сверхвысокие частоты (СВЧ)
100 кГц— 30 МГц 30—300 МГц 300—300 000 МГц
Длины волн Длинные Средние Короткие Ультракороткие Микроволны
дециметровые сантиметровые миллиметровые
3—1 км 1 км — 100 м 100—10 м 10—1 м 1 м—10 см 10—1 см 1 см— 1 мм

Радиоволны в медицине используют для лечебных целей в форме синусоидальных модулированных токов (5 кГц), терапии надтональной частотой (20 кГц), дарсонвализации (110 кГц), диатермии (1,5—1,8 МГц), индуктотермии (13,56 и 40,68 МГц), УВЧ-терапии (40,68 МГц), дециметровой терапии (460 МГц) и микроволновой терапии (2375 МГц) — см. Дарсонвализация, Диатермия, Импульсный ток, Индуктотермия, Микроволновая терапия, УВЧ-терапия.

Профессиональные вредности радиоволн. Искусственными источниками электромагнитных полей ВЧ, УВЧ, СВЧ могут являться различные типы генераторов, индукторы, блоки передатчиков, фидерные линии, конденсаторы, антенные системы и др. Лица, работающие с генераторами и передающей системой электромагнитных колебаний радиочастот, могут подвергаться воздействию различных диапазонов ВЧ, УВЧ, СВЧ. При конструировании, испытании, настройке и эксплуатации станций, отдельных блоков, генерирующих электромагнитную энергию, возможно излучение волн в рабочее помещение. Это бывает при плохой экранировке блоков передатчиков, волноводных трактов, нерациональном расположении антенно-фидерных систем и т. п., а также при нарушении техники безопасности. Иногда возможно облучение персонала и населения, не связанного профессионально с излучающей аппаратурой, но попадающего под воздействие радиоволн от мощных антенных систем.

Интенсивность полей ВЧ и УВЧ принято оценивать по напряженности электрической (Е) и магнитной (И) составляющих. Для Е интенсивность выражается в вольтах на 1 м (в/м), для Я — в амперах на 1 л (а/м). В диапазоне СВЧ интенсивность облучения оценивается по плотности потока мощности (ППМ) и выражается в ваттах на 1 см 2 (Вт/см 2 ), милливаттах (мвт/см 2 ), микроваттах (мквт/см 2 ).

Измерение напряженности ВЧ и УВЧ осуществляется прибором ИЭМП-1, в диапазоне СВЧ по плотности потока мощности — прибором ПО-1.

В целях предотвращения переоблучения и сохранения здоровья трудящихся в СССР введены «Санитарные нормы и правила при работе с источниками электромагнитных полей высоких, ультравысоких и сверхвысоких частот», устанавливающие предельно допустимые уровни (таблица 2).

Не более 10 мкВт/см 2
Не более 100 мкВт/см 2
Не более 1000 мкВт/см 2 с обязательным применением защитных очков

Систематическое облучение радиоволнами с уровнями, превышающими допустимые, может привести к значительным изменениям некоторых систем организма человека.

Отмечается развитие астенического синдрома различной степени выраженности. При этом характерны жалобы на головные боли, понижение работоспособности, расстройство сна, раздражительность, повышенную потливость, ослабление памяти, иногда снижение половой потенции. При длительных и частых облучениях выше предельно допустимых уровней могут возникать тремор век и пальцев вытянутых рук, повышение сухожильных рефлексов, вегетативные расстройства (красный стойкий дермографизм, акроцианоз, гипергидроз и др.), чувство страха, галлюцинации, обморочное состояние и др. Результаты электроэнцефалограммы указывают на функциональные сдвиги в виде развития торможения в корковых клетках.

Со стороны сердечно-сосудистой системы изменения чаще идут по типу нейроциркуляторной дистонии с характерными жалобами: боли в области сердца, одышка, особенно при физической нагрузке, ощущение сердцебиения и «замирания» сердца. Объективно: брадикардия, гипотония, приглушение первого тона сердца, иногда систолический шум на верхушке, синусовая аритмия, признаки гипоксии миокарда и др. Иногда наблюдается лейкопения, относительный лимфоцитоз, эозинофилия, увеличение числа эритроцитов. Однако изменения состава периферической крови не являются стойкими, а иногда по своим показателям противоречивы.

Отмечаются слезотечение, резь в глазах, ощущение «песка» за веками конъюнктивиты. При грубых нарушениях техники безопасности при работе с источниками излучения, главным образом СВЧ диапазона, может развиться катаракта.

Со стороны эндокринной системы отмечено усиление функции гипофиза и коры надпочечников, а также повышение активности щитовидной железы.

Необходимо иметь в виду, что клиническая картина при воздействии электромагнитных излучений различных диапазонов (ВЧ, УВЧ, СВЧ) имеет свои особенности и может значительно варьировать. Все вышеперечисленные изменения в большинстве своем обратимы.

Профилактика: при проектировании, размещении, строительстве, приемке и эксплуатации всех типов станций радиочастотного диапазона для предотвращения переоблучения людей необходимо особое внимание уделять экранировке рабочего места или обеспечению дистанционного управления, рациональному размещению блоков приемопередающей аппаратуры, сокращению времени пребывания людей в местах вероятного облучения в соответствии с нормативами, использованию при необходимости индивидуальных средств защиты (комбинезоны, очки и др.). Систематические измерения интенсивности ВЧ—УВЧ и СВЧ-полей.

При приеме на работу проводятся обязательные предварительные медосмотры. Периодические медосмотры по показаниям, но не реже 1 раза в год. Лица с наличием выраженного воздействия электромагнитных полей радиочастот, а также с общими заболеваниями, течение которых может ухудшиться в условиях хронического воздействия полей радиочастот, и женщины в период беременности и кормления переводятся на другую работу.

К работе с источниками электромагнитных полей допускаются только лица старше 18 лет. Как лечебные средства применяются общеукрепляющие, тонизирующие и симптоматические препараты.

Токи высоких (ВЧ) и сверхвысоких (СВЧ) частот.

Кроме рассмотренного нами тока промышленной частоты (50 Гц), сегодня все большее распространение как в радиосвязи, так и в энергетике получили токи высокой (от 30 КГц до ЗО0 МГц) и сверхвысокой (от 300 МГц до 300 ГГц) частоты. Указанные диапазоны расположены между участками длинных радиоволн и инфракрасных тепловых излучений. Они применяются в телевизорах, радиоприемниках, видеомагнитофонах, МКВ-печах и др. В крупных городах увеличивается число передатчиков на башнях телецентров, находящихся в черте жилых застроек. Их размещение весьма привлекательно из-за большой высоты башни, но в то же время это существенно осложняет обстановку в прилегающих жилых районах. В последнее время широкое распространение получили такие источники ЭМП, как видиодисплейные терминалы и радиотелефоны, системы мобильной связи. Т.е., ЭМП различных частот и интенсивности окружают человека дома, на улице, на работе, в саду и даже в лесу, вблизи линий электропередач. Мы просто купаемся в излучениях. Но их применение в различных частотных диапазонах приводит к тому, что при определенных условиях они оказывают неблагоприятное воздействие на здоровье человека. Интенсивность этого воздействия зависит от мощности источника тока, режима и продолжительности его действия, конструктивных особенностей излучающих устройств, технического состояния аппаратуры, а также от расположения рабочего места в эффективности защитных мероприятий.

Составляющими токов ВЧ и СВЧ являются электрическое (ЭП), магнитное (МП) и электромагнитное (ЭМП) поля. Их воздействие может носить изолированный (от одного источника), сочетанный (от двух и более источников одного диапазона), смешанный (от двух и более различных источников) и комбинированный (в случае одновременного воздействия различных неблагоприятных факторов) характер. Воздействие бывает постоянное и прерывистое (облучение от устройств с перемещающейся диаграм­мой излучения — вращающиеся и сканирующие антенны РЛС).

Известно, что эффект воздействия СВЧ ЭМ поля на биологические объекты в известной степени определяется количеством проникающей в них и поглощаемой ими электромагнитной энергии. При соответствующем регулировании выходной мощности генератора сверхвысоких частот и продолжительности облучения различные ткани, содержащие кровеносные сосуды, могут быть нагреты практически до любой температуры. Температура тканей, начинает повышаться сразу же после подвода к ней СВЧ-энергии. Этот рост температуры продолжается в течение 15-20 мин и может на 1-2 °С повысить температуру ткани по сравнению со средней температурой тела, после чего температура начинает падать. Падение температуры в облучаемом участке происходит в результате резкого увеличения в нем потока крови, что приводит к соответствующему отводу теплоты.

Отсутствие кровеносных сосудов в некоторых частях тела делает их особенно уязвимыми к облучению сверхвысокими частотами. В этом случае теплота может поглощаться только окружающими сосудистыми тканями, к которым она может поступать только путем теплопроводности. Это в частности справедливо для тканей глаза и таких внутренних органов, как желчный пузырь, мочевой пузырь и желудочно-кишечный тракт. Малое количество кровеносных сосудов в этих тканях затрудняет процесс авторегулирования температуры. Кроме того, отражения от граничных поверхностей полостей тела и областей расположения костного мозга при определенных условиях приводит в образованию стоячих волн. Чрезмерное возрастание температуры в отдельных участках действия стоячих волн может вызвать повреждение ткани. Отражения такого рода вызываются также металлическими предметами, расположенными внутри или на поверхности тела.

При интенсивном облучении этих тканей СВЧ-полем наблюдается их перегрев, приводящий к необратимым изменениям. В то же время СВЧ-поля малой мощности благотворно воздействуют на организм человека, что используется в медицинской практике.

Головной и спинной мозг чувствительны к изменениям давления, и поэтому повышение температуры в результате облучения головы может иметь серьезные последствия. Кости черепной коробки вызывают сильные отражения, из-за чего оценить поглощенную энергию очень трудно. Повышение температуры мозга происходит наиболее быстро, когда голова облучается сверху или когда облучается грудная клетка, так как нагретая кровь из грудной клетки непосредственно направляется к мозгу. Облучение головы вызывает состояние сонливости с последующим переходом к бессознательному состоянию. При длительном облучении появляются судороги, переходящие затем в паралич. При облучении головы неизбежно наступает смерть, если температура мозга повышается на 6 °С.

Длина волны этого диапазона намного больше размеров тела человека. Максимальные токи возникают в теле, когда его большая ось расположена параллельно силовым линиям ЭМП. Общим в характере биологического воздействия названных полей токов ВЧ и СВЧ большой интенсивности является тепловой эффект, который может выражаться в интегральном повышении температуры тела или в избирательном нагреве отдельных тканей или органов, причем органы и ткани, недостаточно хорошо снабженные кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь), наиболее чувствительны к такому локальному перегреву. Глаз — это один из наиболее чувствительных к облучению энергией СВЧ органов, потому что он имеет слабую терморегуляционную систему, и выделяющаяся теплота не может отводиться достаточно быстро. После 10 мин облучения мощностью 100 Вт на частоте 2450 МГц возможно развитие катаракты (помутнения хрусталика глаза), в результате чего белок хрусталика коагулирует и образует видимые белые вкрапления. На этой частоте наибольшая температура возникает около задней поверхности хрусталика, который состоит из протеина, легко повреждаемого при нагревании.

Чувствительными к воздействию волн радиочастот являются центральная нервная система (ЦНС) и сердечно-сосудистая система (ССС). Нарушения в деятельности ЦНС сражаются в первую очередь в учащении ритма работы сердца, а в более тяжелой форме — в нарушении функций головного мозга. Под воздействием СВЧ-излучения возникают нарушения восприятия реальности, усталость, тошнота, головная боль.

Особенно чувствительны к подобному облучению мужские половые органы. Для них безопасная плотность облучения не превышает 5 мВт/ см 2 . При превышении интенсивности может наступить временное или даже полное бесплодие. А генетики считают, что даже меньшие плотности облучения могут вызвать мутации генов, которые остаются скрытыми в течение нескольких поколений.

При выраженных формах заболевания появляется лейкопения (уменьшение лейкоцитов в крови), лимфопения (уменьшение лимфоцитов) и тромбоцитопения. Возможны изменения в костном мозге, нарушения в эндокринной системе (гиперфункция щитовидной железы — зобная болезнь, пучеглазие), нарушение функций соловых желез. В результате сильного облучения токами СВЧ может наступить удушье. Особо следует заострить внимание на механизме действия токов СВЧ сантиметрового диапазона. Аппаратура этого диапазона находит сейчас все более широкое применение. На более высоких частотах длина волны становится соизмерима с размерами тела человека и его отдельных органов. В тканях начинают преобладать диэлектрические потери, в электролитах (кровь и лимфа) наводятся ионные вихревые токи. Энергия ЭМП поглощается в организме, превращаясь в тепловую. Нарушаются обменные процессы в клетках. Особенно сильно страдают органы со слабо выраженным механизмом терморегуляции: мозг, глаза, желчный и мочевой пузырь, нервная система. Наблюдаются трофические изменения в организме, старение и шелушение кожи, ломкость ногтей, выпадение волос.

Проникновение токов СВЧ в жировую ткань в 4 раза глубже, чем в мышечную. Причем максимальное проникновение тока СВЧ с λ = 20-40 см. Под влиянием теплового облучения в организме происходят биохимические сдвиги — уменьшается кислородная насыщенность крови, повышается венозное давление, замедляется кровоток и, как следствие, наступает нарушение сердечно-сосудистой деятельности и нервной системы. Даже локальное облучение токами СВЧ вызывает общую реакцию организма. Помимо непосредственного воздействия на работника лучистый поток теплоты нагревает пол, стены, оборудование, что приводит к повышению температуры воздуха в помещении, ухудшению условий труда. В целях предупреждения вредного влияния токов и их полей проводится контроль их уровней.

Мы знаем, что интенсивность излучения максимальна вблизи излучающих систем (антенны, открытые контуры волноводов и р.). Но излучение возможно и в других местах. Это и утечки в токах генераторов, неплотности в сочленениях тракта передачи волн, катодные выводы магнетронов и др. Излучения в этих случаях возможны в рабочих помещениях. При этом необходимо учитывать, что контролируемые параметры излучений неодинаковы во всех случаях и во многом зависят от электромагнитной обстановки (особенностей ЭМП). Так, в ближней зоне излучения (зоне индукции), которая простирается на 1/6 длины волны, энергия поля представляет собой некоторый запас реактивной мощности, т.к. МП еще не сформировалась и его интенсивность оценивается в основном по электрической составляющей.

Промежуточная зона (зона интерференции) от 1/6 до 6 длин волны характеризуете наличием сформированного ЭМП, распространяющегося в виде бегущей волны. Таким образом, в зависимости от места нахождения работающего относительно источника излучения он может подвергаться воздействию электрической или магнитной составляющей поля или их сочетанию, а в случае пребывания в волновой зоне воздействию сформировавшейся электромагнитной волны.

Воздействие ЭМП СВЧ не ограничивается биологическими объектами. В жизнь современного человека прямо-таки врываются электронные новшества и давно проверенные и привычные компоненты различной сложности. Даже в обычном автомобиле насчитываются десятки радиоэлектронных устройств. В самолетах их счет переходит на сотни – датчики, полетные и навигационные компьютеры, системы автопилотирования и контроля связи, приводов и т.д. Одновременно происходит развитие наземных и воздушных систем, принцип действия которых основан на излучении ЭМП большой мощности и частоты. Это станции дальней космической связи и телеметрии, обладающие мощностью дл сотен киловатт, станции дальнего радиолокационного обнаружения. Так, например, импульсный радар ДРЛС обладает пиковой мощностью до 700 мегаватт, что уже на значительной дальности (порядка 5-10 км) представляет опасность не только для радиолокационного оборудования, но и для людей, находящихся вне укрытия.

Одним из источников ЭМП, переходящего в ЭМИ, являются перспективные космические электростанции, представляющие собой геостанционарные спутники, собирающие энергию солнца, преобразующие ее в электрическую и передающие ее в виде СВЧ-излучения на землю в специальные приемники, Попадающие в зоны подобного излучения средства радиоэлектроники подвергаются опасности необратимых повреждений.

Для чего необходимо знать эти детали? Дело том, что контроль уровней ЭП осуществляется по значению напряженности ЭП выражаемой в В/м (кВ/м). Контроль уровней МП — по значению напряженности МП, выражаемой в А/м (кА/м), или магнитной индукции, выражаемой в Тл (мТл, мкТл). Соотношение между значениями напряженности МП и индукции 1мТл = 800 А/м. Энергетическим показателем для волновой зоны являет» плотность потока энергии, т.е. энергия, проходящая через 1 cм 2 поверхности, перпендикулярной к направлению распространения ЭМ волны за I с. За единицу ППЭ принят Вт/см 2 (мВт/см 2 или мкВт/см 2 ) в сек. Так, при воздействии ЭП с ППЭ=0,1 Вт/см 2 в с. на рабочем месте может находиться весь рабочий персонал. При ППЭ от 1 до 10 Вт/см 2 — не более 20 мин при условии пользования защитными очками. Предельно допустимая интенсивность постоянного облучения по функциональным изменениям — 0,01 мВт/см 2 . При наличии на рабочем месте рентгеновского излучения или высокой температуры воздуха в помещении допустимое ППЭ или вpeмя нахождения на рабочем месте уменьшается на порядок.

Предельно допустимые уровни ЭМП

При круглосуточном непрерывном облучении

Метрическое подразделение диапазона Частоты Длины волн Предельно допустимый уровень
Километровые волны,низкие частоты 30-330 КГц 10-1 км 25 Вт/м
Гектометровые волны,средние частоты 0,3-3 МГц 1-0,1 км 15 Вт/м
Декаметровые волны,высокие частоты 3-30 МГц 100-10 м 10 Вт/м
Метровые волны, очень высокие частоты 30-300 МГц 10-1 м 3 Вт/м
Дециметровые волны, ультравысокие частоты 300-3000 МГц 1-0,1 м мкВт/ см 2
Сантиметровые волны, сверхвысокие частоты 3-30 ГГц 10-1 см 10 мкВт/см 2

Необходимо иметь в виду, что гигиенические нормативы разработаны не для всех частот, а лишь для 50 Гц, 1-12 кГц и 0,06- 300 мГц. Для ЭП ряда частот менее 50 Гц отсутствуют средства измерений. Нет средств измерений для ряда режимов импульсных воздействий. И то же самое можно сказать об измерении энергии МП. Отсутствуют методы и средства измерений МП с частот’ более 30 мГц, а также импульсных МП. А ведь повышение напряженности тока частот более 30 мГц наиболее опасно и ограничивает время пребывания на рабочем месте. Ряд тесламетров переменного тока пригодны для измерения ЭП и МП лишь на строго определенных частотах. Проверка их пригодности осуществляется созданием образцовых полей и сравнение с показателями образцовых установок. Но и они разработаны не для всех частот. Одним из универсальных измерительных средств является высокочувствительный прибор «Локсан», работающий от батареек. О наличии электромагнитного поля с энергией, превышающей допустимую, он предупреждает сигналом.

Защита от воздействия ВЧ и СВЧ

Для предупреждения вредного воздействия ЭМП ВЧ и СВЧ на объектах (промышленных предприятиях), лабо­раториях, радиостанциях и т.п. предусматриваются сле­дующие мероприятия:

►санитарными правилами устанавливается порядок раз­мещения оборудования в помещениях и порядок досту­па персонала в эти помещения. Запрещается пребыва­ние лиц, не связанных с обслуживанием в залах пере­датчиков, на антенных полях и других местах, где дей­ствуют источники ВЧ и СВЧ-излучений;

►при размещении ВЧ и СВЧ-установок в отдельных по­мещениях запрещается проведение в них работ, не свя­занных с обслуживанием установок;

►для снижения напряженности ЭМП применяется экра­нирование источников излучения, смотровых окон, фи­деров, катушек индуктивности и конденсаторов. Пре­дусматривается дистанционное управление и контроль установок в экранированных помещениях;

►один раз в год производятся измерения напряженности ЭП в зоне обслуживания установок, а также в прилега­ющих служебных помещениях на максимально исполь­зуемых установками мощностях. Аналогичные измере­ния проводятся после ремонтных работ и при вводе в действие новых установок. Результаты измерений зано­сятся в специальный журнал.

Неплохим защитным средством от вредного воздействия ВЧ и СВЧ-излучений является нейтрализатор «Гамма-7Н», обеспечивающий защиту от излучений и нейтрализацию искусственных геопатогенных зон на производстве и в быту. Это широкополосный автопреобразователь слабых физических полей, работающий от энергии окружающей среды. Рассеивает, размельчает электромагнитное излучение, в т.ч. рентгеновское, ультрафиолетовое. Ослабление физической компоненты исходного излучения в 30 раз (эталонного излучения кварца в 60 раз), а по импульсным модулированным сигналам – в 3,5 раза.

Пострадавшему от поражения токами СВЧ необходимо сделать искусственное дыхание, обеспечить быстрое охлаждение тела и кислородное питание. Следует подчеркнуть, что у человека отсутствуют органы чувств, которые бы своевременно предупреждали об опасности облучения. Из-за большой глубины проникновения ЭМИ нельзя полагаться на обманчивые тепловые ощущения кожи.

Как и при работе с любыми видами излучений, работающий с токами ВЧ и СВЧ должен периодически проходить медосмотр. Причем этот медосмотр, вследствие специфики работы с этими излучениями, должен быть комплексным — терапевт, невропато­лог, окулист. Необходимо также помнить, что при допуске к работе с аппаратурой СВЧ имеется ряд медицинских противопо­казаний.

Рекомендации при работе с ВЧ и СВЧ:

экранирование источников излучения, рациональное разме­щение передатчиков, отдельных ВЧ и СВЧ блоков, дистанционное управление передатчиками.

на участке изготовления аппаратуры необходимо применять поглотители мощности, имитаторы цепи, волноводные осветите­ли, ослабители, экранизацию рабочих мест, использовать СИЗ (защитные очки типа ОРЗ-5).

при работе нескольких генераторов в одном помещении следует принять меры, исключающие превышение предельно до­пустимых уровней облучения за счет суммирования энергии из­лучения.

Лазерное излучение

Лазерное излучение (ЛИ) – излучение огромной интенсивности оптического квантового генератора связано с широким распространением высокоэнергетических процессов. Благодаря уникальным свойствам излучения лазеры нашли широкое применение в науке и технике (машиностроение, авиация и космонавтика, судостроение, геодезия, строительство, измерительная техника, галография, исследование структуры вещества, вычислительная техника, микроэлектроника, создание различных оптических эффектов в театрально-зрелищных мероприятиях, разделение изотопов и т.д.). Лазеры позволяют быстро и надежно контролировать загрязненность атмосферы и водной поверхности, определять внутренние дефекты в различных механизмах. Исключительно большое применение лазеры нашли в медицине, в том числе для диагностики и лечении различных заболеваний. Такое широкое их применение возможно благодаря та­ким уникальным свойствам, как монохроматичность и высокая плотность излучаемых колебаний, а также благо­даря возможности формирования узких пучков излучения с высокой концентрацией в них электромагнитной энер­гии. Излучение может охватить весь оптический диапазон электромагнитной энергии. Это дает возможность концентрировать световую энергию в пространстве. Лазеры, генерирующие непрерывное излучение, позволяют давать непрерывное излучение, позволяют создавать интенсивность порядка 10 10 Вт/см 2 , что достаточно для плавления и испарения любого материала. При генерации коротких импульсов интенсивность излучения достигает 10 15 Вт/см 2 и больше, что открывает возможность создания управляемого термоядерного синтеза.

Различают следующие режимы генерации ЛИ:

Диапазон длин волн, излучаемых лазером, охватывает видимый спектр и распространяется на инфракрасную и ультрафиолетовую области. Чаще всего используются ла­зеры с длиной волн 0,49-0,51; 0,53-0,63; 0,694, 1,06 и 10,6 мкм. Видимая область лежит в пределах 0,4-0,86 мкм.

Параметрами воздействия ЛИ являются:

энергия одного импульса в Дж;

мощность непрерывного излучения в Вт;

расстояние до границы рабочей зоны (ГРЗ) в см.

По санитарным нормам источники излучения оптиче­ского диапазона в зависимости от спектрального состава излучения делятся на четыре диапазона.

Класс 1 (безопасное) – выходное излучение вредно, но не опасно для глаз.

Класс 2 (молоопасное) – опасно для глаз прямое или зеркально отраженное излучение.

Класс 3 (среднеопасное) – опасно для глаз прямое, зеркально или диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение.

Класс 4 (высокоопасное) – опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности. Это источники ЭМИ в диапазоне волн от 0,2 дм до 1000 мкм.

В качестве ведущих критериев по оценке степени опасности генерирующего ЛИ приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция излучения.

Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы «Санитарными нормами и правилами устройства и эксплуатации лазеров № 2392-81», которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Нормируется энергетическая экспозиция облучаемых тканей. Для лазерного излучения видимой области спектра для глаз учитывается также и угловой размер источника излучения.

Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров — непрерывный режим, моноимпульсный, импульсно-периодический.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты), возникающие в организме в ответ на облучение.

Воздействие ЛИ на организм носит сложный характер и обусловлено как непосредственным воздействием ЛИ на облучаемые ткани, так и вторичными явлениями, выра­жающимися в различных изменениях, возникающих в организме. В оценку эффективности этих излучений поло­жено их взаимодействие с тканями организма человека, в частности, с роговицей глаза и кожей. Биологическое воз­действие ЛИ бывает термическим (ожог) — быстрый на­грев и мгновенное ‘закипание жидкости, приводящее к ме­ханическому повреждению, и нетермическим, возникаю­щим в результате избирательного поглощения тканями ЭМ энергии. Первичный эффект проявляется в виде орга­нических изменений в облучаемых тканях (глаз, кожи). Сфокусированный на сетчатке хрусталиком глаза лазер­ный луч будет иметь вид малого пятна с еще более плот­ной концентрацией энергии, чем попадающее в глаз излу­чение. Энергия лазера адсорбируется пигментным эпите­лием и в течение очень короткого времени повышает в нем температуру до высоких уровней, вызывая термкоогуляцию прилегающих тканей – хореолетинальный ожог. Наибольшая проницаемость глаза, доходящая до 100%, лежит в области 0,5-0,9мкм. Влияние излучения лазера на орган зрения (от небольших функциональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воздействия. Длительное облучение глаз в диапазоне близкого инфракрасного излучения может привести к помутнению хрусталика. Воздействие на глаз сверхпороговых интенсивностей излучения вызывает тепловой ожог глазного дна с необратимыми повреждениями сетчатки глаза. Облучение глаз сопровождается развитием дистрофических изменений в коре головного мозга.

Импульсное ЛИ представляет большую опасность, чем непрерывное, так как в этом случае повреждение глазного дна вызывается комбинированным действием – термическим и механическим.

При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов с дальнейшими изменениями в центральной нервной и эндокринной системах. Под воздействием непрерывного ЛИ происходит коогуляция (свертывание) белка, а при больших мощностях – испарение биоткани. При мощности излучения в импульсе свыше 10 7 Вт и высокой степени фокусирования лазерного луча возможно образование ионизирующего излучения.

Воздействие на кожу. Интенсивное лазерное облучение кожи может вызвать в ней различные повреждения от легких функциональных изменений, сопровождающихся покраснением (эритема) до тяжелых патологических, включая омертвление (некроз). Наибольшее биологическое воздействие оказывает ЛИ с длинами волн 0,28…0,32 мкм. Оно наиболее глубоко проникает в кожу и обладает выраженным канцерогенным действием.

Степень воздействия определяется интенсивностью ЛИ, степенью пигментации кожи и состоянием кровообращения. Темная кожа, особенно при наличии родимых пятен, поглощает большую часть энергии по сравнению со светлой, а при белой энергия излучения проникает под кожу и повреждает расположенные под ней сосуды и нервные окончания.

При большой интенсивности облучения возможны повреждения не только глаз и кожи, но и внутренних органов и тканей. Они имеют характер отеков, кровоизлияний, омертвления тканей. Одним из наиболее уязвимых внутренних органов для воздействия ЛИ является печень.

ЛИ благодаря высокой интенсивности (I = 109 Вт/см 2 ) также может воздействовать на элементы радиоэлектронной аппаратуры, вызывая, в частности, значительный нагрев поверхности облучаемых полупроводников. Если плотность потока тока энергии лазерного импульса превышает определенный порог (Wпл). поверхностный слой полупроводникового элемента испытывает фазовый переход плавления. При этом имеет место диффузия материала (примесей) и поверхности полупроводника в расплавленный слой, а также нарушение стехнометрического состава этого соя за счет испарения одной наименее устойчивой к нагреву компоненты в полупроводниках сложного состава.

В условиях допороговых энергий лазерного импульса (W ≤ Wпл) возникают точечные дефекты (электронное возбуждение, деформация и тепло). Тепловыделение при лазерном воздействии вызывает термализацию неравновестных носителей и решетки кристалла, а вместе с электронным возбуждением – деформацию поверхностного слоя за счет увеличения или уменьшения межатомного расстояния в молекулах кристаллов.

Ударный эффект

Кроме термического эффекта при действии лазерного излучения на ткани организма имеет место ударный эффект. При облучении поверхности кожи происходит испарение частиц, вследствие чего поверхности передаётся импульс, направленный в противоположном направлении, т.е. по ходу лазерного излучения. Одновременно с этим в облучаемой зоне образуется тепловое объёмное расширение. Из-за быстроты протекания процесса тепло не успевает передаться от более нагретых участков к менее нагретым. В результате начинает распространяться механическая волна вглубь ткани. Каждая молекула ткани организма обладает строго определённым запасом энергии, которому соответствует определенная структура энергетических уровней. При изменении структуры электронных уровней начинаются пространственные изменения в расположении молекул различных соединений. Поглощение клеткой лазерного излучения приводит к образованию паров внутри клеток и их гибели. Тепловое расширение клеток порождает гораздо большее давление, чем давление, образующееся при испарении частиц с поверхности. Повышение давления распространяется со сверхзвуковой скоростью (по характеру напоминает ударную волну) и только по мере проникновения вглубь ткани замедляется.

Таким образом при лазерном облучении разрушению могут подвергаться не только покровные ткани, но и внутренние органы без видимых наружных поражений.

В результате воздействия лазерного излучения на вещество возникают дополнительные колебания молекул с частотой 2-10 4 -10 13 Гц. Они также являются причиной повреждения облучаемых участков тканей. Белки, находящиеся во всех клетках живого организма, являются основным классом соединений, который определяет понятие «жизнь». Попадание лазерного излучения на ткань приводит к свёртыванию белков и образованию периодически повторяющихся зон уплотнённого вещества — коогулята или свернувшегося белка. Возникают колебания коогулята. Они приводят к образованию стоячей волны (наложение основной и отражённой волн) на различных по плотности веществ. В результате погибает большое количество клеток.

Кроме того, при действии ЛИ могут возникать сопутствующие опасные факторы:

сохранение электрического заряда после разряда конденсатора в накопительных батареях, системах управления и других узлах;

акустический шум до 120 ДБ на частоте 1000-250 Гц, возникающий в момент настройки лазера и в процессе взаимодействия ЛИ с мишенью. При работе мощных твердотельных лазеров импульсного действия дополнительным источником шума является блок накачки. Наиболее характерным типом интенсивного шума лазерных установок является импульсный шум. Вся энергия импульса беспрепятственно проходит во внутреннее ухо, обладая значительной интенсивностью, вызывая серьезные изменения в чувствительных клетках;

вредные химические примеси в воздухе рабочих помещений, образующиеся при разряде импульсных ламп накачки (озон, окислы азота), при действии его излучения на обрабатываемые материалы и в результате испарения материала мишени (оксид углерода, свинец, ртуть и др.). В жидкостных лазерах активная среда представляет собой раствор красителей или редкоземельных элементов в ацетоне, диметилформальдегиде, спиртах, кислотах и др. Особой токсичностью отличается семинил в присутствии четыреххлористого олова и оксихлорид фосфора.

В газовых лазерах активной средой является или смесь газов с парами металлов, брома, шестифтористой серы и др. В химических лазерах для создания активной среды используют смеси водорода и дейтерия с галогенами. При увеличении мощности излучения лазера в воздушную среду могут поступать пары нитробензола, сероуглерода, бензола и др;

воздействие ЭМ поля ВЧ и СВЧ на организм в целом заключается в том, что рентгеновское излучение при фокусировании ЛИ в газе в режиме модулирования добротности приводит к образованию сгустка высоко ионизированной плазмы с плотностью электронов 1045-1020 на см 3 . Этот вид ЛИ генерируется при использовании источников питания с напряжением свыше 15 кВ (вакуумные выпрямительные кенотроны и тиратроны, генераторные лампы).

Основным нормирующим фактором ЛИ является энергетическая экспозиция Н и облученность Е облучаемых тканей. Ее предельно допустимый уровень нормируется в спектральном диапазоне от180 до 10 5 нм. Величина ПДУ зависит от длины волны, длительности импульса, частоты повторений импульсов, продолжительности воздействия импульсов, а в видимой части спектра – дополнительно от освещенности роговицы глаза. Необходимо учитывать, что на ряд параметров ЛИ не разработаны их значения. Существуют лишь расчетные.

Любое лазерное изделие должно иметь пояснительный знак с надписью. Рамки текста и обозначения должны быть черными на желтом фоне.

Таким образом, ЛИ может представляет опасность для человека, вызывая в его организме патологические изменения, функциональные расстройства зрения, центральной нервной и вегетативной систем, а также воздействует на внутренние органы, такие как печень, спинной мозг и др. При эксплуатации лазерных установок (изделий) необходимо учитывать также возможность взрывов и пожаров при попадании ЛИ на горючие материалы.

Основным документом, регламентирующим требования безопасности при эксплуатации лазерных установок являются «Санитарные нормы и правила устройства и эксплуатации лазеров» № 5804 -91 (СанПиН-лазер), методические рекомендации "Гигиена труда при работе с лазерами", утвержденные МЗ РСФСР 27.04.81 г.; ГОСТ 24713-81 "Методы измерений параметров лазерного излучения. Классификация", ГОСТ 24714-81 "Лазеры. Методы измерения параметров излучения. Общие положения"; ГОСТ 12.1.040-83 "Лазерная безопасность. Общие положения"; ГОСТ 12.1.031 -81 "Лазеры. Методы дозиметрического контроля лазерного излучения".

Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, организационного, санитарно-гигиенического характера. При использовании лазеров II—III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения. Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.

При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускаются в помещения, где размещены лазеры, лица, не имеющие отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств защиты.

Для удаления возможных токсических газов, паров и пыли оборудуется приточно-вытяжная вентиляция с механическим побуждением. Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.

К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до ПДУ. Защитные очки бывают открытые и закрытые с бесцветным стеклами и стеклами-светофильтрами, селикатными или пластмассовыми. Лицевые щитки применяются в тех случаях, когда ЛИ представляет опасность не только для глаз, но и для кожи лица.

Лазерный бронежилет, состоящий из отдельных уголковых отражателей, предназначен для активной защиты от ЛИ, которая заключается в отражении падающего луча, попадающего на ячеистую структуру бронежилет в строго противоположном направлении.

ОСВЕЩЕНИЕ

Свет является естественным условием жизнедеятельности человека, необходимым для сохранения здоровья и высокой производительности труда. С точки зрения безопасности жизнедеятельности чрезвычайно важна зрительная способность человека и зрительный комфорт. Много несчастных случаев происходит из-за неудовлетворительного освещения или из-за ошибок, сделанных по причине трудности распознавания того или иного предмета, связанных с управлением транспортных средств, оборудованием и др. Неудовлетворительная освещенность на рабочем месте является причиной снижения производительности и качества труда, получения травм.

Свет представляет собой видимые глазом электромагнитные волны оптического диапазона длиной 380-760 нм, воспринимаемые сетчатой оболочкой зрительного анализатора.

Для того, чтобы обеспечить условия для зрительного комфорта, к системе освещения предъявляются следующие требования:

отсутствие бликов и ослепленности;

правильная цветовая гамма;

отсутствие пульсации света.

Свет должен включать компоненты как прямого, так и рассеянного излучения. Результатом этой комбинации станет тенеобразование, которое позволит правильно воспринимать форму и положение предметов на рабочем месте.

Освещение подразделяется на естественное, искусственное и совмещенное. Естественное освещение создается природными источниками света: прямыми солнечными лучами и диффузным светом небосвода (от солнечных лучей, рассеянных атмосферой). Естественное освещение является биологически наиболее ценным видом освещения, к которому максимально приспособлен глаз человека.

При недостатке освещенности естественного света используют искусственное освещение, создаваемое электрическими источниками света.

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН, частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.

Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров. Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

Радиолокация.

Волны дециметрово-сантиметрового диапазона оставались предметом чисто научного любопытства до начала Второй мировой войны, когда возникла настоятельная необходимость в новом и эффективном электронном средстве раннего обнаружения. Только тогда начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта – морского судна или самолета. См. также РАДИОЛОКАЦИЯ.

Связь.

Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км. Параболические или рупорные антенны, смонтированные на башнях, принимают и передают дальше СВЧ-сигналы. На каждой станции перед ретрансляцией сигнал усиливается электронным усилителем. Поскольку СВЧ-излучение допускает узконаправленные прием и передачу, для передачи не требуется больших затрат электроэнергии.

Хотя система башен, антенн, приемников и передатчиков может показаться весьма дорогостоящей, в конечном счете все это с лихвой окупается благодаря большой информационной емкости СВЧ-каналов связи. Города Соединенных Штатов соединены между собой сложной сетью более чем из 4000 ретрансляционных СВЧ-звеньев, образующих систему связи, которая простирается от одного океанского побережья до другого. Каналы этой сети способны пропускать тысячи телефонных разговоров и многочисленные телевизионные программы одновременно.

Спутники связи.

Система ретрансляционных радиобашен, необходимая для передачи СВЧ-излучения на большие расстояния, может быть построена, конечно, только на суше. Для межконтинентальной же связи требуется иной способ ретрансляции. Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи.

Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями. Первые экспериментальные ИСЗ такого типа («Телстар», «Релэй» и «Синком») успешно осуществляли уже в начале 1960-х годов ретрансляцию телевизионного вещания с одного континента на другой. На основе этого опыта были разработаны коммерческие спутники межконтинентальной и внутренней связи. Спутники последней межконтинентальной серии «Интелсат» были выведены в различные точки геостационарной орбиты таким образом, что зоны их охвата, перекрываясь, обеспечивают обслуживание абонентов во всем мире. Каждый спутник серии «Интелсат» последних модификаций предоставляет клиентам тысячи каналов высококачественной связи для одновременной передачи телефонных, телевизионных, факсимильных сигналов и цифровых данных.

Термообработка пищевых продуктов.

СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.

Научные исследования.

СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона. (Эффективная масса определяет ускорение электрона под воздействием какой-либо силы в кристалле. Она отличается от массы свободного электрона, которой определяется ускорение электрона под действием какой-либо силы в вакууме. Различие обусловлено наличием сил притяжения и отталкивания, с которыми действуют на электрон в кристалле окружающие атомы и другие электроны.) Если на твердое тело, находящееся в магнитном поле, падает излучение СВЧ-диапазона, то это излучение сильно поглощается, когда его частота равна циклотронной частоте электрона. Данное явление называется циклотронным резонансом; оно позволяет измерить эффективную массу электрона. Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов.

Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Астрономы многое узнали о нашей Галактике, исследуя излучение с длиной волны 21 см, испускаемое газообразным водородом в межзвездном пространстве. Теперь можно измерять скорость и определять направление движения рукавов Галактики, а также расположение и плотность областей газообразного водорода в космосе.

ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ

Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.

Магнетрон.

В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними – как емкость некой резонансной цепи. Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота.

В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов. При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.

Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.

Клистрон.

Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные «сгустки», так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.

Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. ватт мощности в импульсе и до 100 тыс. ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. ватт СВЧ-мощности в импульсе.

Клистроны могут работать на частотах до 120 млрд. герц; однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне.

Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.

Лампа бегущей волны (ЛБВ).

Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.

Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию.

Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель.

Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями. Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.

Плоские вакуумные триоды.

Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.

Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.

Генератор на диоде Ганна.

Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами.

Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.

СХЕМНЫЕ КОМПОНЕНТЫ

Коаксиальные кабели и волноводы.

Для передачи электромагнитных волн СВЧ-диапазона не через эфир, а по металлическим проводникам нужны специальные методы и проводники особой формы. Обычные провода, по которым передается электричество, пригодные для передачи низкочастотных радиосигналов, неэффективны на сверхвысоких частотах.

Любой отрезок провода имеет емкость и индуктивность. Эти т.н. распределенные параметры приобретают очень важное значение в СВЧ-технике. Сочетание емкости проводника с его собственной индуктивностью на сверхвысоких частотах играет роль резонансного контура, почти полностью блокирующего передачу. Поскольку в проводных линиях передачи невозможно устранить влияние распределенных параметров, приходится обращаться к другим принципам передачи СВЧ-волн. Эти принципы воплощены в коаксиальных кабелях и волноводах.

Коаксиальный кабель состоит из внутреннего провода и охватывающего его цилиндрического наружного проводника. Промежуток между ними заполнен пластиковым диэлектриком, например тефлоном или полиэтиленом. С первого взгляда это может показаться похожим на пару обычных проводов, но на сверхвысоких частотах их функция иная. СВЧ-сигнал, введенный с одного конца кабеля, на самом деле распространяется не по металлу проводников, а по заполненному изолирующим материалом промежутку между ними.

Коаксиальные кабели хорошо передают СВЧ-сигналы частотой до нескольких миллиардов герц, но на более высоких частотах их эффективность снижается, и они непригодны для передачи больших мощностей.

Обычные каналы для передачи волн СВЧ-диапазона имеют форму волноводов. Волновод – это тщательно обработанная металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяется СВЧ-сигнал. Упрощенно говоря, волновод направляет волну, заставляя ее то и дело отражаться от стенок. Но на самом деле распространение волны по волноводу есть распространение колебаний электрического и магнитного полей волны, как и в свободном пространстве. Такое распространение в волноводе возможно лишь при условии, что его размеры находятся в определенном соотношении с частотой передаваемого сигнала. Поэтому волновод точно рассчитывается, так же точно обрабатывается и предназначается только для узкого интервала частот. Другие частоты он передает плохо либо вообще не передает. Типичное распределение электрического и магнитного полей внутри волновода показано на рис. 3.

Чем выше частота волны, тем меньше размеры соответствующего ей прямоугольного волновода; в конце концов эти размеры оказываются столь малы, что чрезмерно усложняется его изготовление и снижается передаваемая им предельная мощность. Поэтому были начаты разработки круговых волноводов (кругового поперечного сечения), которые могут иметь достаточно большие размеры даже на высоких частотах СВЧ-диапазона. Применение кругового волновода сдерживается некоторыми трудностями. Например, такой волновод должен быть прямым, иначе его эффективность снижается. Прямоугольные же волноводы легко изгибать, им можно придавать нужную криволинейную форму, и это никак не сказывается на распространении сигнала. Радиолокационные и другие СВЧ-установки обычно выглядят как запутанные лабиринты из волноводных трактов, соединяющих разные компоненты и передающих сигнал от одного прибора другому в пределах системы.

Твердотельные компоненты.

Твердотельные компоненты, например полупроводниковые и ферритовые, играют важную роль в СВЧ-технике. Так, для детектирования, переключения, выпрямления, частотного преобразования и усиления СВЧ-сигналов применяются германиевые и кремниевые диоды.

Для усиления применяются также специальные диоды – варикапы (с управляемой емкостью) – в схеме, называемой параметрическим усилителем. Широко распространенные усилители такого рода служат для усиления крайне малых сигналов, так как они почти не вносят собственные шумы и искажения.

Твердотельным СВЧ-усилителем с низким уровнем шума является и рубиновый мазер. Такой мазер, действие которого основано на квантовомеханических принципах, усиливает СВЧ-сигнал за счет переходов между уровнями внутренней энергии атомов в кристалле рубина. Рубин (или другой подходящий материал мазера) погружается в жидкий гелий, так что усилитель работает при чрезвычайно низких температурах (лишь на несколько градусов превышающих температуру абсолютного нуля). Поэтому уровень тепловых шумов в схеме очень низок, благодаря чему мазер пригоден для радиоастрономических, сверхчувствительных радиолокационных и других измерений, в которых нужно обнаруживать и усиливать крайне слабые СВЧ-сигналы. См. также КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ.

Для изготовления СВЧ-переключателей, фильтров и циркуляторов широко применяются ферритовые материалы, такие, как оксид магния-железа и железо-иттриевый гранат. Ферритовые устройства управляются посредством магнитных полей, причем для управления потоком мощного СВЧ-сигнала достаточно слабого магнитного поля. Ферритовые переключатели имеют то преимущество перед механическими, что в них нет движущихся частей, подверженных износу, а переключение осуществляется весьма быстро. На рис. 4 представлено типичное ферритовое устройство – циркулятор. Действуя подобно кольцевой транспортной развязке, циркулятор обеспечивает следование сигнала только по определенным трактам, соединяющим различные компоненты. Циркуляторы и другие ферритовые переключающие устройства применяются при подключении нескольких компонентов СВЧ-системы к одной и той же антенне. На рис. 4 циркулятор не пропускает передаваемый сигнал на приемник, а принимаемый сигнал – на передатчик.

В СВЧ-технике находит применение и туннельный диод – сравнительно новый полупроводниковый прибор, работающий на частотах до 10 млрд. герц. Он используется в генераторах, усилителях, частотных преобразователях и переключателях. Его рабочие мощности невелики, но это первый полупроводниковый прибор, способный эффективно работать на столь высоких частотах. См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ.

Антенны.

СВЧ-антенны отличаются большим разнообразием необычных форм. Размер антенны приблизительно пропорционален длине волны сигнала, а поэтому для СВЧ-диапазона вполне приемлемы конструкции, которые были бы слишком громоздки на более низких частотах.

В конструкциях многих антенн учитываются те свойства СВЧ-излучения, которые сближают его со светом. Типичными примерами могут служить рупорные антенны, параболические отражатели, металлические и диэлектрические линзы. Применяются также винтовые и спиральные антенны, часто изготавливаемые в виде печатных схем.

Группы щелевых волноводов можно расположить так, чтобы получилась нужная диаграмма направленности для излучаемой энергии. Часто применяются также диполи типа хорошо известных телевизионных антенн, устанавливаемых на крышах. В таких антеннах нередко имеются одинаковые элементы, расположенные с интервалами, равными длине волны, и повышающие направленность за счет интерференции.

СВЧ-антенны обычно проектируют так, чтобы они были предельно направленными, поскольку во многих СВЧ-системах очень важно, чтобы энергия передавалась и принималась в точно заданном направлении. Направленность антенны возрастает с увеличением ее диаметра. Но можно уменьшить антенну, сохранив ее направленность, если перейти на более высокие рабочие частоты.

Многие «зеркальные» антенны с параболическим или сферическим металлическим отражателем спроектированы специально для приема крайне слабых сигналов, приходящих, например, от межпланетных космических аппаратов или от далеких галактик. В Аресибо (Пуэрто-Рико) действует один из крупнейших радиотелескопов с металлическим отражателем в виде сферического сегмента, диаметр которого равен 300 м. Антенна имеет неподвижное («меридианное») основание; ее приемный радиолуч перемещается по небосводу благодаря вращению Земли. Самая большая (76 м) полностью подвижная антенна расположена в Джодрелл-Бенке (Великобритания).

Новое в области антенн – антенна с электронным управлением направленностью; такую антенну не нужно механически поворачивать. Она состоит из многочисленных элементов – вибраторов, которые можно электронными средствами по-разному соединять между собой и тем самым обеспечивать чувствительность «антенной решетки» в любом нужном направлении. См. также АНТЕННЫ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *