Как считать строение атома лития
Перейти к содержимому

Как считать строение атома лития

  • автор:

Структура атома лития

Математическая модель (25) Нильса Бора позволяет рассчитать спектр только водородоподобного атома лития. Спектры двух других электронов эта модель уже не рассчитывает. В результате в совокупности с уравнением Шредингера и принципом Паули модель атома лития оказывается такой (рис. 24) [6].

Рис. 24. Схема атома лития, следующая из старой теории атома

В соответствии с принципом Паули на первой S орбитали (светлая зона внутри) могут находиться только два электрона. Тогда третий электрон располагается на второй S орбитали (более тёмная зона). Никакой информации об энергиях связи электронов с ядром нет.

Наша теория атома позволяет рассчитать спектры всех электронов. Для нас важны спектры первого и второго электронов, так как спектр третьего электрона рассчитывает и формула Бора (25). Причем, наибольшую ценность имеют энергии связи электронов с ядром атома (табл. 17).

Таблица 17. Энергии связиэлектрона атома водорода и первого, второго и третьего электронов атома лития с ядром

n
13,6 3,40 1,51 0,85 0,54 0,38 0,28 0,21 0,17
14,06 3,51 1,56 0,88 0,56 0,39 0,29 0,22 0,17
54,16 13,54 6,02 3,38 2,17 1,50 1,10 0,85 0,67
122,5 30,6 13,6 7,65 4,90 3,40 2,50 1,91 1,51
n
0,14 0,11 0,09 0,08 0,07 0,06 0,05 0,05 0,04
0,14 0,12 0,10 0,08 0,06 0,06 0,05 0,05 0,04
0,54 0,45 0,38 0,32 0,28 0,24 0,21 0,19 0,17
1,23 1,01 0,85 0,72 0,63 0,54 0,48 0,42 0,38

Анализируя таблицу 17, видим близость энергий связи электрона атома водорода и первого электрона атома лития на первом, втором и третьем энергетических уровнях и почти полное совпадение на всех остальных. Это – одно из доказательств того, что первый электрон атома лития взаимодействует с одним протоном ядра.

Нетрудно видеть, что если в атоме лития останется один (третий) электрон, то он начнет взаимодействовать сразу с тремя протонами и его энергия связи с ядром, соответствующая первому () энергетическому уровню, определится по формуле [2], [3].

что совпадает со значениями этой энергии в табл. 17 и подтверждает нашу гипотезу о том, что если в атоме остаётся один электрон, то он взаимодействует одновременно со всеми протонами ядра.

Рассчитаем энергию связи третьего электрона () атома лития с ядром в момент пребывания его на 5 энергетическом уровне

Как видно, это значение согласуется с аналогичной энергией связи третьего электрона атома лития с ядром в момент пребывания его на пятом энергетическом уровне (табл. 17). Поскольку атом лития с одним электроном – это водородоподобный атом, то для убедительности рассчитаем энергию связи второго электрона () этого атома с ядром в момент его пребывания на седьмом энергетическом уровне [2], [3].

Этот результат также согласуется с энергией связи второго электрона атома лития в момент пребывания его на седьмом энергетическом уровне (табл. 17).

Если бы нам удалось измерить энергии связи с ядром двух остальных электронов атома лития, не удаляя из него первый электрон, то оказалось бы, что все три электрона имеют одинаковые энергии связи с ядром. Однако, постановка такого эксперимента вряд ли возможна на данном этапе научных исследований. Но гипотетическое объяснение этого явления мы уже привели [2], [3]. Совпадение результатов расчетов по формуле (132) с экспериментальными результатами, представленными в табл. 17, доказывает жизнеспособность такого объяснения.

Нетрудно представить, что различные значения энергий связи разных электронов атома лития (табл. 17), соответствующие первому энергетическому уровню (), получаются потому, что после удаления из атома первого электрона, освободившийся протон начинает взаимодействовать со вторым электроном, увеличивая его энергию связи до величины близкой к энергии связи второго электрона атома гелия ().

После удаления из атома и второго электрона, в ядре оказывается два свободных протона, которые немедленно начинают взаимодействовать с оставшимся третьим электроном, увеличивая его энергию связи с ядром в раз.

Если мы начнем последовательно возвращать все электроны в атом, то количество протонов, взаимодействовавших ранее с одним электроном, начнет уменьшаться. Уменьшится и энергия связи этого электрона до величины примерно равной энергии связи с ядром электрона атома водорода.

Из изложенного следует следующая модель атома лития (рис. 25) [2], [3]

Связь устанавливается путем взаимодействия разноименных электрических полей протонов и электронов, которые сближают их, и одноименных магнитных полюсов, которые ограничивают это сближение. Получается так, что каждый электрон взаимодействует только с одним протоном ядра атома (рис. 25).

Рис. 25. Схема моделей ядра и атома лития: N — ядро атома;

1,2,3 — номера электронов

Анализ схемы на рис. 25 показывает, что симметрично расположенные электроны будут иметь одинаковые энергии связи с ядром. На электрон, расположенный справа от ядра, будут действовать электростатические силы отталкивания двух других электронов, поэтому он будет расположен дальше от ядра и его энергия ионизации будет наименьшей. Этому электрону мы присваиваем первый номер и обратим внимание на то, что энергия ионизации его () меньше соответствующей энергии ионизации атома водорода (). Схема атома лития (рис. 25) позволяет понять причину такого различия. Как видно, два симметрично расположенных осевых электрона (2 и 3) своими электростатическими полями удаляют первый электрон от ядра, уменьшая энергию его ионизации [2], [3].

Электронное строение атома лития

Электронное строение нейтрального атома лития в основном состоянии.

Схема строения электронных оболочек

Распределение электронов по энергетическим уровням (или по электронным слоям) в атоме лития.

Электронно-графическая схема

Распределение электронов по атомным орбиталям в атоме лития.

2
1 ↑↓
s

Валентные орбитали атома лития выделены фиолетовым цветом.

Электронная конфигурация

Полная электронная конфигурация атома лития.

Сокращённая электронная конфигурация атома лития.

Квантовые числа валентных электронов

Главное (n), орбитальное (l), магнитное (m) и спиновое (s) квантовые числа валентных электронов атома лития.

Структура атома лития

Мы уже показали, что большинство ядер атомов лития имеют 4 нейтрона и три протона. Причем, все протоны имеют свободные магнитные полюса для соединения с магнитными полюсами электронов при образовании атома (рис. 92).

Связь устанавливается путем взаимодействия разноименных электрических полей протонов и электронов, которые сближают их, и одноименных магнитных полюсов, которые ограничивают это сближение. Получается так, что каждый электрон взаимодействует только с одним протоном ядра атома (рис. 92).

a) b)

Рис. 92. Схемы ядра и атома лития

Анализ схемы на рис. 92 показывает, что симметрично расположенные электроны будут иметь одинаковые энергии связи с ядром. На электрон, расположенный справа от ядра, будут действовать электростатические силы отталкивания двух других электронов, поэтому он будет расположен дальше от ядра и его энергия ионизации будет наименьшей. Этому электрону мы присваиваем первый номер и обратим внимание на то, что энергия ионизации его меньше соответствующей энергии ионизации атома водорода . Схема атома лития (рис. 92) позволяет понять причину такого различия. Как видно, два симметрично расположенных осевых электрона (2 и 3) своими электростатическими полями удаляют первый электрон от ядра, уменьшая его энергию связи с протоном, а значит и его энергию ионизации.

Выпишем энергии связи первого электрона атома лития с его ядром из табл. 17, а второго — из табл. 16. Энергии связи с ядром третьего электрона атома лития возьмем из табл. 12. Составим сводную таблицу энергий связи электронов атома лития с его ядром (табл. 35). Анализируя таблицу 35, видим близость энергий связи электрона атома водорода и первого электрона атома лития на первом, втором и третьем энергетических уровнях и почти полное совпадение на всех остальных. Это – одно из доказательств того, что первый электрон атома лития взаимодействует с одним протоном ядра его атома. Соотношение (217) также подтверждает это.

Таблица 35. Энергии связи электрона атома водорода и первого, второго и третьего электронов атома лития с ядром

n
13,6 3,40 1,51 0,85 0,54 0,38 0,28 0,21 0,17
14,06 3,51 1,56 0,88 0,56 0,39 0,29 0,22 0,17
54,16 13,54 6,02 3,38 2,17 1,50 1,10 0,85 0,67
122,5 30,6 13,6 7,65 4,90 3,40 2,50 1,91 1,51
n
0,14 0,11 0,09 0,08 0,07 0,06 0,05 0,05 0,04
0,14 0,12 0,10 0,08 0,06 0,06 0,05 0,05 0,04
0,54 0,45 0,38 0,32 0,28 0,24 0,21 0,19 0,17
1,23 1,01 0,85 0,72 0,63 0,54 0,48 0,42 0,38

Постепенное уменьшение разницы между энергиями связи электрона атома водорода и первого электрона атома лития по мере увеличения номера энергетического уровня объясняется уменьшением взаимного влияния всех трех электронов атома лития друг на друга. Начиная с 9-го энергетического уровня это влияние исчезает, и энергии связи этих электронов со своими протонами оказываются одинаковыми.

Нетрудно видеть, что если в атоме лития останется один (третий) электрон, то он начнет взаимодействовать сразу с тремя протонами и его энергия связи с ядром, соответствующая первому энергетическому уровню, определится по формуле (219).

что совпадает со значениями этой энергии в табл. 35 и подтверждает нашу гипотезу о том, что если в атоме остаётся один электрон, то он взаимодействует одновременно со всеми протонами ядра.

Рассчитаем по формуле (220) энергию связи третьего электрона атома лития с ядром в момент пребывания его на 5 энергетическом уровне

Как видно, это значение согласуется с аналогичной энергией связи третьего электрона атома лития с ядром в момент пребывания его на пятом энергетическом уровне (табл. 35). Поскольку атом лития с одним электроном – это водородоподобный атом, то для убедительности рассчитаем энергию связи второго электрона этого атома с ядром в момент его пребывания на седьмом энергетическом уровне.

Этот результат также согласуется с энергией связи второго электрона атома лития в момент пребывания его на седьмом энергетическом уровне (табл. 35).

Если бы нам удалось измерить энергии связи с ядром двух остальных электронов атома лития, не удаляя из него первый электрон, то оказалось бы, что все три электрона имеют одинаковые энергии связи с ядром на соответствующих энергетических уровнях. Однако, постановка такого эксперимента вряд ли возможна на данном этапе научных исследований. Но гипотетическое объяснение этого явления мы уже привели.

Совпадение результатов расчетов по формуле (220) с экспериментальными результатами, представленными в табл. 35, доказывает жизнеспособность такого объяснения.

Нетрудно представить, что различные значения энергий связи разных электронов атома лития (табл. 35), соответствующие первому энергетическому уровню ( ), получаются потому, что после удаления из атома первого электрона освободившийся протон начинает взаимодействовать со вторым электроном, увеличивая его энергию связи до величины, близкой к энергии связи второго электрона атома гелия (табл. 34, 35) .

После удаления из атома и второго электрона в ядре оказываются два свободных протона, которые немедленно начинают взаимодействовать с оставшимся третьим электроном, увеличивая его энергию связи с ядром в раз.

Если мы начнем последовательно возвращать все электроны в атом, то количество протонов, взаимодействовавших ранее с одним электроном, начнет уменьшаться. Уменьшится и энергия связи этого электрона до величины, примерно равной энергии связи с ядром электрона атома водорода.

Дата добавления: 2016-06-22 ; просмотров: 2251 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Литий, свойства атома, химические и физические свойства

Литий

Литий, свойства атома, химические и физические свойства.

6,938-6,997* 1s 2 2s 1

Литий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 3. Расположен в 1-й группе (по старой классификации — главной подгруппе первой группы), втором периоде периодической системы.

Атом и молекула лития. Формула лития. Строение атома лития:

Литий (Li, лат. lithium, c греч. λίθος – «камень») – химический элемент 1 груп­пы ко­рот­кой фор­мы (по старой классификации – главной подгруппы первой группы) периодической системы химических элементов второго периода системы химических элементов Д. И. Менделеева, с атомным номером 3.

Литий обозначается символом Li.

Как простое вещество литий при нормальных условиях представляет собой мягкий щелочной металл серебристо-белого цвета.

Молекула лития одноатомна.

Химическая формула лития Li.

Электронная конфигурация атома лития 1s 2 2s 1 . Потенциал ионизации (первый электрон) атома лития равен 520,22 кДж/моль (5,39171495(4) эВ).

Строение атома лития. Атом лития состоит из положительно заряженного ядра (+3), вокруг которого по атомным оболочкам (двум s-орбиталям) движутся три электрона. Поскольку литий расположен во втором периоде, оболочки всего две, одна из которых является внешней. При этом 2 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома лития на 2s-орбитали находятся один неспаренный электрон. Электроны, расположенные на внешней оболочке, называются валентными и участвуют в образовании химических связей. В свою очередь ядро атома лития состоит из трех протонов и четырех нейтронов. Литий относится к элементам s-семейства.

Радиус атома лития (вычисленный) составляет 167 пм.

Атомная масса атома лития составляет 6,938-6,997 а. е. м. (г/моль).

Изотопы и модификации лития:

Свойства лития (таблица): температура, плотность и пр.:

– литий c кубической объёмно-центрированной кристаллической решёткой,

– литий с гексагональной плотноупакованной кристаллической решёткой,

73 (4) пм,
90 (6) пм,
106 (8) пм

0,512 г/см 3 (при температуре плавления 180,50 °C и иных стандартных условиях , состояние вещества – жидкость),

0,507 г/см 3 (при 200 °C и иных стандартных условиях , состояние вещества – жидкость),

0,49 г/см 3 (при 400 °C и иных стандартных условиях , состояние вещества – жидкость),

0,474 г/см 3 (при 600 °C и иных стандартных условиях , состояние вещества – жидкость),

0,457 г/см 3 (при 800 °C и иных стандартных условиях , состояние вещества – жидкость),

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

205* Эмпирический радиус атома лития [1] составляет 152 пм.

206* Ковалентный радиус лития согласно [1] и [3] составляет 128±7 пм и 134 пм соответственно.

402* Температура плавления лития согласно [3] составляет 180,54 °C (453,69 K, 356,97 °F).

403* Температура кипения лития согласно [3] составляет 1339,85 °C (613 K, 2443,73 °F).

407* Удельная теплота плавления (энтальпия плавления ΔHпл) лития согласно [3] и [4] составляет 2,89 кДж/моль и 4,2 кДж/моль соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) лития согласно [3] и [4] составляет 148 кДж/моль и 138 кДж/моль соответственно.

Физические свойства лития:

Литий представляет собой серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. В связи с ем его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2.

Однако ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседних атома, расположенных в вершинах кубооктаэдра. Кристаллическая решётка относится к пространственной группе P 63/mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Литий – очень легкий металл.

Литий имеет самую низкую плотность при комнатной температуре среди всех металлов (0,534 г/см³, почти в два раза меньше плотности воды). Вследствие своей низкой плотности литий всплывает не только в воде, но и, например, в керосине.

Литий не растворяется в воде, но реагирует с ней. Литий плохо растворяется в органических растворителях, ртути. Растворяется в жидком аммиаке с образованием синего раствора с металлической проводимостью. Растворяется в расплавленном алюминии.

Расплавленный литий растворяет металлы и обезуглероживает стали, что приводит к изменению прочности конструкционных материалов. Расплавленный литий не растворяет инертные газы.

Пары лития имеют ярко-красный цвет.

Температура плавления лития (Li) составляет 180,54 °C.

Температура кипения лития (Li) составляет 1330 °C.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1339,85 °C, соответственно).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

Теплопроводность лития при 300 K составляет 84,8 Вт/(м·К).

Химические свойства лития. Взаимодействие лития. Химические реакции с литием:

1. Реакция взаимодействия лития и кислорода:

Реакция взаимодействия лития и кислорода происходит с образованием оксида лития. В ходе реакции также образуется примесь – пероксид лития Li2O2.

2. Реакция взаимодействия лития и углерода:

Реакция взаимодействия лития и углерода происходит с образованием ацетиленида лития.

3. Реакция взаимодействия лития и кремния:

4Li + Si → Li4Si (t = 600-700 °C).

Реакция взаимодействия кремния и лития происходит с образованием силицида лития .

4. Реакция взаимодействия лития и хлора:

Реакция взаимодействия лития и хлора происходит с образованием хлорида лития. Реакция протекает при комнатной температуре.

5. Реакция взаимодействия лития и водорода:

2Li + H2 → 2LiH (t = 500-700 °C).

Реакция взаимодействия лития и водорода происходит с образованием гидрида лития.

6. Реакция взаимодействия лития и брома:

Реакция взаимодействия лития и брома происходит с образованием бромида лития. Реакция протекает при комнатной температуре.

7. Реакция взаимодействия лития и йода:

2Li + I2 → 2LiI (t > 200 °C).

Реакция взаимодействия йода и лития происходит с образованием йодида лития.

8. Реакция взаимодействия лития и фтора:

Реакция взаимодействия фтора и лития происходит с образованием фторида лития. Реакция протекает при комнатной температуре.

Аналогичным образом литий вступает в реакции и с другими неметаллами: мышьяком, серой, азотом.

9. Реакция взаимодействия лития и сурьмы:

Реакция взаимодействия лития и сурьмы происходит с образованием стибида лития. Реакция протекает при сплавлении реакционной смеси.

10. Реакция взаимодействия лития, оксида азота (II) и оксида азота (IV):

Реакция взаимодействия лития, оксида азота (II) и оксида азота (IV) происходит с образованием нитрита лития.

11. Реакция взаимодействия лития и воды:

Реакция взаимодействия лития и воды происходит с образованием гидроксида лития и водорода. Реакция протекает бурно.

12. Реакция взаимодействия лития и оксида фосфора (V):

Реакция взаимодействия оксида фосфора (V) и лития происходит с образованием метафосфата лития и фосфида лития.

13. Реакция взаимодействия лития и азотной кислоты:

Реакция взаимодействия лития и азотной кислоты происходит с образованием в первом случае – нитрата лития, оксида азота (IV) и воды , во втором случае – нитрата лития, оксида азота (II) и воды. В ходе первой реакции используется концентрированный раствор азотной кислоты, в ходе второй – разбавленный раствор.

Аналогичные реакции протекают и с другими минеральными кислотами.

14. Реакция взаимодействия лития и сероводорода:

Реакция взаимодействия лития и сероводорода происходит с образованием сульфида лития и водорода.

Аналогичные реакции протекают и с другими водородосодержащими соединениями: хлороводородом.

15. Реакция взаимодействия лития и этанола:

Реакция взаимодействия лития и этанола происходит с образованием этанолята лития и водорода.

Получение лития:

Применение лития:

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон
  1. https://en.wikipedia.org/wiki/Lithium
  2. https://de.wikipedia.org/wiki/Lithium
  3. https://ru.wikipedia.org/wiki/Литий
  4. http://chemister.ru/Database/properties.php?dbid=1&id=213

Примечание: © Фото https://www.pexels.com, https://pixabay.com

литий атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле лития
сколько электронов в атоме свойства металлические неметаллические термодинамические

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *