На какую силу тока рассчитан амперметр
Перейти к содержимому

На какую силу тока рассчитан амперметр

  • автор:

Как подключить амперметр в электрическую цепь

Термин «электрический ток» известен каждому человеку, независимо от образования и рода занятий. Многие знают, что силу тока можно измерить, что единица измерения называется «ампер», и что для замеров требуется прибор, называемый амперметром.

Что измеряет амперметр, где применяется

Электрический ток определяется, как скорость переноса заряда через единицу сечения проводника. Измерить эту величину непосредственно и оценить ее количественно сложно. Не менее сложно и неудобно напрямую измерять ток через силу взаимодействия проводников (так вводится понятие единицы измерения в 1 ампер).

Но при прохождении по проводнику электрический ток оказывает различные виды воздействия:

  • термическое;
  • электрохимическое;
  • электромагнитное;
  • другие виды воздействия.

Эти воздействия измерить уже проще, поэтому для измерения тока количественно оценивается его воздействие. На этом принципе и построено действие амперметров.

Термин «амперметр» состоит из названия единицы измерения силы тока «ампер» и греческого слова «метрео» — измерять.

Сфера применения амперметров

Амперметры применяются там, где надо измерить силу тока в цепи, а это очень широкая область использования. Контроль потребления электроэнергии промышленным или бытовым объектом, мониторинг корректной работы электроустановок по электрическим параметрам, задание режима заряда возобновляемых электрохимических источников энергии – это всего лишь малая часть сферы назначения приборов для измерения тока. Полный же список составить вряд ли возможно – он будет огромен.

Принцип работы амперметра в зависимости от типа прибора

Все амперметры можно разделить на две большие категории:

  1. Цифровые.
  2. Стрелочные (часто не совсем верно называемые аналоговыми).

Все они предназначены для одной цели, но выполняют свои функции различными способами.

Стрелочные приборы

Хотя все стрелочные измерители тока внешне похожи, внутри этого класса амперметров существует внутренняя классификация. Она производится по конструкции системы измерения и определяет сферу применения каждого вида прибора.

Магнитоэлектрические

Этот тип измерителей тока используется со времени ранних этапов развития электротехники. В основе принципа его действия лежит механическое воздействие электрического тока, которое порождается электромагнитным воздействием. В таком приборе измеряемый ток проходит через подвижную катушку, при этом возникает магнитное поле. Магнитное поле катушки взаимодействует с полем постоянного магнита так, что возникает вращающий момент, заставляющий катушку повернуться против действия пружины. Чем больше ток, тем на больший угол повернется катушка, тем на больший угол отклонится стрелка, расположенная с катушкой на одной оси.

Как подключить амперметр в электрическую цепь

Устройство магнитоэлектрической системы

Электромагнитные

Электромагнитный амперметр имеет тот же принцип действия (взаимодействие поля измеряемого тока и поля постоянного магнита), но имеет «вывернутое» относительно предыдущего прибора строение. Ток, который надо измерить, проходит через неподвижную катушку, а на оси со стрелкой установлен постоянный магнит.

Такие измерители выпускают, большей частью, для использования в цепях постоянного тока.

Как подключить амперметр в электрическую цепь

Устройство электромагнитного амперметра

Электродинамические

Принцип действия амперметра этой конструкции аналогичен магнитоэлектрическому (электромагнитному) прибору, но второе магнитное поле создается не громоздким и тяжелым постоянным магнитом, а другой катушкой (неподвижной), через которую протекает тот же измеряемый ток.

Как подключить амперметр в электрическую цепь

Строение и схема включения электродинамического амперметра

Ферродинамические

Аналогичный принцип используется в приборах ферродинамической системы. Принципиальное отличие – наличие сердечника из магнитомягкого материала. Неподвижная катушка располагается на полюсе сердечника, а подвижная – в зазоре. За счет этого магнитное поле концентрируется и достигается большая чувствительность механической системы.

Как подключить амперметр в электрическую цепь

Устройство прибора ферродинамической системы

Такие амперметры хорошо переносят тряску, поэтому их применяют, например, в авиации или на железнодорожном транспорте.

Термоэлектрические

Для измерения высокочастотных токов описанные выше приборы непригодны. Они имеют слишком большие собственные индуктивности из-за наличия катушек. В этой области применяют термоэлектрические измерители. Их принцип действия основан на преобразовании ВЧ-тока в постоянный ток. Преобразованный ток измеряется обычным амперметром (магнитоэлектрическим, электродинамическим и т.п.).

Как подключить амперметр в электрическую цепь

Принцип термоэлектрического измерения тока

Измеряемый ток проходит по нагревателю, который при этом выделяет тепло, количество которого зависит от проходящего тока. Тепловая энергия повышает температуру спая термопары, в которой возникает постоянная ЭДС, создающая ток в цепи. Этот ток измеряется обычным прибором (магнитоэлектрической, электродинамической или другой системы).

Цифровой амперметр

Как подключить амперметр в электрическую цепь

Цифровой амперметр

В цифровых приборах принцип измерения тока иной. Движущихся частей в них нет, замер происходит не по результату взаимодействия полей. Измеряемый ток проходит по резистору, называемому шунтом. Шунт также включается в разрыв цепи. Его сопротивление невелико – единицы или даже доли ом. При протекании тока на резисторе падает определенное напряжение. Это напряжение пропорционально току и зависит от сопротивления шунта. Замеренное напряжение пересчитывается в ток по формуле I=U/R и выдается на дисплей в готовом к считыванию виде.

Как подключить амперметр в электрическую цепь

Измерение тока с помощью шунта

Правила использования

Чтобы достоверно измерить силу тока, надо уметь правильно включить амперметр в цепь и верно считать показания.

Схемы подключения амперметра в электрическую цепь

В общем случае амперметр подключается в измеряемую цепь последовательно с нагрузкой (в разрыв цепи). Так как сопротивление рамки стрелочного измерителя или шунта цифрового прибора невелико, то подключение амперметра практически не изменяет характеристик цепи и не влияет на величину тока (хотя в некоторых случаях наличие измерителя надо учитывать). Такое включение амперметра называется прямым или непосредственным.

Как подключить амперметр в электрическую цепь

Схема непосредственного включения амперметра

Нельзя включать амперметр параллельно источнику питания, пытаясь «измерить силу тока в сети». Это приведет к короткому замыканию.

Как подключить амперметр в электрическую цепь

Так включать амперметр нельзя!

Если сила тока в измеряемой цепи велика или напряжение в сети достигает величин, при которых требования к изоляции прибора становятся несоразмерными, применяется включение амперметра через трансформатор тока.

Такое подключение называется косвенным и применимо только в цепях переменного тока.

В этом случае первичная обмотка трансформатора включается в разрыв цепи, а параллельно вторичной подключается амперметр. Показания прибора считываются с учетом коэффициента трансформации трансформатора. Например, трансформатор имеет Ктр=200/5=40, амперметр показывает 2 ампера. Значит, фактический ток в цепи составляет 2*40=80 ампер.

Как подключить амперметр в электрическую цепь

Косвенное включение прибора для измерения тока

Стрелочные амперметры постоянного тока включаются в соответствии с полярностью, указанной на зажимах. Если перепутать терминалы, стрелка будет отклоняться влево от нуля (в сторону ограничителя). Для цифровых приборов и стрелочных измерителей с нулем посередине шкалы это правило менее значимо, но его тоже лучше соблюдать. В противном случае на дисплее будет отображаться ток противоположной полярности.

Для наглядности видеоурок.

Расшифровка показаний амперметра

Как подключить амперметр в электрическую цепь

Шкала этого прибора проградуирована в килоамперах

Цифровые амперметры обычно выдают измеренную величину в удобном для восприятия виде. Достаточно считать результат с дисплея. У стрелочных приборов бывает несколько сложнее.

Сначала надо определить, на какую величину указывает стрелка. Потом надо посмотреть на единицу измерения. У некоторых приборов шкала проградуирована в кратных и дольных единицах (килоамперах, миллиамперах, микроамперах и т.д.). У других на шкале указан множитель, на который надо умножить показания амперметра.

Как подключить амперметр в электрическую цепь

Шкала с множителем х10

Например, у прибора на рисунке указан множитель x10. Если стрелка указывает, например, на значение 5.5, то фактический ток составляет 5.5×10=55 ампер.

Минимальный и максимальный предел измерения амперметра (на какую силу тока рассчитан)

У стрелочного амперметра наибольшая величина измеряемого тока нанесена на шкалу – это крайнее правое деление шкалы. Его надо умножить на единицу измерения, расположенную в центре шкалы. Наименьшим пределом измерения считается значение самого маленького деления. Следовательно, минимальные достоверные показания не могут быть меньше одного наименьшего деления.

Как подключить амперметр в электрическую цепь

Этот прибор может измерять максимум 2 ампера, минимум – 0,1 ампера

У цифровых приборов максимальный предел измерения амперметра обычно наносится на лицевую панель прибора, рядом с дисплеем. Если ее там нет, надо обратиться к технической документации на измеритель. За минимальное достоверное значение принимается две единицы самого младшего разряда (считается, что наименьшая погрешность таких устройств не может составлять меньше одной цифры младшего разряда).

Тематический контроль по теме «Сила тока. Единицы силы тока. Амперметр. Измерение силы тока», 8 класс

Вытоптова Татьяна Александровна, КГКОУ «Вечерняя (сменная) общеобразовательная школа №2», с. Шипуново Алтайского края, учитель физики. Тематический контроль по теме «Сила тока. Единицы силы тока. Амперметр. Измерение силы тока». Физика 8 класс. Аннотация к тесту Тест служит для текущей проверки знаний учащихся по физике 8 класса. Он состоит из заданий, каждое из которых охватывает материал двух-трех уроков. В заданиях содержится от трех до десяти вопросов, расположенных в порядке нарастающей трудности. На каждый вопрос приведено от двух до пяти ответов, среди которых один (реже два) являются правильными, а остальные – неполные, неточные или неверные. К тесту прилагается контрольная карточка (см. слайд 2). При составлении теста использовалась литература: Постникова А.В. Проверка знаний учащихся по физике: 7-8 кл. Дидакт. Материал. Пособие для учителя.

СИЛА ТОКА, НАПРЯЖЕНИЕ, СОПРОТИВЛЕНИЕ 8 класс 2 1 3 4 Сила тока. Единицы силы тока. Амперметр. Измерение силы тока Тест №4

Вариант 1 Сколько миллиампер в 0.25 А? 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА II. Выразите 0.25 мА в микроамперах. 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока и электрической лампой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрической лампе? От а к б. 2. От б к а.

VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1

Вариант 2 Выразите 0.025 А в миллиамперах. 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА II. Сколько микроампер 0,025 мА? 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока и выключателем? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрической лампе? От а к б. 2. От б к а.

VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1

Вариант 3 Сколько ампер в 250 мА? 250 А; 2. 25 А; 3. 2,5 А; 4. 0,25 А; 5. 0,025 А II. Сколько микроампер 0.025 мА? 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока кнопкой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрическом звонке? От а к б. 2. От б к а.

VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1

Вариант 4 Выразите 250 мА в амперах. 250 А; 2. 25 А; 3. 2,5 А; 4. 0,25 А; 5. 0,025 А II. Сколько миллиампер 25 мкА? 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между звонком и кнопкой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Какое направление имеет ток в электрическом звонке? От а к б. 2. От б к а.

VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1

Амперметр. Назначение, типы амперметров их устройство и принцип работы, как пользоваться и подключать

Амперметр — это электроизмерительный прибор, который предназначен для измерения силы электрического тока в каком-нибудь участке электрической цепи. Эта величина задается единицах, называемых амперами, отсюда и название прибора — «Амперметр». На практике значения электрического тока измеряются в различных диапазонах — от микроампер (мкА) до килоампер (кА).

Амперметр — это тот же гальванометр, только приспособленный для измерения силы тока, его шкала проградуирована в амперах.

На схемах амперметр изображают кружком с буквой А в центре.

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию к конкретной модели мультиметра, чтобы его правильно настроить и подключить в электрическую цепь.

Как работает амперметр?

Существует два типа амперметров: аналоговые, показывающие значение путем отклонения стрелки механического устройства, и все чаще использующиеся в настоящее время цифровые приборы, оснащенные сложными электронными схемами.

При изготовлении аналоговых амперметров необходимо использовать эффекты, зависящие от величины электрического тока. Чаще всего они связаны с созданием магнитного поля проводником, в котором течет электрический ток. Чем выше сила тока, тем больше эффект, производимый данным явлением.

Каждый аналоговый амперметр имеет подвижную и неподвижную части. К подвижной части прикреплена стрелка, которая перемещается по шкале и позволяет считывать показания прибора. Чтобы избежать ошибок при снятии показаний, которые вызваны эффектом параллакса, следует смотреть на стрелку под прямым углом к ​​шкале, чему способствует зеркало, расположенное рядом со шкалой (см. рисунок 1).

Индикаторный микроамперметр с зеркалом

Рис. 1. Индикаторный микроамперметр с зеркалом, установленным для уменьшения эффекта параллакса при снятии показаний

Типы амперметров их устройство и принцип работы

Каждый тип амперметра использует различные физические явления, связанные с протеканием электрического тока через проводник. Некоторые из них перечислены ниже.

Магнитоэлектрический амперметр

  • На проводник с электрическим током, помещенный в магнитное поле, действует электродинамическая сила, величина которой зависит от абсолютной величины электрического тока, длины проводника и величины магнитной индукции.

Конструкция магнитоэлектрического амперметра, основанного на этом явлении, показана на рис. 2. Вращающаяся катушка, через которую протекает измеряемый электрический ток, отмечена красным цветом. Части катушки, перпендикулярные плоскости рисунка, используются в качестве проводника.

Магнитное поле создается постоянным магнитом, сформированным таким образом, чтобы поле было радиальным. Таким образом, каждый фрагмент взаимодействующего проводника всегда перпендикулярен вектору индукции магнитного поля, независимо от положения катушки с указателем.

Схема работы магнитоэлектрического амперметра

Рис. 2. Схема работы магнитоэлектрического амперметра. Красный цвет — это катушка в которой течет ток, зеленый — пружина.

Формула, описывающая силу магнитного взаимодействия, действующую на прямолинейный проводник с током, помещенным в магнитное поле, имеет вид: F = I * L * B (1), где:

  • L — вектор вдоль проводника с величиной, равной его длине, и направлением — таким же как и направление протекания электрического тока;
  • B — вектор индукции магнитного поля.

Согласно этой формуле, на токоведущие проводники перпендикулярно плоскости (см. рисунок 2) действует сила, направление которой перпендикулярно как этим проводникам, так и вектору индукции магнитного поля. Эта сила вызывает вращение катушки. Значение силы, согласно формуле (1), равно F = I * l * B * sin α (2), где:

где α — угол между направлениями вектора L и вектора индукции магнитного поля B . Как было сказано выше, этот угол всегда равен 90 0 , если магнитное поле радиальное.

Пружина, обозначенная зеленым цветом на рисунке 2, противодействует вращению катушки таким образом, что устанавливается равновесное положение в зависимости от силы тока, значение которой можно определить по стрелке, расположенной над шкалой амперметра.

Таким образом, описанный амперметр показывает направление протекания электрического тока. Его можно использовать только для постоянного или однонаправленного тока. Такова, в частности, конструкция гальванометров.

Электродинамический амперметр

  • Две катушки, по которым течет электрический ток, взаимодействуют друг с другом с помощью магнитного взаимодействия.

Электродинамический амперметр состоит из двух катушек — подвижной и неподвижной (см. рисунок 3).

Устройство электродинамического амперметра

Рис. 3. Устройство электродинамического амперметра. 1 — неподвижная катушка, 2 — подвижная катушка, 3 — пружина

Если через обе катушки протекает электрический ток, значение которого мы хотим измерить, магнитные поля будут взаимодействовать, вызывая отклонение подвижной катушки и прикрепленного к ней указателя (стрелки). Этот эффект не зависит от направления протекания электрического тока. Электродинамический амперметр может использоваться для измерения постоянного и переменного тока, включая быстро меняющийся ток. Это точные устройства, но дорогие. Чаще всего они используются в лабораториях в качестве эталонных измерительных приборов.

Индукционный амперметр

  • В металлическом вращающемся диске вихревые токи индуцируются под воздействием магнитных полей, создаваемых катушками, в которых протекает переменный электрический ток.

Электрические токи I1 и I2 (см. рисунок 4), протекающие в катушках электромагнитов, создают пульсирующие магнитные потоки, которые вызывают вихревые токи в диске, помещенном в воздушный зазор электромагнитов.

Вихревые токи также создают магнитное поле, которое отталкивающе взаимодействует с полем катушки, заставляя диск вращаться.

Индукционный амперметр

Рис. 4. Устройство индукционного амперметра

Индуктивный амперметр можно использовать только для измерения переменного тока, т.к. постоянный ток не будет вызывать вихревые токи в диске. Этот тип конструкции в настоящее время используются только в качестве счетчиков электроэнергии.

Как пользоваться и подключать амперметр к цепи?

Для измерения силы тока в простейшей электрической цепи мы должны обязательно разорвать цепь в любом месте и в этот разрыв подключить прибор (см. рисунок 5). Такое подключение называют последовательным. То есть, например, для измерения силы тока в проводнике амперметр подключают последовательно с этим проводником — в этом случае через проводник и амперметр идёт одинаковый ток.

Способ подключения амперметра в электрической цепи

Рис. 5. Способ подключения амперметра в электрической цепи

В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова. Это следует из того, что заряд, проходящий через любое поперечное сечение проводников цепи за 1 с, одинаков. Когда в электрической цепи существует ток, то заряд нигде в проводниках цепи не накапливается, подобно тому как нигде в отдельных частях трубы не собирается вода, когда она течёт по трубе. Поэтому при измерении силы тока амперметр можно включать в любое место цепи, состоящей из ряда последовательно соединённых проводников, так как сила тока во всех точках цепи одинакова. Если включить один амперметр в электрическую цепь до лампы, другой после неё, то оба они покажут одинаковую силу тока.

Внимание! Нельзя присоединять амперметр к зажимам источника без какого-либо приёмника тока, соединённого последовательно с амперметром. Можно испортить амперметр!

Для каждого амперметра существует верхний предел измерения (предельная сила тока), то есть по шкале амперметра видно, на какую наибольшую силу тока он рассчитан. Включение амперметра в электрическую цепь с большей силой тока недопустимо, так как он может выйти из строя.

При включении прибора необходимо соблюдать полярность, т. е. клемму прибора, отмеченную знаком «+», нужно подключать только к проводу, идущему от клеммы со знаком «+» источника тока. При правильном включении прибора электрический ток через амперметр должен идти от клеммы « + » к клемме « — » .

При включении в цепь амперметр, как всякий измерительный прибор, не должен влиять на измеряемую величину. Поэтому он устроен так, что при включении его в цепь сила тока в ней почти не изменяется. Как мы уже знаем, любые измерительные электроприборы обладают определенным электрическим сопротивлением. При включении последовательно в электрическую цепь амперметра его электрическое сопротивление добавляется к полному электрическому сопротивлению электрической цепи. Это вызывает нежелательное уменьшение силы тока. Чтобы этого не случилось, сопротивление амперметра должно быть мало. Идеальным был бы амперметр без сопротивления (R = 0), но на практике этого достичь невозможно.

Как увеличить диапазон измерения амперметра?

Чтобы измерение тока было как можно более точным, нам необходимо использовать соответствующий диапазон измерений. Попытка считывания значений в несколько мА, когда шкала перекрывает измерения до 100 А закончится тем, что мы даже не заметим отклонения стрелки амперметра.

Разработчики амперметров используют различные технические решения для того, чтобы иметь возможность измерять силу тока в различных диапазонах. В некоторых случаях мы можем сами изменить диапазон измерения прибора. Если мы добавим к нему дополнительный резистор (так называемый шунт), как показано на рис. 6, мы сможем измерять более высокие токи, не подвергая хрупкую структуру амперметра разрушению.

Расширение диапазона измерений амперметра

Рис. 6. Расширение диапазона магнитоэлектрического амперметра путем добавления шунтирующего резистора

Предположим, что мы хотим увеличить диапазон измерения амперметра в n раз. Полный ток I, протекающий через устройство (рис. 6), тогда равен n*IA . Тогда уравнения первого и второго правил Кирхгофа будут следующими:

  • n ⋅ IA = IA + IB
  • IB ⋅ RB = IA ⋅ RA

Следовательно, сопротивление шунтирующего резистора можно будет рассчитать так:

По конструктивным соображениям шунтирующий резистор используется только для магнитоэлектрического амперметра.

Амперметр

Амперметр

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер? Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника. Если учесть, что заряд одного электрона 1.6х10 -19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

На принципиальных схемах амперметр, как измерительный прибор обозначается вот так.

Обозначение амперметра на принципиальной схеме

Какие бывают амперметры?

Первый тип амперметра – аналоговый. Их ещё называют стрелочными. Вот так они выглядят.

Аналоговый амперметр

Такие амперметры имеют магнитоэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремится установиться по полю под действием вращающего момента, величина которого пропорциональна току. В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты буду равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор определенной величины, рассчитанной заранее. Это так называемый шунтирующий резистор – шунт.

Про шунтирующее действие измерительных приборов уже подробно рассказывалось в статье про вольтметр. Там же затрагивалось такое понятие, как входное сопротивление прибора. Так вот, применительно к вольтметру, его входное сопротивление должно быть как можно больше. Это необходимо для того, чтобы прибор не влиял на работу схемы при проведении измерений и выдавал точные результаты.

Применительно к амперметру складывается обратная ситуация. Так как амперметр для проведения измерений включается в разрыв электрической цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. Грубо говоря, сопротивление между его измерительными щупами должно быт мало. В противном случае, для электрической цепи амперметр будет представлять резистор. А, как известно, чем больше сопротивление резистора, тем меньший ток через него проходит. Таким образом, при включении амперметра в измерительную цепь, мы искусственно понижаем ток в этой цепи. Понятно, что в таком случае, показания амперметра будут некорректные. Но не стоит расстраиваться, так как измерительная техника разрабатывается с учётом всех этих особенностей.

Это лишь ещё один намёк на то, что при обращении с мультиметрами стоит внимательно относиться к выбору режима работы и правильному замеру тех или иных величин. Несоблюдение этих правил может привести к порче прибора.

Аналоговые амперметры до сих пор используются в современном мире. Их плюс таковы, что им не требуется независимое питание для выдачи результатов, так как они используют питание замеряемой цепи. Также они удобны при отображении информации. Думаю, лучше наблюдать за стрелкой, чем за цифрами. На некоторых амперметрах есть винтик корректировки для точного выставления стрелки прибора к нулю. Минусы – это большая инертность, то есть для стрелки прибора нужно какое-то время, чтобы она пришла в устойчивое состояние. Хоть этот недостаток в современных аналоговых приборах проявляется слабо, но он все-таки есть.

Второй тип амперметра – это цифровой амперметр. Он состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, который потом отображаются на ЖК-дисплее.

Цифровой амперметр

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секунду. Также цифровые амперметры требуют меньше габаритов для установки, что немаловажно в современной аппаратуре. Минусы – это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора. Есть, конечно, и такие цифровые амперметры, которые используют питание измеряемой цепи, но они все равно редко используются в виду своей дороговизны.

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения. Но, допустим, у вас нет амперметра, чтобы измерить силу тока переменного напряжения. Что же тогда делать? Можно собрать очень простую схемку. Выглядит она вот так:

Упрощённая схема стрелочного амперметра переменного тока

Но чтобы не собирать самостоятельно измерительную схему и доводить её до ума, купите себе мультиметр. В хорошем мультиметре есть функции измерения силы тока, как для постоянного, так и для переменного напряжения.

Схема для измерения силы тока выглядит вот так:

Правило измерения тока в электрической цепи

Это означает, что амперметр мы должны подключать последовательно нагрузке.

Для того чтобы правильно измерить силу тока, нам надо знать, какое напряжение вырабатывает источник питания: переменное или постоянное. Если будем замерять силу тока постоянного напряжения, то и амперметр нам нужен для измерения силы тока постоянного напряжения, а если для переменного, то и амперметр нужен соответствующий. В нашем случае нагрузкой может быть любой прибор или схема, которая потребляет ток. Это может быть лампочка, сотовый телефон или даже компьютер.

Измерение силы тока с помощью амперметра.

Давайте рассмотрим на практике, как замерять силу тока с помощью цифрового мультиметра DT-9202A.

Цифровой мультиметр

В красном кружочке у нас буковка «А

» означает, что ставя переключатель на этот участок, мы сможем замерить силу тока переменного напряжения, а ставя переключатель на секцию со значком «А=» (в синем кружке), мы сможем замерять силу тока постоянного напряжения.

Переключатель режимов работы мультиметра

Чтобы измерить силу тока до 200 мА (200m) как переменного, так и постоянного напряжения, нужно поставить щупы такого мультиметра в определенные клеммы:

Клеммы подключения измерительных щупов

Если же мы будем измерять силу тока более чем в 5 Ампер, то я рекомендую вам переставить щуп в другую клемму:

Клемма подключения щупа для замера больших токов

Если даже примерно не знаете, сколько должно потреблять ваше устройство или нагрузка, то всегда ставьте щуп и переключатель на самый большой предел измерения. Тем самым вы сохраните своему прибору жизнь.

На фото снизу я измеряю силу тока, которая кушает лампочка на 12 Вольт. С трансформатора я снимаю переменное напряжение 10 Вольт. Как мы видим, сила тока, потребляемая лампочкой – 1.14 Ампер. Обратите особое внимание, что переключатель мультиметра поставлен на измерение силы тока переменного напряжения (А

Замер переменного тока

А вот так мы замеряем постоянный ток, который потребляет автомобильная сирена. Орет она так, что даже уши закладывает .

Замер постоянного тока

Обратите также внимание, так как у нас аккумулятор постоянного напряжения 12 Вольт, то и переключатель режимов мультиметра мы поставили на измерение постоянного тока.

А вот столько у нас кушает лампочка: 1.93 Ампера. Здесь замеряется постоянный ток, который потребляется лампой накаливания от аккумулятора.

Никогда не подключайте амперметр в розетку без всякой нагрузки! Тем самым вы просто-напросто спалите прибор. Как уже говорилось, амперметр обладает малым входным сопротивлением.

При измерении силы тока не касайтесь голых проводов, а также оголённых частей измерительных щупов. Это исключит электрический удар током. Будьте внимательны со схемой подключения амперметра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *