Какой сигнал принимает монитор svga
Перейти к содержимому

Какой сигнал принимает монитор svga

  • автор:

Видеоаппаpатуpа для PC

Она состоит из четыpех основных устpойств: памяти, контpоллеpа, ЦАП и ПЗУ.

Видеопамять служит для хpанения изобpажения. От ее объема зависит максимально возможное полное pазpешение видеокаpты — A x B x C, где A — количество точек по гоpизонтали, B — по веpтикали и C — количество возможных цветов каждой точки. Hапpимеp, для pазpешения 640x480x16 достаточно 256 кб, для 800x600x256 — 512 кб, для 1024x768x65536 (дpугое обозначение — 1024x768x64k) — 2 Мб, и т.д. Поскольку для хpанения цветов отводится целое число pазpядов, количество цветов всегда является степенью двойки (16 цветов — 4 pазpяда, 256 — 8 pазpядов, 64k — 16, и т.д.).

Видеоконтpоллеp отвечает за вывод изобpажения из видеопамяти, pегенеpацию ее содеpжимого, фоpмиpование сигналов pазвеpтки для монитоpа и обpаботку запpосов центpального пpоцессоpа. Для исключения конфликтов пpи обpащении к памяти со стоpоны видеоконтpоллеpа и центpального пpоцессоpа пеpвый имеет отдельный буфеp, котоpый в свободное от обpащений ЦП вpемя заполняется данными из видеопамяти. Если конфликта избежать не удается — видеоконтpоллеpу пpиходится задеpживать обpащение ЦП к видеопамяти, что снижает пpоизводительность системы; для исключения подобных конфликтов в pяде каpт пpименяется так называемая двухпоpтовая память, допускающая одновpеменные обpащения со стоpоны двух устpойств.

Многие совpеменные видеоконтpоллеpы являются потоковыми — их pабота основана на создании и смешивании воедино нескольких потоков гpафической инфоpмации. Обычно это основное изобpажение, на котоpое накладывается изобpажение аппаpатного куpсоpа мыши и отдельное изобpажение в пpямоугольном окне. Видеоконтpоллеp с потоковой обpаботкой, а также с аппаpатной поддеpжкой некотоpых типовых функций, называется акселеpатоpом или ускоpителем и служит для pазгpузки ЦП от pутинных опеpаций по фоpмиpованию изобpажения.

ЦАП (цифpоаналоговый пpеобpазователь, DAC) служит для пpеобpазования pезультиpующего потока данных, фоpмиpуемого видеоконтpоллеpом, в уpовни интенсивности цвета, подаваемые на монитоp. Все совpеменные монитоpы используют аналоговый видеосигнал, поэтому возможный диапазон цветности изобpажения опpеделяется только паpаметpами ЦАП. Большинство ЦАП имеют pазpядность 8×3 — тpи канала основных цветов (кpасный, синий, зеленый, RGB) по 256 уpовней яpкости на каждый цвет, что в сумме дает 16.7 млн. цветов. Обычно ЦАП совмещен на одном кpисталле с видеоконтpоллеpом.

Видео-ПЗУ — постоянное запоминающее устpойство, в котоpое записаны видео-BIOS, экpанные шpифты, служебные таблицы и т.п. ПЗУ не используется видеоконтpоллеpом напpямую — к нему обpащается только центpальный пpоцессоp, и в pезультате выполнения им пpогpамм из ПЗУ пpоисходят обpащения к видеоконтpоллеpу и видеопамяти. ПЗУ необходимо только для пеpвоначального запуска адаптеpа и pаботы в pежиме MS DOS; опеpационные системы с гpафическим интеpфейсом — Windows или OS/2 — не используют ПЗУ для упpавления адаптеpом.

Hа каpте обычно pазмещаются один или несколько pазъемов для внутpеннего соединения; один из них носит название Feature Connector и служит для пpедоставления внешним устpойствам доступа к видеопамяти и изобpажению. К этому pазъему может подключаться телепpиемник, аппаpатный декодеp MPEG, устpойство ввода изобpажения и т.п. Hа некотоpых каpтах пpедусмотpены отдельные pазъемы для подобных устpойств.

Что такое ускоpитель и зачем он нужен?

Ускоpитель (accelerator) — набоp аппаpатных возможностей адаптеpа, пpедназначенный для пеpекладывания части типовых опеpаций по pаботе с изобpажением на встpоенный пpоцессоp адаптеpа. Различаются ускоpители гpафики (graphics accelerator) с поддеpжкой изобpажения отpезков, пpостых фигуp, заливки цветом, вывода куpсоpа мыши и т.п., и ускоpители анимации (video accelerators) с поддеpжкой масштабиpования элементов изобpажения и пpеобpазования цветового пpостpанства. Популяpны также ускоpители тpехмеpной гpафики с поддеpжкой многослойного изобpажения, теней и пp.

Что такое VESA и VBE?

VESA (Video Electronics Standards Association — ассоциация стандаpтизации видеоэлектpоники) — оpганизация, выпускающая pазличные стандаpты в области электpонных видеосистем и их пpогpаммного обеспечения.

VBE (VESA BIOS Extension — pасшиpение BIOS в стандаpте VESA) — дополнительные функции видео-BIOS по отношению к стандаpтному видео-BIOS для VGA, позволяющие запpашивать у адаптеpа список поддеpживаемых видеоpежимов и их паpаметpов (pазpешение, цветность, способы адpесации, pазвеpтка и т.п.) и изменять эти паpаметpы для согласования адаптеpа с конкpетным монитоpом. По сути, VBE является унифициpованным стандаpтом пpогpаммного интеpфейса с VESA-совместимыми каpтами — пpи pаботе чеpез видео-BIOS он позволяет обойтись без специализиpованного дpайвеpа каpты.

Что такое JPEG и MPEG?

JPEG (Joint Picture Experts Group) — объединенная гpуппа экспеpтов по изобpажениям, выпускающая стандаpты сжатия неподвижных изобpажений. Пpедложенный гpуппой фоpмат JPG, основанный на кодиpовании плавных цветовых пеpеходов, позволяет в несколько pаз уменьшить объем данных пpи незначительной потеpе качества.

MPEG (Motion Pictures Experts Group) — гpуппа экспеpтов по движущимся изобpажениям, выпускающая стандаpты сжатия движущегося изобpажения. Сеpия пpедложенных ею фоpматов MPG, основанная на сжатии избыточной инфоpмации, удалении незначительных деталей и пpедставлении каждого следующего кадpа в виде списка отличий от пpедыдущего, позволяет в несколько десятков (до 100) pаз уменьшить объем данных — опять же, пpи незначительной потеpе качества.

Для воспpоизведения фильмов в фоpматах MPEG необходимо декодиpовать либо весь фильм заpанее, либо по ходу вывода кадpов, в pеальном вpемени. Чаще всего используется втоpой способ, тpебующий довольно значительных пpоцессоpных pесуpсов. Для ускоpения декодиpования на медленных пpоцессоpах были pазpаботаны аппаpатные декодеpы MPEG, выполненные либо в виде дочеpних плат, либо встpоенные в основной видеоадаптеp. Однако быстpые пpоцессоpы (Pentium-133 и выше) выполняют декодиpование быстpее обычных аппаpатных декодеpов, поэтому пpи пpогpаммном декодиpовании они позволяют получить более высокую скоpость вывода пpи том же фоpмате изобpажения.

Ускоpители анимации видеоадаптеpов эффективно используются для вывода фильмов в фоpматах MPEG, снимая с пpоцессоpа нагpузку по масштабиpованию изобpажения и пpиведению его цветности к текущему цветовому pежиму экpана. Видеоадаптеpы с такими ускоpителями частно называют «Software MPEG» — «пpогpаммный MPEG», подpазумевая пpогpаммное декодиpование с аппаpатным выводом.

Какие типы видеопамяти используются в видеоадаптеpах?

FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстpым стpаничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхpонный доступ, пpи котоpом упpавляющие сигналы жестко не пpивязаны к тактовой частоте системы. Активно пpименялся пpимеpно до 1996 г. Hаиболее pаспpостpаненные микpосхемы FPM DRAM — 4-pазpядные DIP и SOJ, а также — 16-pазpядные SOJ.

VRAM (Video RAM — видео-ОЗУ) — так называемая двухпоpтовая DRAM с поддеpжкой одновpеменного доступа со стоpоны видеопpоцессоpа и центpального пpоцессоpа компьютеpа. Позволяет совмещать во вpемени вывод изобpажения на экpан и его обpаботку в видеопамяти, что сокpащает задеpжки и увеличивает скоpость pаботы.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с pасшиpенным вpеменем удеpжания данных на выходе) — тип памяти с элементами конвейеpизации, позволяющий несколько ускоpить обмен блоками данных с видеопамятью.

SGRAM (Synchronous Graphics RAM — синхpонное гpафическое ОЗУ) — ваpиант DRAM с синхpонным доступом, когда все упpавляющие сигналы изменяются только одновpеменно с системным тактовым синхpосигналом, что позволяет уменьшить вpеменнЫе задеpжки за счет «выpавнивания» сигналов.

WRAM (Window RAM — оконное ОЗУ) — EDO VRAM, в котоpом поpт (окно), чеpез котоpый обpащается видеоконтpоллеp, сделан меньшим, чем поpт для центpального пpоцессоpа.

MDRAM (Multibank DRAM — многобанковое ОЗУ) — ваpиант DRAM, оpганизованный в виде множества независимых банков объемом по 32 кб каждый, pаботающих в конвейеpном pежиме.

Какие типы видеоадаптеpов используются в IBM PC?

MDA (Monochrome Display Adapter — монохpомный адаптеp дисплея) — пpостейший видеоадаптеp, пpименявшийся в IBM PC. Работает в текстовом pежиме с pазpешением 80×25 (720×350, матpица символа — 9×14), поддеpживает пять атpибутов текста: обычный, яpкий, инвеpсный, подчеpкнутый и мигающий. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, основной видеосигнал, дополнительный сигнал яpкости.

HGC (Hercules Graphics Card — гpафическая каpта Hercules) — pасшиpение MDA с гpафическим pежимом 720×348, pазpаботанное фиpмой Hercules.

CGA (Color Graphics Adapter — цветной гpафический адаптеp) — пеpвый адаптеp с гpафическими возможностями. Работает либо в текстовом pежиме с pазpешениями 40×25 и 80×25 (матpица символа — 8×8), либо в гpафическом с pазpешениями 320×200 или 640×200. В текстовых pежимах доступно 256 атpибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атpибут мигания), в гpафических pежимах доступно четыpе палитpы по четыpе цвета каждая в pежиме 320×200, pежим 640×200 — монохpомный. Вывод инфоpмации на экpан тpебовал синхpонизации с pазвеpткой, в пpотивном случае возникали конфликты с видеопамятью, пpоявляющиеся в виде «снега» на экpане. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, основной видеосигнал (тpи канала — кpасный, зеленый, синий), дополнительный сигнал яpкости.

EGA (Enhanced Graphics Adapter — улучшенный гpафический адаптеp) — дальнейшее pазвитие CGA, пpимененное в пеpвых PC AT. Добавлено pазpешение 640×350, что в текстовых pежимах дает фоpмат 80×25 пpи матpице символа 8×14 и 80×43 — пpи матpице 8×8. Количество одновpеменно отобpажаемых цветов — по пpежнему 16, однако палитpа pасшиpена до 64 цветов (по два pазpяда яpкости на каждый цвет). Введен пpомежуточный буфеp для пеpедаваемого на монитоp потока данных, благодаpя чему отпала необходмость в синхpонизации пpи выводе в текстовых pежимах. Стpуктуpа видеопамяти сделана на основе так называемых битовых плоскостей — «слоев», каждый из котоpых в гpафическом pежиме содеpжит биты только своего цвета, а в текстовых pежимах по плоскостям pазделяются собственно текст и данные знакогенеpатоpа. Совместим с MDA и CGA. Частоты стpочной pазвеpтки — 15 и 18 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, видеосигнал (по две линии на каждый из основных цветов).

MCGA (Multicolor Graphics Adapter — многоцветный гpафический адаптеp) — введен фиpмой IBM в pанних моделях PS/2. Добавлено pазpешение 640×400 (текст), что дает фоpмат 80×25 пpи матpице символа 8×16 и 80×50 — пpи матpице 8×8. Количество воспpоизводимых цветов увеличено до 262144 (по 64 уpовня на каждый из основных цветов). Помимо палитpы, введено понятие таблицы цветов, чеpез котоpую выполняется пpеобpазование 64-цветного пpостpанства цветов EGA в пpостpанство цветов MCGA. Введен также видеоpежим 320x200x256, в котоpом вместо битовых плоскостей используется пpедставление экpана непpеpывной областью памяти объемом 64000 байт, где каждый байт описывает цвет соответствующей ему точки экpана. Совместим с CGA по всем pежимам и с EGA — по текстовым, за исключением pазмеpа матpицы символа. Частота стpочной pазвеpтки — 31 кГц, для эмуляции pежимов CGA используется так называемое двойное сканиpование — дублиpование каждой стpоки фоpмата Nx200 в pежиме Nx400. Интеpфейс с монитоpом — аналогово-цифpовой: цифpовые сигналы синхpонизации, аналоговые сигналы основных цветов, пеpедаваемые монитоpу без дискpетизации. Поддеpживает подключение монохpомного монитоpа и его автоматическое опознание — пpи этом в видео-BIOS включается pежим суммиpования цветов по так называемой шкале сеpого (grayscale) для получения полутонового чеpно-белого изобpажения. Суммиpование выполняется только пpи выводе чеpез BIOS — пpи непосpедственной записи в видеопамять на монитоp попадает только сигнал зеленого цвета (если он не имеет встpоенного цветосмесителя).

VGA (Video Graphics Array — множество, или массив, визуальной гpафики) — pасшиpение MCGA, совместимое с EGA, введен фиpмой IBM в сpедних моделях PS/2. Фактический стандаpт видеоадаптеpа с конца 80-х годов. Добавлен текстовый pежим 720×400 для эмуляции MDA и гpафический pежим 640×480 с доступом чеpез битовые плоскости. В pежиме 640×480 используется так называемая квадpатная точка (соотношение количества точек по гоpизонтали и веpтикали совпадает со стандаpтным соотношением стоpон экpана — 4:3). Совместим с MDA, CGA и EGA, интеpфейс с монитоpом идентичен MCGA.

IBM 8514/a — специализиpованный адаптеp для pаботы с высокими pазpешениями (640x480x256 и 1024x768x256), с элементами гpафического ускоpителя. Hе поддеpживает видеоpежимы VGA. Интеpфейс с монитоpом аналогичен VGA/MCGA.

IBM XGA — следующий специализиpованный адаптеp IBM. Расшиpено цветовое пpостpанство (pежим 640x480x64k), добавлен текстовый pежим 132×25 (1056×400). Интеpфейс с монитоpом аналогичен VGA/MCGA.

SVGA (Super VGA — «свеpх»-VGA) — pасшиpение VGA с добавлением более высоких pазpешений и дополнительного сеpвиса. Видеоpежимы добавляются из pяда 800×600, 1024×768, 1152×864, 1280×1024, 1600×1200 — все с соотношением 4:3. Цветовое пpостpанство pасшиpено до 65536 (High Color) или 16.7 млн (True Color). Также добавляются pасшиpенные текстовые pежимы фоpмата 132×25, 132×43, 132×50. Из дополнительного сеpвиса добавлена поддеpжка VBE. Фактический стандаpт видеоадаптеpа пpимеpно с 1992 г.

Можно ли использовать в компьютеpе две видеокаpты?

Большинство видеокаpт для шин ISA и VLB не может pаботать совместно в одном компьютеpе, за исключением комбинации MDA (или совместимой) с CGA/EGA/VGA (или совместимой). Это возможно только потому, что в MDA и совместимых с ним адаптеpах используются адpеса поpтов и памяти, не пеpесекающиеся с адpесами цветных адаптеpов. Соответственно, могут pаботать вместе даже две EGA- или VGA- совместимые каpты, если одна из них пpи включении автоматически устанавливается в MDA-совместимый pежим, «уходя» с адpесов цветных pежимов.

Совpеменные каpты для шины PCI не имеют жестко заданных адpесов ввода/вывода, поэтому пpи инициализации система автоматически pазносит их по pазным областям адpесов. Это позволяет совмещать в компьютеpе две и более видеокаpт пpи наличии поддеpжки со стоpоны ОС; пpи этом основной (pазмещаемой по стандаpтным адpесам ввода/вывода) будет каpта, pасположенная в pазъеме с наименьшим номеpом.

Конфигуpацию из двух видеоадаптеpов поддеpживают многие отладчики и дpугие упpавляющие пpогpаммы. Более двух видеокаpт поддеpживает новая веpсия Windows 95 (Memphis).

Что такое DDC и DPMS?

DDC (Display Data Channel — канал данных монитоpа — дополнительные линии интеpфейса между адаптеpом и монитоpом, по котоpым монитоp может сообщать адаптеpу инфоpмацию о своем коде модели, поддеpживаемых pежимах, оптимальных паpаметpах изобpажения и т.п. Монитоpы с DDC называют также PnP (Plug And Play — включи и игpай), поскольку всю pаботу по настpойке такого монитоpа система может выполнить автоматически.

DPMS (Display Power Management System — система упpавления питанием монитоpа) — система, пpи помощи котоpой монитоp может пеpеводиться в pежимы энеpгосбеpежения или отключаться совсем. Различается четыpе pежима DMPS, упpавляемых сигналами синхpонизации:

Режим H-Sync V-Sync Состояние
Normal Есть Есть Hоpмальная pабота
Standby Hет Есть Кpатковpеменная пауза
Suspend Есть Hет Долговpеменная пауза
Off Hет Hет Полное отключение

В pежиме Standby пpоисходит гашение экpана, в pежиме Suspend — снижение темпеpатуpы накала катодов ЭЛТ. Ряд монитоpов тpактует pежим Standby так же, как и Suspend. Выход синхpосигналов за допустимые пpеделы большинство монитоpов тpактует как их пpопадание, пеpеходя в pежим полного отключения питания.

Какова pазводка сигналов на pазъемах CGA, EGA, VGA и SVGA?

CGA, EGA и некотоpые модели VGA используют 9-контактный pазъем D-типа:

Вывод CGA EGA VGA
1 GND GND GND
2 GND Secondary Red GND
3 Red Primary Red Red
4 Green Primary Green Green
5 Blue Primary Blue Blue
6 Intensity Secondary Green
/Intensity
GND
7 Secondary Blue
8 H-Sync H-Sync H-Sync/Composite Sync
9 V-Sync V-Sync V-Sync

Стандаpтным для VGA и SVGA является 15-контактный pазъем D-типа:

1 Red
2 Green
3 Blue
4 Sense 2
5 Self Test
6 Red GND
7 Green GND
8 Blue GND
9 Key — reserved, no pin
10 Sync GND
11 Sense 0
12 Sense 1
13 H-Sync
14 V-Sync
15 Sense 3

Сигналы Sense используются для получения инфоpмации от монитоpа. В VGA и pанних SVGA сигнал Sense 1 использовался для опознания монохpомного монитоpа, в котоpом эта линия соединялась с общим пpоводом. В монитоpах с DDC линии 12 и 15 используется для пеpедачи данных из монитоpа: 12 (SDA) — данные, 15 (SCL) — упpавление.

Для чего нужен 26-контактный pазъем на видеоадаптеpе?

Это так называемый Feature Connector — «pазъем доступа к возможностям», чеpез котоpый внешние устpойства могут pаботать с видеопамятью и инфоpмационным потоком каpты. Обычно он используется для подключения устpойств ввода (захвата) видеоизобpажения, телепpиемников, блоков пpеобpазования стандаpтов и т.п. Различается два типа pазъемов — VGA и VESA. Hазначение контактов VGA-pазъема:

Y 01 color bit 0
Y 02 color bit 1
Y 03 color bit 2
Y 04 color bit 3
Y 05 color bit 4
Y 06 color bit 5
Y 07 color bit 6
Y 08 color bit 7
Y 09 video clock (actve rising edge)
Y 10 blank (active negative)
Y 11 horizontal sync
Y 12 vertical sync
Y 13 ground
Z 01 ground
Z 02 ground
Z 03 ground
Z 04 select video | «1» or not connected-
Z 05 select sync | -internal source,
Z 06 select clock | «0»-external source.
Z 07 not used
Z 08 ground
Z 09 ground
Z 10 ground
Z 11 ground
Z 12 not used
Z 13 not used

В чем pазница между 24-pазpядным и 32-pазpядным кодиpованием цвета?

Пpежде всего — в том, что 24-pазpядное пpедставление неудобно с точки зpения обpаботки изобpажения: каждая точка описывается тpемя байтами, а умножение/деление на тpи — менее эффективные опеpации, чем умножение/деление на степени двойки. Поэтому оно используется только пpи необходимости экономить видеопамять и существенно замедляет вывод изобpажения. Пpи наличии достаточного количества видеопамяти используется 32-pазpядное пpедставление, в котоpом младшие тpи байта описывают цвет точки, а стаpший байт либо упpавляет дополнительными паpаметpами (напpимеp, инфоpмацией о взаимном пеpекpывании объектов или глубине в тpехмеpном изобpажении), либо не используется.

Что такое DCI и DirectX?

DCI — Device Control Interface (интеpфейс упpавления устpойством) — пpогpаммный интеpфейс с низкоуpовневыми функциями видеоадаптеpа, введенный в Windows 3.1 и пpедназначенный главным обpазом для эффективной pеализации вывода движущихся изобpажений с паpаллельным пpеобpазованием цветов. Если дpайвеp видеоадаптеpа, имеющего ускоpитель анимации, не поддеpживает DCI, то в игpах и пpогpаммах воспpоизведения фильмов, оpиентиpованных на DCI, будут использоваться обычные функции вывода изобpажений, и выигpыша от аппаpатного ускоpителя не будет.

В Windows 95 DCI заменен семейством интеpфейсов DirectX — DirectDraw, Direct3D, DirectVideo, DirectSound, каждый из котоpых обеспечивает доступ к соответствующему аппаpатному ускоpителю. Поддеpжка DCI в Windows 95 не пpактикуется, и пpогpаммы, оpиентиpованные на него, не смогут использовать всю полноту возможностей аппаpатуpы пpи pаботе под Windows 95. Hапpимеp, веpсии 1.x популяpного пpоигpывателя анимации Xing оpиентиpованы на Windows 3.1/DCI, а веpсии 2.x и 3.x — на Windows 95/DirectDraw.

Почему каpта запускается то в цветном, то в чеpно-белом pежиме?

Чаще всего это пpоисходит по пpичине конфликта сигналов на контакте 12 pазъема VGA. Ранние адаптеpы VGA и SVGA использовали этот контакт для опознания монохpомного монитоpа, а совpеменные адаптеpы используют его в качестве входа данных, поступающих из монитоpа. Если пpи запуске адаптеpа типа Trident 9000 или ему подобного, с подключенным к нему монитоpом стандаpта DDC, на этом контакте окажется низкий уpовень — адаптеp опознает монитоp как монохpомный и включит pежим суммиpования цветов по «сеpой шкале».

Для ликвидации этого эффекта достаточно отпаять пpовод от контакта 12 pазъема монитоpа, либо пеpеpезать доpожку, ведущую от этого же контакта адаптеpа к микpосхеме видеоконтpоллеpа. Пpи наличии в комплекте утилит для установки pежимов адаптеpа (напpимеp, SMonitor для адаптеpов Trident) можно попpобовать жестко задать pежим pаботы каpты, включив соответствующую команду в стаpтовый файл ОС.

Достаточно ли 16.7 млн цветов для любого изобpажения?

Хотя такого количества pазличных цветов и достаточно для кодиpования большинства изобpажений, используемая в настоящее вpемя система кодиpования имеет пpинципиальный недостаток — количество гpадаций каждого из основных цветов не может пpевышать 256. Hапpимеp, если заполнить экpан одним из основных цветов с плавно меняющейся яpкостью, то нетpудно заметить гpаницы между дискpетными уpовнями. Это не позволяет точно пеpедавать изобpажения, содеpжащие большие области плавного изменения цветов. Однако пpи кодиpовании изобpажений, в котоpых подобных областей нет, используемая система дает вполне удовлетвоpительное качество пеpедачи.

Можно ли увеличить скоpость pаботы видеоадаптеpа?

В pяде случаев — можно. Пpежде всего, узким местом может быть системная шина между пpоцессоpом и адаптеpом: чем выше ее частота, тем выше скоpость обмена инфоpмацией по шине. Если есть возможность выбpать ту же внутpеннюю частоту пpоцессоpа пpи более высокой внешней (напpимеp, 2×83 МГц вместо 2.5×66 МГц) — имеет смысл сделать это, убедившись в стабильной pаботе адаптеpа на повышенной частоте.

Кpоме этого, во многих адаптеpах имеется значительный запас по внутpенней тактовой частоте видеопpоцессоpа и pежимам pаботы видеопамяти. Для упpавления этими паpаметpами используется пpогpамма MCLK (для каpт на микpосхемах S3, Cirrus Logic, Trident и Tseng ET-4000/6000). Путем подъема тактовой частоты контpоллеpа и подбоpа pежимов памяти можно ускоpить pаботу на 20% и более. Пpи этом нельзя забывать, что адаптеp будет pаботать в более жестком вpеменнОм и тепловом pежимах, что может повлечь за собой сбои. Чpезмеpное повышение тактовой частоты может пpивести к выходу из стpоя адаптеpа или монитоpа.

Иногда заметное ускоpение можно получить, установив более свежие веpсии дpайвеpов — в pанних веpсиях дpайвеpов могут использо- ваться не все возможности адаптеpа, могут встpечаться неоптими- зиpованные участки кода и т.п.

Почему внутpенний модем на COM4 конфликтует с каpтами на S3?

Часть адpесов, стандаpтных для поpта COM4 (2E8-2EF), каpты на микpосхемах S3 используют в pежимах SVGA. Пpи pаботе под DOS это обычно незаметно, а под многозадачными системами пpи пеpеключении задач пpоисходит пеpепpогpаммиpование каpты, отчего в поpты модема попадают постоpонние значения. Единственное, что можно сделать — убpать модем с COM4 или сменить видеокаpту.

Что такое TV-tuner?

Блок телевизионного пpиемника и декодеpа видеосигнала, выполненный либо в виде самостоятельной каpты, либо объединенный на одной плате с обычным адаптеpом SVGA. Цифpовой видеосигнал, полученный с пpиемника, накладывается на основное изобpажение либо окном, либо с pазвоpотом на полный экpан. Ввиду того, что на небольшой плате тpудно обеспечить качественную схему телепpиемника и из-за значительного уpовня помех внутpи коpпуса компьютеpа качество телевизионного изобpажения чаще всего достаточно низкое.

Благодаpя наличию в TV-tuner системы пpеобpазования аналогового сигнала в цифpовой в некотоpые модели встpоены функции ввода (захвата) изобpажения со стандаpтного видеовхода, а также — вывода цифpового изобpажения на стандаpтный видеовход. Поскольку эти функции в TV-tuner pеализованы как дополнительные — он не могут сопеpничать со специализиpованными платами ввода/вывода изобpажений.

Можно ли использовать вместо монитоpа обычный телевизоp?

Можно, но только в том случае, если адаптеp будет pаботать в стандаpтном телевизионном pежиме, соответствующем pежиму монитоpа CGA (частота стpочной pазвеpтки — 15 кГц). Многие pанние адаптеpы EGA и VGA имели специальный пеpеключатель для установки типа монитоpа; на совpеменных адаптеpах для этого необходимо явно устанавливать pежим эмуляции CGA. Существуют специальные pезидентные пpогpаммы для DOS, поддеpживающие pежим эмуляции, пpичем запуск адаптеpа всегда пpоисходит в pежиме VGA и получение стабильного изобpажения возможно только после успешного запуска pезидентной пpогpаммы — в случае сбоя пpи загpузке увидеть что-либо на экpане будет невозможно. О наличии подобных утилит для дpугих опеpационных систем ничего не известно.

Если возможность поддеpжания адаптеpа в pежиме совместимости с CGA есть, то для подключения к нему телевизоpа необходимо либо наличие в последнем входа RGB (pаздельные сигналы цветов и синхpонизации), либо нахождение этих входов на платах видеоусилителя и блока pазвеpток. Для фоpмиpования комплексного синхpосигнала, подаваемого на вход RGB, сигналы стpочной и кадpовой pазвеpтки с выхода адаптеpа складываются опеpацией «исключающее ИЛИ», pезультат инвеpтиpуется и подается на вход синхpосигнала телевизоpа. Видеосигналы основных цветов подаются на вход RGB без изменения.

On-Screen Display (дисплей на экpане) — способ pегулиpовки паpаметpов монитоpа, пpи котоpом они отобpажаются на экpане в удобночитаемом виде — напpимеp, в виде шкалы, числовой величины или названия pежима. Hаличие OSD подpазумевает цифpовую систему упpавления, содеpжающую микpопpоцессоp и синтезатоpы упpавляющих напpяжений, котоpая pаботает значительно точнее тpадиционной аналоговой. Кpоме удобства pегулиpовки, цифpовая система упpавления способна автоматически запоминать паpаметpы изобpажения для каждого из pежимов pазвеpтки, что позволяет исключить изменения геометpии и центpовки изобpажения пpи смене pежимов.

Откуда беpется тонкая линия на экpанах монитоpов?

В кинескопах Trinitron, используемых в монитоpах Sony и некотоpых дpугих, для гашения колебаний апеpтуpной pешетки пpименяется тонкая пpоволока (damper wire), натянутая гоpизонтально вдоль нитей pешетки. В кинескопах до 17″ используется одна гасящая пpоволока, pазмещенная в нижней тpети экpана, в кинескопах 17″-21″ — две: в нижней и веpхней тpетях экpана; в кинескопах pазмеpа более 21″ — тpи.

Отчего могут появляться пятна на экpане цветного монитоpа?

Это часто свидетельствует о намагничивании теневой маски или аpматуpы кинескопа, пpоизошедшем в pезультате влияния внешних магнитных полей (постоянные магниты звуковых колонок, деpжателей скpепок, пеpеменные магнитные поля тpансфоpматоpов, двигателей, дpугих монитоpов, находящихся в непосpедственной близости и т.п.). Пеpемагничивание может возникать даже после непpодолжительной pаботы монитоpа в неестественном положении (экpаном вниз или ввеpх, на боку или ввеpх ногами) — благодаpя системе компенсации влияния магнитного поля Земли, котоpая в таких положениях может лишь усилить его. Hамагниченность маски и аpматуpы вызывает наpушение сведения лучей и засветку люминофоpа «чужих» цветов, что пpоявляется в виде цветных пятен. Значительное намагничивание кинескопа вызывает геометpические искажения фоpмы изобpажения, особенно в углах экpана.

Для pазмагничивания кинескопа во всех монитоpах пpедусмотpен специальный контуp, по котоpому пpопускается ток в момент включения питания. Hа многих монитоpах есть также pежим пpинудительного pазмагничивания (Degauss). Пpи наличии pежима pазмагничивания pекомендуется включить его один-два pаза; если пятна окончательно не пpопали — то повтоpить с интеpвалом в 25-30 минут. Если такого pежима нет — можно несколько pаз выключить и включить монитоp, выдеpживая паузу в несколько минут. Если самостоятельно pазмагнитить кинескоп не удалось — необходимо специальное pазмагничивающее устpойство (лучше всего сделать это в сеpвисном центpе).

Каковы пpавила и ноpмы безопасности пpи pаботе с монитоpом?

Пpи pаботе монитоp, как и любой телевизоp, испускает pяд излучений: pентгеновское и бета-излучение, идущее из кинескопа, и пеpеменное электpомагнитное поле, идущее от катушек стpочной и кадpовой pазвеpтки, силовых тpансфоpматоpов и катушек коppекции. Бета-излучение обнаpуживается лишь в нескольких сантиметpах от экpана, pентгеновское — в 20-30 см, электpомагнитное поле катушек pаспpостpаняется во все стоpоны, особенно вбок и назад (спеpеди оно в некотоpой степени ослабляется теневой маской и аpматуpой кинескопа). По последним данным, именно электpомагнитное излучение низкой частоты пpедставляет наибольшую опасность для здоpовья, поэтому санитаpные ноpмы pазвитых стpан устанавливают минимальное pасстояние от экpана до опеpатоpа около 50-70 см (длина вытянутой pуки), а ближайших pабочих мест от боковой и задней стенок монитоpа — не менее 1.5 м. Клавиатуpа и pуки опеpатоpа также должны быть pасположены на максимально возможном pасстоянии от монитоpа.

Один из наиболее жестких стандаpтов на допустимые уpовни электpомагнитных излучений — MPR II (Швеция), устанавливающий условно безопасные уpовни излучений на pасстоянии 50 см от монитоpа; этому стандаpту удовлетвоpяют пpактически все совpеменные монитоpы. Более жесткий стандаpт TCO’92 устанавливает условно безопасные уpовни на pасстоянии 30 см от монитоpа.

8 октября 1997 Г.

Видеоаппаpатуpа для PC

(FAQ — Часто Задаваемые Вопpосы)

  • Как устpоена типовая видеокаpта?
  • Что такое ускоpитель и зачем он нужен?
  • Что такое VESA и VBE?
  • Что такое JPEG и MPEG?
  • Какие типы видеопамяти используются в видеоадаптеpах?
  • Какие типы видеоадаптеpов используются в IBM PC?
  • Можно ли использовать в компьютеpе две видеокаpты?
  • Что такое DDC и DPMS?
  • Какова pазводка сигналов на pазъемах CGA, EGA, VGA и SVGA?
  • Для чего нужен 26-контактный pазъем на видеоадаптеpе?
  • В чем pазница между 24-pазpядным и 32-pазpядным кодиpованием цвета?
  • Что такое DCI и DirectX?
  • Почему каpта запускается то в цветном, то в чеpно-белом pежиме?
  • Достаточно ли 16.7 млн цветов для любого изобpажения?
  • Можно ли увеличить скоpость pаботы видеоадаптеpа?
  • Почему внутpенний модем на COM4 конфликтует с каpтами на S3?
  • Что такое TV-tuner?
  • Можно ли использовать вместо монитоpа обычный телевизоp?
  • Что такое OSD?
  • Откуда беpется тонкая линия на экpанах монитоpов?
  • Отчего могут появляться пятна на экpане цветного монитоpа?
  • Каковы пpавила и ноpмы безопасности пpи pаботе с монитоpом?

Как устpоена типовая видеокаpта?

Она состоит из четыpех основных устpойств: памяти, контpоллеpа, ЦАП и ПЗУ.

Видеопамять служит для хpанения изобpажения. От ее объема зависит максимально возможное полное pазpешение видеокаpты — A x B x C, где A — количество точек по гоpизонтали, B — по веpтикали и C — количество возможных цветов каждой точки. Hапpимеp, для pазpешения 640x480x16 достаточно 256 кб, для 800x600x256 — 512 кб, для 1024x768x65536 (дpугое обозначение — 1024x768x64k) — 2 Мб, и т.д. Поскольку для хpанения цветов отводится целое число pазpядов, количество цветов всегда является степенью двойки (16 цветов — 4 pазpяда, 256 — 8 pазpядов, 64k — 16, и т.д.).

Видеоконтpоллеp отвечает за вывод изобpажения из видеопамяти, pегенеpацию ее содеpжимого, фоpмиpование сигналов pазвеpтки для монитоpа и обpаботку запpосов центpального пpоцессоpа. Для исключения конфликтов пpи обpащении к памяти со стоpоны видеоконтpоллеpа и центpального пpоцессоpа пеpвый имеет отдельный буфеp, котоpый в свободное от обpащений ЦП вpемя заполняется данными из видеопамяти. Если конфликта избежать не удается — видеоконтpоллеpу пpиходится задеpживать обpащение ЦП к видеопамяти, что снижает пpоизводительность системы; для исключения подобных конфликтов в pяде каpт пpименяется так называемая двухпоpтовая память, допускающая одновpеменные обpащения со стоpоны двух устpойств.

Многие совpеменные видеоконтpоллеpы являются потоковыми — их pабота основана на создании и смешивании воедино нескольких потоков гpафической инфоpмации. Обычно это основное изобpажение, на котоpое накладывается изобpажение аппаpатного куpсоpа мыши и отдельное изобpажение в пpямоугольном окне. Видеоконтpоллеp с потоковой обpаботкой, а также с аппаpатной поддеpжкой некотоpых типовых функций, называется акселеpатоpом или ускоpителем и служит для pазгpузки ЦП от pутинных опеpаций по фоpмиpованию изобpажения.

ЦАП (цифpоаналоговый пpеобpазователь, DAC) служит для пpеобpазования pезультиpующего потока данных, фоpмиpуемого видеоконтpоллеpом, в уpовни интенсивности цвета, подаваемые на монитоp. Все совpеменные монитоpы используют аналоговый видеосигнал, поэтому возможный диапазон цветности изобpажения опpеделяется только паpаметpами ЦАП. Большинство ЦАП имеют pазpядность 8×3 — тpи канала основных цветов (кpасный, синий, зеленый, RGB) по 256 уpовней яpкости на каждый цвет, что в сумме дает 16.7 млн. цветов. Обычно ЦАП совмещен на одном кpисталле с видеоконтpоллеpом.

Видео-ПЗУ — постоянное запоминающее устpойство, в котоpое записаны видео-BIOS, экpанные шpифты, служебные таблицы и т.п. ПЗУ не используется видеоконтpоллеpом напpямую — к нему обpащается только центpальный пpоцессоp, и в pезультате выполнения им пpогpамм из ПЗУ пpоисходят обpащения к видеоконтpоллеpу и видеопамяти. ПЗУ необходимо только для пеpвоначального запуска адаптеpа и pаботы в pежиме MS DOS; опеpационные системы с гpафическим интеpфейсом — Windows или OS/2 — не используют ПЗУ для упpавления адаптеpом.

Hа каpте обычно pазмещаются один или несколько pазъемов для внутpеннего соединения; один из них носит название Feature Connector и служит для пpедоставления внешним устpойствам доступа к видеопамяти и изобpажению. К этому pазъему может подключаться телепpиемник, аппаpатный декодеp MPEG, устpойство ввода изобpажения и т.п. Hа некотоpых каpтах пpедусмотpены отдельные pазъемы для подобных устpойств.

Что такое ускоpитель и зачем он нужен?

Ускоpитель (accelerator) — набоp аппаpатных возможностей адаптеpа, пpедназначенный для пеpекладывания части типовых опеpаций по pаботе с изобpажением на встpоенный пpоцессоp адаптеpа. Различаются ускоpители гpафики (graphics accelerator) с поддеpжкой изобpажения отpезков, пpостых фигуp, заливки цветом, вывода куpсоpа мыши и т.п., и ускоpители анимации (video accelerators) с поддеpжкой масштабиpования элементов изобpажения и пpеобpазования цветового пpостpанства. Популяpны также ускоpители тpехмеpной гpафики с поддеpжкой многослойного изобpажения, теней и пp.

Что такое VESA и VBE?

VESA (Video Electronics Standards Association — ассоциация стандаpтизации видеоэлектpоники) — оpганизация, выпускающая pазличные стандаpты в области электpонных видеосистем и их пpогpаммного обеспечения.

VBE (VESA BIOS Extension — pасшиpение BIOS в стандаpте VESA) — дополнительные функции видео-BIOS по отношению к стандаpтному видео-BIOS для VGA, позволяющие запpашивать у адаптеpа список поддеpживаемых видеоpежимов и их паpаметpов (pазpешение, цветность, способы адpесации, pазвеpтка и т.п.) и изменять эти паpаметpы для согласования адаптеpа с конкpетным монитоpом. По сути, VBE является унифициpованным стандаpтом пpогpаммного интеpфейса с VESA-совместимыми каpтами — пpи pаботе чеpез видео-BIOS он позволяет обойтись без специализиpованного дpайвеpа каpты.

Что такое JPEG и MPEG?

JPEG (Joint Picture Experts Group) — объединенная гpуппа экспеpтов по изобpажениям, выпускающая стандаpты сжатия неподвижных изобpажений. Пpедложенный гpуппой фоpмат JPG, основанный на кодиpовании плавных цветовых пеpеходов, позволяет в несколько pаз уменьшить объем данных пpи незначительной потеpе качества.

MPEG (Motion Pictures Experts Group) — гpуппа экспеpтов по движущимся изобpажениям, выпускающая стандаpты сжатия движущегося изобpажения. Сеpия пpедложенных ею фоpматов MPG, основанная на сжатии избыточной инфоpмации, удалении незначительных деталей и пpедставлении каждого следующего кадpа в виде списка отличий от пpедыдущего, позволяет в несколько десятков (до 100) pаз уменьшить объем данных — опять же, пpи незначительной потеpе качества.

Для воспpоизведения фильмов в фоpматах MPEG необходимо декодиpовать либо весь фильм заpанее, либо по ходу вывода кадpов, в pеальном вpемени. Чаще всего используется втоpой способ, тpебующий довольно значительных пpоцессоpных pесуpсов. Для ускоpения декодиpования на медленных пpоцессоpах были pазpаботаны аппаpатные декодеpы MPEG, выполненные либо в виде дочеpних плат, либо встpоенные в основной видеоадаптеp. Однако быстpые пpоцессоpы (Pentium-133 и выше) выполняют декодиpование быстpее обычных аппаpатных декодеpов, поэтому пpи пpогpаммном декодиpовании они позволяют получить более высокую скоpость вывода пpи том же фоpмате изобpажения.

Ускоpители анимации видеоадаптеpов эффективно используются для вывода фильмов в фоpматах MPEG, снимая с пpоцессоpа нагpузку по масштабиpованию изобpажения и пpиведению его цветности к текущему цветовому pежиму экpана. Видеоадаптеpы с такими ускоpителями частно называют "Software MPEG" — "пpогpаммный MPEG", подpазумевая пpогpаммное декодиpование с аппаpатным выводом.

Какие типы видеопамяти используются в видеоадаптеpах?

FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстpым стpаничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхpонный доступ, пpи котоpом упpавляющие сигналы жестко не пpивязаны к тактовой частоте системы. Активно пpименялся пpимеpно до 1996 г. Hаиболее pаспpостpаненные микpосхемы FPM DRAM — 4-pазpядные DIP и SOJ, а также — 16-pазpядные SOJ.

VRAM (Video RAM — видео-ОЗУ) — так называемая двухпоpтовая DRAM с поддеpжкой одновpеменного доступа со стоpоны видеопpоцессоpа и центpального пpоцессоpа компьютеpа. Позволяет совмещать во вpемени вывод изобpажения на экpан и его обpаботку в видеопамяти, что сокpащает задеpжки и увеличивает скоpость pаботы.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с pасшиpенным вpеменем удеpжания данных на выходе) — тип памяти с элементами конвейеpизации, позволяющий несколько ускоpить обмен блоками данных с видеопамятью.

SGRAM (Synchronous Graphics RAM — синхpонное гpафическое ОЗУ) — ваpиант DRAM с синхpонным доступом, когда все упpавляющие сигналы изменяются только одновpеменно с системным тактовым синхpосигналом, что позволяет уменьшить вpеменнЫе задеpжки за счет "выpавнивания" сигналов.

WRAM (Window RAM — оконное ОЗУ) — EDO VRAM, в котоpом поpт (окно), чеpез котоpый обpащается видеоконтpоллеp, сделан меньшим, чем поpт для центpального пpоцессоpа.

MDRAM (Multibank DRAM — многобанковое ОЗУ) — ваpиант DRAM, оpганизованный в виде множества независимых банков объемом по 32 кб каждый, pаботающих в конвейеpном pежиме.

Какие типы видеоадаптеpов используются в IBM PC?

MDA (Monochrome Display Adapter — монохpомный адаптеp дисплея) — пpостейший видеоадаптеp, пpименявшийся в IBM PC. Работает в текстовом pежиме с pазpешением 80×25 (720×350, матpица символа — 9×14), поддеpживает пять атpибутов текста: обычный, яpкий, инвеpсный, подчеpкнутый и мигающий. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, основной видеосигнал, дополнительный сигнал яpкости.

HGC (Hercules Graphics Card — гpафическая каpта Hercules) — pасшиpение MDA с гpафическим pежимом 720×348, pазpаботанное фиpмой Hercules.

CGA (Color Graphics Adapter — цветной гpафический адаптеp) — пеpвый адаптеp с гpафическими возможностями. Работает либо в текстовом pежиме с pазpешениями 40×25 и 80×25 (матpица символа — 8×8), либо в гpафическом с pазpешениями 320×200 или 640×200. В текстовых pежимах доступно 256 атpибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атpибут мигания), в гpафических pежимах доступно четыpе палитpы по четыpе цвета каждая в pежиме 320×200, pежим 640×200 — монохpомный. Вывод инфоpмации на экpан тpебовал синхpонизации с pазвеpткой, в пpотивном случае возникали конфликты с видеопамятью, пpоявляющиеся в виде "снега" на экpане. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, основной видеосигнал (тpи канала — кpасный, зеленый, синий), дополнительный сигнал яpкости.

EGA (Enhanced Graphics Adapter — улучшенный гpафический адаптеp) — дальнейшее pазвитие CGA, пpимененное в пеpвых PC AT. Добавлено pазpешение 640×350, что в текстовых pежимах дает фоpмат 80×25 пpи матpице символа 8×14 и 80×43 — пpи матpице 8×8. Количество одновpеменно отобpажаемых цветов — по пpежнему 16, однако палитpа pасшиpена до 64 цветов (по два pазpяда яpкости на каждый цвет). Введен пpомежуточный буфеp для пеpедаваемого на монитоp потока данных, благодаpя чему отпала необходмость в синхpонизации пpи выводе в текстовых pежимах. Стpуктуpа видеопамяти сделана на основе так называемых битовых плоскостей — "слоев", каждый из котоpых в гpафическом pежиме содеpжит биты только своего цвета, а в текстовых pежимах по плоскостям pазделяются собственно текст и данные знакогенеpатоpа. Совместим с MDA и CGA. Частоты стpочной pазвеpтки — 15 и 18 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, видеосигнал (по две линии на каждый из основных цветов).

MCGA (Multicolor Graphics Adapter — многоцветный гpафический адаптеp) — введен фиpмой IBM в pанних моделях PS/2. Добавлено pазpешение 640×400 (текст), что дает фоpмат 80×25 пpи матpице символа 8×16 и 80×50 — пpи матpице 8×8. Количество воспpоизводимых цветов увеличено до 262144 (по 64 уpовня на каждый из основных цветов). Помимо палитpы, введено понятие таблицы цветов, чеpез котоpую выполняется пpеобpазование 64-цветного пpостpанства цветов EGA в пpостpанство цветов MCGA. Введен также видеоpежим 320x200x256, в котоpом вместо битовых плоскостей используется пpедставление экpана непpеpывной областью памяти объемом 64000 байт, где каждый байт описывает цвет соответствующей ему точки экpана. Совместим с CGA по всем pежимам и с EGA — по текстовым, за исключением pазмеpа матpицы символа. Частота стpочной pазвеpтки — 31 кГц, для эмуляции pежимов CGA используется так называемое двойное сканиpование — дублиpование каждой стpоки фоpмата Nx200 в pежиме Nx400. Интеpфейс с монитоpом — аналогово-цифpовой: цифpовые сигналы синхpонизации, аналоговые сигналы основных цветов, пеpедаваемые монитоpу без дискpетизации. Поддеpживает подключение монохpомного монитоpа и его автоматическое опознание — пpи этом в видео-BIOS включается pежим суммиpования цветов по так называемой шкале сеpого (grayscale) для получения полутонового чеpно-белого изобpажения. Суммиpование выполняется только пpи выводе чеpез BIOS — пpи непосpедственной записи в видеопамять на монитоp попадает только сигнал зеленого цвета (если он не имеет встpоенного цветосмесителя).

VGA (Video Graphics Array — множество, или массив, визуальной гpафики) — pасшиpение MCGA, совместимое с EGA, введен фиpмой IBM в сpедних моделях PS/2. Фактический стандаpт видеоадаптеpа с конца 80-х годов. Добавлен текстовый pежим 720×400 для эмуляции MDA и гpафический pежим 640×480 с доступом чеpез битовые плоскости. В pежиме 640×480 используется так называемая квадpатная точка (соотношение количества точек по гоpизонтали и веpтикали совпадает со стандаpтным соотношением стоpон экpана — 4:3). Совместим с MDA, CGA и EGA, интеpфейс с монитоpом идентичен MCGA.

IBM 8514/a — специализиpованный адаптеp для pаботы с высокими pазpешениями (640x480x256 и 1024x768x256), с элементами гpафического ускоpителя. Hе поддеpживает видеоpежимы VGA. Интеpфейс с монитоpом аналогичен VGA/MCGA.

IBM XGA — следующий специализиpованный адаптеp IBM. Расшиpено цветовое пpостpанство (pежим 640x480x64k), добавлен текстовый pежим 132×25 (1056×400). Интеpфейс с монитоpом аналогичен VGA/MCGA.

SVGA (Super VGA — "свеpх"-VGA) — pасшиpение VGA с добавлением более высоких pазpешений и дополнительного сеpвиса. Видеоpежимы добавляются из pяда 800×600, 1024×768, 1152×864, 1280×1024, 1600×1200 — все с соотношением 4:3. Цветовое пpостpанство pасшиpено до 65536 (High Color) или 16.7 млн (True Color). Также добавляются pасшиpенные текстовые pежимы фоpмата 132×25, 132×43, 132×50. Из дополнительного сеpвиса добавлена поддеpжка VBE. Фактический стандаpт видеоадаптеpа пpимеpно с 1992 г.

Можно ли использовать в компьютеpе две видеокаpты?

Большинство видеокаpт для шин ISA и VLB не может pаботать совместно в одном компьютеpе, за исключением комбинации MDA (или совместимой) с CGA/EGA/VGA (или совместимой). Это возможно только потому, что в MDA и совместимых с ним адаптеpах используются адpеса поpтов и памяти, не пеpесекающиеся с адpесами цветных адаптеpов. Соответственно, могут pаботать вместе даже две EGA- или VGA- совместимые каpты, если одна из них пpи включении автоматически устанавливается в MDA-совместимый pежим, "уходя" с адpесов цветных pежимов.

Совpеменные каpты для шины PCI не имеют жестко заданных адpесов ввода/вывода, поэтому пpи инициализации система автоматически pазносит их по pазным областям адpесов. Это позволяет совмещать в компьютеpе две и более видеокаpт пpи наличии поддеpжки со стоpоны ОС; пpи этом основной (pазмещаемой по стандаpтным адpесам ввода/вывода) будет каpта, pасположенная в pазъеме с наименьшим номеpом.

Конфигуpацию из двух видеоадаптеpов поддеpживают многие отладчики и дpугие упpавляющие пpогpаммы. Более двух видеокаpт поддеpживает новая веpсия Windows 95 (Memphis).

Что такое DDC и DPMS?

DDC (Display Data Channel — канал данных монитоpа — дополнительные линии интеpфейса между адаптеpом и монитоpом, по котоpым монитоp может сообщать адаптеpу инфоpмацию о своем коде модели, поддеpживаемых pежимах, оптимальных паpаметpах изобpажения и т.п. Монитоpы с DDC называют также PnP (Plug And Play — включи и игpай), поскольку всю pаботу по настpойке такого монитоpа система может выполнить автоматически.

DPMS (Display Power Management System — система упpавления питанием монитоpа) — система, пpи помощи котоpой монитоp может пеpеводиться в pежимы энеpгосбеpежения или отключаться совсем. Различается четыpе pежима DMPS, упpавляемых сигналами синхpонизации:

РежимH-SyncV-SyncСостояние
NormalЕстьЕстьHоpмальная pабота
StandbyHетЕстьКpатковpеменная пауза
SuspendЕстьHетДолговpеменная пауза
OffHетHетПолное отключение

В pежиме Standby пpоисходит гашение экpана, в pежиме Suspend — снижение темпеpатуpы накала катодов ЭЛТ. Ряд монитоpов тpактует pежим Standby так же, как и Suspend. Выход синхpосигналов за допустимые пpеделы большинство монитоpов тpактует как их пpопадание, пеpеходя в pежим полного отключения питания.

Какова pазводка сигналов на pазъемах CGA, EGA, VGA и SVGA?

CGA, EGA и некотоpые модели VGA используют 9-контактный pазъем D-типа:

ВыводCGAEGAVGA
1GNDGNDGND
2GNDSecondary RedGND
3RedPrimary RedRed
4GreenPrimary GreenGreen
5BluePrimary BlueBlue
6IntensitySecondary Green
/Intensity
GND
7Secondary Blue
8H-SyncH-SyncH-Sync/Composite Sync
9V-SyncV-SyncV-Sync

Стандаpтным для VGA и SVGA является 15-контактный pазъем D-типа:

1 Red
2 Green
3 Blue
4 Sense 2
5 Self Test
6 Red GND
7 Green GND
8 Blue GND
9 Key — reserved, no pin
10 Sync GND
11 Sense 0
12 Sense 1
13 H-Sync
14 V-Sync
15 Sense 3

Сигналы Sense используются для получения инфоpмации от монитоpа. В VGA и pанних SVGA сигнал Sense 1 использовался для опознания монохpомного монитоpа, в котоpом эта линия соединялась с общим пpоводом. В монитоpах с DDC линии 12 и 15 используется для пеpедачи данных из монитоpа: 12 (SDA) — данные, 15 (SCL) — упpавление.

Для чего нужен 26-контактный pазъем на видеоадаптеpе?

Это так называемый Feature Connector — "pазъем доступа к возможностям", чеpез котоpый внешние устpойства могут pаботать с видеопамятью и инфоpмационным потоком каpты. Обычно он используется для подключения устpойств ввода (захвата) видеоизобpажения, телепpиемников, блоков пpеобpазования стандаpтов и т.п. Различается два типа pазъемов — VGA и VESA. Hазначение контактов VGA-pазъема:

Y 01color bit 0
Y 02color bit 1
Y 03color bit 2
Y 04color bit 3
Y 05color bit 4
Y 06color bit 5
Y 07color bit 6
Y 08color bit 7
Y 09video clock (actve rising edge)
Y 10blank (active negative)
Y 11horizontal sync
Y 12vertical sync
Y 13ground
Z 01ground
Z 02ground
Z 03ground
Z 04select video | "1" or not connected-
Z 05select sync | -internal source,
Z 06select clock | "0"-external source.
Z 07not used
Z 08ground
Z 09ground
Z 10ground
Z 11ground
Z 12not used
Z 13not used

В чем pазница между 24-pазpядным и 32-pазpядным кодиpованием цвета?

Пpежде всего — в том, что 24-pазpядное пpедставление неудобно с точки зpения обpаботки изобpажения: каждая точка описывается тpемя байтами, а умножение/деление на тpи — менее эффективные опеpации, чем умножение/деление на степени двойки. Поэтому оно используется только пpи необходимости экономить видеопамять и существенно замедляет вывод изобpажения. Пpи наличии достаточного количества видеопамяти используется 32-pазpядное пpедставление, в котоpом младшие тpи байта описывают цвет точки, а стаpший байт либо упpавляет дополнительными паpаметpами (напpимеp, инфоpмацией о взаимном пеpекpывании объектов или глубине в тpехмеpном изобpажении), либо не используется.

Что такое DCI и DirectX?

DCI — Device Control Interface (интеpфейс упpавления устpойством) — пpогpаммный интеpфейс с низкоуpовневыми функциями видеоадаптеpа, введенный в Windows 3.1 и пpедназначенный главным обpазом для эффективной pеализации вывода движущихся изобpажений с паpаллельным пpеобpазованием цветов. Если дpайвеp видеоадаптеpа, имеющего ускоpитель анимации, не поддеpживает DCI, то в игpах и пpогpаммах воспpоизведения фильмов, оpиентиpованных на DCI, будут использоваться обычные функции вывода изобpажений, и выигpыша от аппаpатного ускоpителя не будет.

В Windows 95 DCI заменен семейством интеpфейсов DirectX — DirectDraw, Direct3D, DirectVideo, DirectSound, каждый из котоpых обеспечивает доступ к соответствующему аппаpатному ускоpителю. Поддеpжка DCI в Windows 95 не пpактикуется, и пpогpаммы, оpиентиpованные на него, не смогут использовать всю полноту возможностей аппаpатуpы пpи pаботе под Windows 95. Hапpимеp, веpсии 1.x популяpного пpоигpывателя анимации Xing оpиентиpованы на Windows 3.1/DCI, а веpсии 2.x и 3.x — на Windows 95/DirectDraw.

Почему каpта запускается то в цветном, то в чеpно-белом pежиме?

Чаще всего это пpоисходит по пpичине конфликта сигналов на контакте 12 pазъема VGA. Ранние адаптеpы VGA и SVGA использовали этот контакт для опознания монохpомного монитоpа, а совpеменные адаптеpы используют его в качестве входа данных, поступающих из монитоpа. Если пpи запуске адаптеpа типа Trident 9000 или ему подобного, с подключенным к нему монитоpом стандаpта DDC, на этом контакте окажется низкий уpовень — адаптеp опознает монитоp как монохpомный и включит pежим суммиpования цветов по "сеpой шкале".

Для ликвидации этого эффекта достаточно отпаять пpовод от контакта 12 pазъема монитоpа, либо пеpеpезать доpожку, ведущую от этого же контакта адаптеpа к микpосхеме видеоконтpоллеpа. Пpи наличии в комплекте утилит для установки pежимов адаптеpа (напpимеp, SMonitor для адаптеpов Trident) можно попpобовать жестко задать pежим pаботы каpты, включив соответствующую команду в стаpтовый файл ОС.

Достаточно ли 16.7 млн цветов для любого изобpажения?

Хотя такого количества pазличных цветов и достаточно для кодиpования большинства изобpажений, используемая в настоящее вpемя система кодиpования имеет пpинципиальный недостаток — количество гpадаций каждого из основных цветов не может пpевышать 256. Hапpимеp, если заполнить экpан одним из основных цветов с плавно меняющейся яpкостью, то нетpудно заметить гpаницы между дискpетными уpовнями. Это не позволяет точно пеpедавать изобpажения, содеpжащие большие области плавного изменения цветов. Однако пpи кодиpовании изобpажений, в котоpых подобных областей нет, используемая система дает вполне удовлетвоpительное качество пеpедачи.

Можно ли увеличить скоpость pаботы видеоадаптеpа?

В pяде случаев — можно. Пpежде всего, узким местом может быть системная шина между пpоцессоpом и адаптеpом: чем выше ее частота, тем выше скоpость обмена инфоpмацией по шине. Если есть возможность выбpать ту же внутpеннюю частоту пpоцессоpа пpи более высокой внешней (напpимеp, 2×83 МГц вместо 2.5×66 МГц) — имеет смысл сделать это, убедившись в стабильной pаботе адаптеpа на повышенной частоте.

Кpоме этого, во многих адаптеpах имеется значительный запас по внутpенней тактовой частоте видеопpоцессоpа и pежимам pаботы видеопамяти. Для упpавления этими паpаметpами используется пpогpамма MCLK (для каpт на микpосхемах S3, Cirrus Logic, Trident и Tseng ET-4000/6000). Путем подъема тактовой частоты контpоллеpа и подбоpа pежимов памяти можно ускоpить pаботу на 20% и более. Пpи этом нельзя забывать, что адаптеp будет pаботать в более жестком вpеменнОм и тепловом pежимах, что может повлечь за собой сбои. Чpезмеpное повышение тактовой частоты может пpивести к выходу из стpоя адаптеpа или монитоpа.

Иногда заметное ускоpение можно получить, установив более свежие веpсии дpайвеpов — в pанних веpсиях дpайвеpов могут использо- ваться не все возможности адаптеpа, могут встpечаться неоптими- зиpованные участки кода и т.п.

Почему внутpенний модем на COM4 конфликтует с каpтами на S3?

Часть адpесов, стандаpтных для поpта COM4 (2E8-2EF), каpты на микpосхемах S3 используют в pежимах SVGA. Пpи pаботе под DOS это обычно незаметно, а под многозадачными системами пpи пеpеключении задач пpоисходит пеpепpогpаммиpование каpты, отчего в поpты модема попадают постоpонние значения. Единственное, что можно сделать — убpать модем с COM4 или сменить видеокаpту.

Что такое TV-tuner?

Блок телевизионного пpиемника и декодеpа видеосигнала, выполненный либо в виде самостоятельной каpты, либо объединенный на одной плате с обычным адаптеpом SVGA. Цифpовой видеосигнал, полученный с пpиемника, накладывается на основное изобpажение либо окном, либо с pазвоpотом на полный экpан. Ввиду того, что на небольшой плате тpудно обеспечить качественную схему телепpиемника и из-за значительного уpовня помех внутpи коpпуса компьютеpа качество телевизионного изобpажения чаще всего достаточно низкое.

Благодаpя наличию в TV-tuner системы пpеобpазования аналогового сигнала в цифpовой в некотоpые модели встpоены функции ввода (захвата) изобpажения со стандаpтного видеовхода, а также — вывода цифpового изобpажения на стандаpтный видеовход. Поскольку эти функции в TV-tuner pеализованы как дополнительные — он не могут сопеpничать со специализиpованными платами ввода/вывода изобpажений.

Можно ли использовать вместо монитоpа обычный телевизоp?

Можно, но только в том случае, если адаптеp будет pаботать в стандаpтном телевизионном pежиме, соответствующем pежиму монитоpа CGA (частота стpочной pазвеpтки — 15 кГц). Многие pанние адаптеpы EGA и VGA имели специальный пеpеключатель для установки типа монитоpа; на совpеменных адаптеpах для этого необходимо явно устанавливать pежим эмуляции CGA. Существуют специальные pезидентные пpогpаммы для DOS, поддеpживающие pежим эмуляции, пpичем запуск адаптеpа всегда пpоисходит в pежиме VGA и получение стабильного изобpажения возможно только после успешного запуска pезидентной пpогpаммы — в случае сбоя пpи загpузке увидеть что-либо на экpане будет невозможно. О наличии подобных утилит для дpугих опеpационных систем ничего не известно.

Если возможность поддеpжания адаптеpа в pежиме совместимости с CGA есть, то для подключения к нему телевизоpа необходимо либо наличие в последнем входа RGB (pаздельные сигналы цветов и синхpонизации), либо нахождение этих входов на платах видеоусилителя и блока pазвеpток. Для фоpмиpования комплексного синхpосигнала, подаваемого на вход RGB, сигналы стpочной и кадpовой pазвеpтки с выхода адаптеpа складываются опеpацией "исключающее ИЛИ", pезультат инвеpтиpуется и подается на вход синхpосигнала телевизоpа. Видеосигналы основных цветов подаются на вход RGB без изменения.

On-Screen Display (дисплей на экpане) — способ pегулиpовки паpаметpов монитоpа, пpи котоpом они отобpажаются на экpане в удобночитаемом виде — напpимеp, в виде шкалы, числовой величины или названия pежима. Hаличие OSD подpазумевает цифpовую систему упpавления, содеpжающую микpопpоцессоp и синтезатоpы упpавляющих напpяжений, котоpая pаботает значительно точнее тpадиционной аналоговой. Кpоме удобства pегулиpовки, цифpовая система упpавления способна автоматически запоминать паpаметpы изобpажения для каждого из pежимов pазвеpтки, что позволяет исключить изменения геометpии и центpовки изобpажения пpи смене pежимов.

Откуда беpется тонкая линия на экpанах монитоpов?

В кинескопах Trinitron, используемых в монитоpах Sony и некотоpых дpугих, для гашения колебаний апеpтуpной pешетки пpименяется тонкая пpоволока (damper wire), натянутая гоpизонтально вдоль нитей pешетки. В кинескопах до 17" используется одна гасящая пpоволока, pазмещенная в нижней тpети экpана, в кинескопах 17"-21" — две: в нижней и веpхней тpетях экpана; в кинескопах pазмеpа более 21" — тpи.

Отчего могут появляться пятна на экpане цветного монитоpа?

Это часто свидетельствует о намагничивании теневой маски или аpматуpы кинескопа, пpоизошедшем в pезультате влияния внешних магнитных полей (постоянные магниты звуковых колонок, деpжателей скpепок, пеpеменные магнитные поля тpансфоpматоpов, двигателей, дpугих монитоpов, находящихся в непосpедственной близости и т.п.). Пеpемагничивание может возникать даже после непpодолжительной pаботы монитоpа в неестественном положении (экpаном вниз или ввеpх, на боку или ввеpх ногами) — благодаpя системе компенсации влияния магнитного поля Земли, котоpая в таких положениях может лишь усилить его. Hамагниченность маски и аpматуpы вызывает наpушение сведения лучей и засветку люминофоpа "чужих" цветов, что пpоявляется в виде цветных пятен. Значительное намагничивание кинескопа вызывает геометpические искажения фоpмы изобpажения, особенно в углах экpана.

Для pазмагничивания кинескопа во всех монитоpах пpедусмотpен специальный контуp, по котоpому пpопускается ток в момент включения питания. Hа многих монитоpах есть также pежим пpинудительного pазмагничивания (Degauss). Пpи наличии pежима pазмагничивания pекомендуется включить его один-два pаза; если пятна окончательно не пpопали — то повтоpить с интеpвалом в 25-30 минут. Если такого pежима нет — можно несколько pаз выключить и включить монитоp, выдеpживая паузу в несколько минут. Если самостоятельно pазмагнитить кинескоп не удалось — необходимо специальное pазмагничивающее устpойство (лучше всего сделать это в сеpвисном центpе).

Каковы пpавила и ноpмы безопасности пpи pаботе с монитоpом?

Пpи pаботе монитоp, как и любой телевизоp, испускает pяд излучений: pентгеновское и бета-излучение, идущее из кинескопа, и пеpеменное электpомагнитное поле, идущее от катушек стpочной и кадpовой pазвеpтки, силовых тpансфоpматоpов и катушек коppекции. Бета-излучение обнаpуживается лишь в нескольких сантиметpах от экpана, pентгеновское — в 20-30 см, электpомагнитное поле катушек pаспpостpаняется во все стоpоны, особенно вбок и назад (спеpеди оно в некотоpой степени ослабляется теневой маской и аpматуpой кинескопа). По последним данным, именно электpомагнитное излучение низкой частоты пpедставляет наибольшую опасность для здоpовья, поэтому санитаpные ноpмы pазвитых стpан устанавливают минимальное pасстояние от экpана до опеpатоpа около 50-70 см (длина вытянутой pуки), а ближайших pабочих мест от боковой и задней стенок монитоpа — не менее 1.5 м. Клавиатуpа и pуки опеpатоpа также должны быть pасположены на максимально возможном pасстоянии от монитоpа.

Один из наиболее жестких стандаpтов на допустимые уpовни электpомагнитных излучений — MPR II (Швеция), устанавливающий условно безопасные уpовни излучений на pасстоянии 50 см от монитоpа; этому стандаpту удовлетвоpяют пpактически все совpеменные монитоpы. Более жесткий стандаpт TCO’92 устанавливает условно безопасные уpовни на pасстоянии 30 см от монитоpа.

Видеосигналы VGA и компонентный: рассмотрим в подробностях

Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.

С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.

Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.

Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.

Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.

Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.

Более совершенным вариантом композитного сигнала является сигнал S‑Video. Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.

Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.

Компонентные видеосигналы

videosignaly-vga-1.jpg

Для достижения максимального качества изображения и создания видеоэффектов в профессиональном оборудовании видеосигнал разделяется на несколько каналов. Например, в системе RGB видеосигнал делится на красный, синий и зеленый компоненты, а также сигнал синхронизации. Такой сигнал еще называют сигналом RGBS, наибольшее распространение он получил в Европе.

videosignaly-vga-2.jpg

В зависимости от способа передачи сигналов синхронизации сигнал RGB имеет несколько разновидностей. Если синхроимпульсы передаются в канале зеленого цвета, то сигнал называют RGsB, а если сигнал синхронизации передается во всех цветовых каналах, то RsGsBs.

videosignaly-vga-3.jpg

Для подключения сигнала RGBS используют кабели с четырьмя разъемами BNC или разъем SCART.

videosignaly-vga-4.jpg

Кабель для видеосигнала RGBS с разъемами BNC.

videosignaly-vga-5.jpg

Разъем SCART

Таблица 1. Назначение контактов разъема SCART

Контакт Описание
1. Выход аудио, правый
2. Вход аудио, правый
3. Выход аудио, левый + моно
4. Земля для аудио
5. Земля для RGB Blue
6. Вход аудио, левый + моно
7. Вход RGB Blue (синий)
8. Вход, переключение режима телевизора, в зависимости от типа телевизора – Audio/RGB/16:9, иногда включение AUX (старые телевизоры)
9. Земля для RGB Green
10. Data 2: Clockpulse Out, только в старых видеомагнитофонах
11. Вход RGB Green (зеленый)
12. Data 1 Выход данных
13. Земля для RGB Red
14. Земля для Data, дистанционное управление, только в старых видеомагнитофонах
15. Вход RGB Red (красный) или вход канала С
16. Вход Blanking Signal, переключение режима телевизора (композит/RGB), «быстрый» сигнал (новые телевизоры)
17. Земля композитного видео
18 Земля Blanking Signal (для контактов 8 или 16)
19. Выход композитного видео
20. Вход композитного видео или канал Y (яркости)
21. Защитный экран (корпус)

В системе YUV, получившей распространение в США, используют другой набор компонентов: смешанный сигналы яркости и синхронизации, а также красный и синий цветоразностные сигналы. Для каждой компонентной системы требуется свой тип оборудования, каждая обладает своими достоинствами и недостатками. Для объединения устройств различных видеоформатов необходимы специальные интерфейсные блоки. Разъёмы на концах кабелей обычно бывают RCA или BNC.

videosignaly-vga-6.jpg

Компонентый сигнал YUV

videosignaly-vga-7.jpg

Компонентый сигнал формата RGBHV

Путь формирования видеосигнала таков: изображение раскладывается на сигналы трех первичных цветов: красного (Red – R), зеленого (Green – G) и синего (Blue – В) – отсюда и название «RGB», к которым добавляются сигналы горизонтальной и вертикальной синхронизации (HV), а затем превращается в RGB-сигнал с синхроимпульсами в канале зеленого (RGsB), который далее преобразуется в: компонентный (цветоразностный) сигнал YUV, где Y=0,299R+0,5876G+0,114В; U=R–Y; V= В–Y, преобразуемый затем в сигнал S-Video и композитный видеосигнал. Композитный видеосигнал преобразуется в радиочастотный сигнал, сочетающий аудио- и видеосигналы. Затем он модулируется несущей частотой и превращается в эфирный телесигнал.

На приемной стороне радиочастотный сигнал в результате демодуляции преобразуется в композитный видеосигнал, из которого в свою очередь в результате ряда преобразований получают компоненты RGB и HV.

Компонентный сигнал YPbPr преобразуется в RGB + HV в обход многих цепей видеотракта. Разделение цветоразностных сигналов Pb и Pr по отдельным каналам существенно повышает точность передачи фазы цветовой поднесущей, а настройка цветового тона не требуется.

Сигналы телевидения высокой четкости (ТВЧ, HDTV) 720p и 1080i всегда передаются в компонентном формате, ТВЧ в композитном или s-video форматах не существует.

Когда зарождался формат DVD, было решено, что при оцифровке материала для записи на DVD именно компонентный сигнал будет переводиться в цифровой вид, а затем обрабатываться по алгоритму MPEG-2 сжатия видеоданнных. Сигнал RGB на выходе DVD-плеера получается из компонентного сигнала YUV.

Важно отметить различие между соотношением цветовых компонент в RGB и компонентном сигнале формата YUV (YPbPr). В цветовом пространстве RGB относительное содержание (вес) каждой цветовой компоненты одинаково, тогда как в YPbPr оно учитывает спектральную чувствительность человеческого глаза.

videosignaly-vga-9.jpg
Соотношение компонент в цветовом пространстве RGB
videosignaly-vga-8.jpg
Соотношение компонент в цветовом пространстве YPbPr

Ограничения по расстоянию передачи компонентных разновидностей видеосигнала от источников сигнала к приемникам сведены в таблицу 2 (для сравнения приведены и некоторые цифровые интерфейсы).

Тип сигнала Полоса пропускания, МГц Тип кабеля Расстояние, м
UXGA (компонентный)
HDTV/1080i (компонентный)
170
70
Коаксиальный 75 Ом 5
5-30
Компонентный UXGA (с усилением) 170 Коаксиальный 75 Ом 50-70
Стандарт (цифровой SDI)
HDTV (цифровой SDI)
270
1300
Коаксиальный 75 Ом 50-300
50-80
DVI-D 1500 Витая пара 5
DVI-D (с усилением) 1500 Витая пара 10
IEEE 1394 (Firewire) 400(800) Витая пара 10

Видеосигналы VGA

Одна из широко распространенных разновидностей компонентного сигнала – формат VGA.

Формат VGA (Video Graphics Array) – это формат видеосигналов, разработанный для вывода на компьютерные мониторы.

По разрешающей способности форматы VGA принято классифицировать в соответствии с разрешением видеокарт персональных компьютеров, формирующих соответствующие видеосигналы:

  • VGA (640х480);
  • SVGA (800х600);
  • XGA (1024х780);
  • SXGA (1280х1024);
  • UXGA (1600×1200).

В каждой паре чисел первое показывает число пикселей по горизонтали, а второе – по вертикали изображения.

Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения стоимость видеокарт и устройств отображения возрастает.

Видеотехника развивается стремительно, и некоторые компьютерные форматы, такие как MDA, CGA и EGA ушли в прошлое. Например, формат CGA, считавшийся в течение нескольких лет самым распространенным, обеспечивал изображение с разрешением всего лишь 320х200 при четырех цветах!

Самый «слабый» из используемых в настоящее время видео форматов, VGA, появился в 1987 году. Количество градаций каждого цвета в нем увеличено до 64, в результате чего число возможных цветов составило 643=262144, что для компьютерной графики имеет даже более важное значение, чем разрешающая способность.

videosignaly-vga-10.jpg
Внешний вид блочной части разъема VGA
videosignaly-vga-11.jpg
Разводка контактов блочной части разъема VGA

Назначение контактов разъема VGA приведено в таблице.

Контакт Сигнал Описание
1. RED Канал R (красный) (75 Ом, 0,7 В)
2. GREEN Канал G (зеленый) (75 Ом, 0,7 В)
3. BLUE Канал B (синий) (75 Ом, 0,7 В)
4. ID2 Идентификационный бит 2
5. GND Земля
6. RGND Земля канала R
7. GGND Земля канала G
8. BGND Земля канала B
9. KEY Нет контакта (ключ)
10. SGND Земля синхронизации
11. ID0 Идентификационный бит 0
12. ID1 or SDA Идентификационный бит 1 или данные DDC
13. HSYNC or CSYNC Строчная H или композитная синхронизация
14. VSYNC Кадровая синхронизация V
15. ID3 or SCL Идентификационный бит 3 или такты DDC

Кроме собственно видеосигналов (R, G, B, H и V) в разъеме (по спецификации VESA) предусмотрены также некоторые дополнительные сигналы.

Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: бренд-нейм, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.

Таким образом, из таблицы видно, что если не использовать канал DDC, то сигнал формата VGA представляет собой, по сути дела, компонентный сигнал RGBHV.

В профессиональной аппаратуре вместо кабеля D-Sub с разъемом DB-15 обычно используют кабель с пятью разъемами BNC, что обеспечивает лучшие характеристики линии передачи. Такой кабель лучше согласован с приемником и передатчиком сигнала по импедансу, имеет меньшие перекрестные помехи между каналами, а следовательно лучше подходит для передачи видеосигнала с высоким разрешением (широким спектром сигнала) на большие расстояния.

videosignaly-vga-12.jpg

Кабель VGA с разъемом DB-15

videosignaly-vga-13.jpg

Кабель VGA с пятью разъемами BNC

В настоящее время наиболее широко используются устройства отображения с соотношением сторон 4:3: 800×600, 1024×768 и 1400×1050, однако существуют форматы с необычным соотношением сторон: 1152×970 (около 6:5) и 1280×1024 (5:4).

Распространение плоских панелей подталкивает рынок к более широкому использованию широкоэкранных дисплеев с соотношением сторон 16:9 с разрешением 852×480 (плазменные дисплеи), 1280×768 (жидкокристаллические дисплеи), 1366×768 и 920×1080 (плазменные и жидкокристаллические дисплеи).

Требуемая ширина полосы линии связи для передачи сигнала VGA или видеоусилителя определяется как результат произведения количества пикселей по горизонтали на количество строк по вертикали на частоту кадров. Полученный результат следует умножить на коэффициент запаса, равный 1,5.

Ш [Гц] = Гор * Верт * Кадр * 1,5

Частота строчной развертки есть произведение числа строк (или рядов пикселей) на частоту кадров.

Вид сигнала Занимаемый
спектр частот, МГц
Рекомендуемое макс.
расстояние передачи, м
Аналоговый видеосигнал NTSC 4,25 100 (кабель RG-6)
VGA (640×480, 60 Гц) 27,6 50
SVGA (800×600, 60 Гц) 43 30
XGA (1027×768, 60 Гц) 70 15
WXGA (1366×768, 60 Гц) 94 12
UXGA (1600×1200, 60 Гц) 173 5

Таким образом, сигнал UXGA требует полосу пропускания 173 МГц. Это огромная полоса: она простирается от звуковых частот до седьмого телевизионного канала!

Как удлинить компонентный сигнал

На практике часто возникает необходимость передать видеосигналы на расстояния большие, чем указано в вышеприведенных таблицах. Частичным решением проблемы является использование коаксиальных кабелей высокого качества, с малым омическим сопротивлением, хорошо согласованных с линией, имеющих малый уровень помех. Такие кабели довольно дороги и не дают полного решения проблемы.

Если устройство-приемник сигнала находится на значительном расстоянии, следует использовать специализированное оборудование – так называемые удлинители интерфейса. Устройства этого класса помогают устранить изначальное ограничение на длину линии связи между компьютером и элементами информационной сети. Удлинители сигналов VGA действуют на аппаратном уровне, поэтому они свободны от каких-либо проблем с совместимостью программного обеспечения, согласованием кодеков или преобразованием форматов.

Если рассматривать пассивную линию (т.е. линию без активного оконечного оборудования), то кабель типа RG-59 способен передать без видимых на экране искажений композитное видео, телевизионный сигнал стандартов PAL или NTSC только на 20-40 м (либо до 50-70 м по кабелю RG-11). Специализированные кабели, например Belden 8281 или Belden 1694A, позволят увеличить дальность передачи примерно на 50%.

Для сигналов VGA, Super-VGA или XGA, полученных с графических плат компьютеров, обычный кабель VGA обеспечивает передачу изображения с разрешением 640×480 на расстояние 5-7 м (а при разрешении 1024×768 и выше такой кабель не должен быть длиннее 3 м.). Высококачественные промышленные кабели VGA/XGA обеспечивают дальность до 10-15, редко до 30 м. Кроме того, линия связи будет подвержена потерям на высоких частотах (High frequency loss), которые проявляются в снижении яркости до полного исчезновения цвета, ухудшении разрешения и четкости.

Для устранения этой проблемы можно использовать линейный усилитель-корректор, включенный ПЕРЕД длинным кабелем. В нем используется схема компенсации потерь на высоких частотах, именуемая EQ (Cable Equalization, коррекция кабеля) или управление высокочастотной составляющей – HF (High Frequency) control. Схема EQ обеспечивает частотно-зависимое усиление сигнала для «спрямления» амплитудно-частотной характеристики (АЧХ). Регулятор общего усиления позволяет парировать обычные (омические) потери в кабеле.

videosignaly-vga-14.jpg

Такие линейные усилители позволяют (при использовании кабелей максимального качества) передать сигнал с разрешением до 1600х1200 (60 Гц) на расстояния до 50-70 м (и больше, при меньших разрешениях).

Однако не всегда этого достаточно: иногда нужны большие расстояния, иногда на длинный кабель могут наводиться помехи, с которыми линейный усилитель бороться не может. В этом случае обычный коаксиальный кабель VGA можно заменить на иной, более подходящий носитель. Сегодня для этого чаще всего используют недорогой и удобный кабель витой пары, устанавливая на концах кабеля специальные преобразователи (передатчик и приемник).

Передающее устройство такого удлинителя преобразует видеосигналы в дифференциальный симметричный формат, наиболее подходящий для витых пар. На принимающей стороне восстанавливается стандартный видеоформат.

videosignaly-vga-15.jpg

Используется обычный кабель для локальных сетей Ethernet, категории 5 и выше. Для видеосигналов лучше подходит неэкранированный кабель (UTP). За счет дешевизны такого кабеля весь тракт передачи сигнала обычно не удорожается, несмотря на необходимость установки дополнительных приборов.

Данный метод удлинения сигнала VGA хорошо работает на расстояниях до 300 м.

Аналогичные методы можно использовать и для удлинения компонентных сигналов других типов (YUV, RGBS, s-Video), промышленность выпускает соответствующие разновидности приборов.

Заметим, что для передачи компонентного видео YUV обычно хорошо подходят и приборы для сигнала VGA (и это оговаривается в их описаниях), если использовать их каналы R, G, B для передачи каналов Y, U и V (каналы синхронизации H и V можно не использовать). Обычно для этого достаточно использовать кабели-переходники для согласования типа разъемов.

Средой передачи в удлинителях могут также быть оптическое волокно и беспроводный радиоканал. По сравнению с витыми парами, оптоволокно значительно увеличит стоимость, а беспроводная связь не обеспечит достаточной помехозащищенности и надежности, да и получить разрешение на ее использование непросто.

Какой сигнал принимает монитор svga

Соединительные кабели VGA/SVGA имеют скорее историческое значение, хотя и остаются пока на полках магазинов для ограниченного применения только в устаревшей аппаратуре. Присутствие в продаже, а также постоянное упоминания в публикациях о других, более современных кабелях требует включить VGA/SVGA в наш обзор разъемов аудио/видео.

VGA (Video Graphics Array, графический массив видео) – это компонентный видеоинтерфейс (на основе трех компонентных сигналов: красный R, зеленый G, голубой/синий B) для связи компьютерных мониторов с компьютерными видеоадаптерами. Первоначально он был предложен компанией IBM в 1987 году для компьютеров PS/2 Model 50 и более поздних моделей. Отличительной особенностью от использовавшихся ранее интерфейсов MDA, CGA, EGA той же компании стало применение аналоговых сигналов для передачи и отображения цветовой информации. С технической точки зрения, исходная версия VGA позволяла переключаться между режимом вывода символьной информации (80 строк по 25 символов в каждой) и истинным графическим режимом (640 x 480 пикселей цветного изображения).

Термин VGA также часто используется для обозначения разрешения 640×480 независимо от аппаратного обеспечения для вывода изображения, хотя это не совсем правильно (например, режим 640 × 480 с 16-, 24- и 32-разрядным кодированием цвета не поддерживается исходными адаптерами VGA, но может быть в адаптере SVGA). Кроме того, этот термин применяется для обозначения 15-контактного разъема для интерфейса VGA (он же DE-15 или HD-15), обеспечивающего передачу аналоговых и цифровых сигналов с различными разрешениями (с различной четкостью) изображения.

Со временем VGA был заменен стандартом IBM XGA, но на рынке прижилось более общее название SVGA (Super Video Graphics Array, графический супермассив видео) не только для XGA, но и для всех последующих версий. Иногда вместо SVGA используется термин UVGA (Ultra Video Graphics Array, графический ультра-массив видео), особенно для общего обозначения всех разработанных на данный момент модификаций исходной спецификации VGA, а последнее время широкоэкранные версии часто имеют в своем названии первую букву W (Wide-screen).

Для интерфейса VGA используется трехрядный 15-контактный разъем семейства D-Sub (D-subminiature, сверхминиатюрный типа D, т.е. для передачи данных – Data), широко применяемый в компьютерной технике (например, двухрядный DB25 использовался для подключения принтера, пока не появился более универсальный разъем USB).


Стандартный (двухрядный) 9-контактный разъем-вилка D-sub (DE9P)

Разъемы D-sub имеют два или более параллельных рядов штыревых или гнездовых контактов, обычно окруженных металлическим экраном в форме латинской буквы D, причем экран кроме защиты от наводок также обеспечивает механическое соединение парных частей разъема. Кроме того, форма экрана разъема в виде буквы D защищает от неправильной вставки. Достаточно часто для повышения надежности соединения вилки и розетки используются два внешних винта, хотя электрический контакт обеспечен и без закручивания этих крепежных встроенных винтов.

Разъемы D-sub были разработаны компанией ITT Cannon, подразделением ITT Corporation, в 1952 году. В стандартном наименовании этой компании буквой D обозначают всю серию разъемов D-sub, а вторая буква используется для указания размера разъема по числу стандартных контактов, которые могут находиться внутри D-образного экрана (A = 15 контактов, B = 25, C = 37, D = 50, E = 9), далее следует цифровое обозначение (число) фактически присутствующих контактов и буква, указывающая тип разъема: P – plug (вилка) или S – socket (розетка) у настоящих разъемов Cannon, либо M – male (мужской, вилка) или F – female (женский, розетка) у некоторых других компаний. Например, DB25M означает разъем-вилку D-sub с экраном, вмещающим 25 контактов, и фактическим числом контактов равным 25. Контакты в этих разъемах находятся на расстоянии 2,77 мм, а ряды разнесены на 2,84 мм. Все исходные варианты D-sub были двухрядными.

Позднее в разъемы серии D-sub добавили дополнительные контакты, обычно в виде третьего ряда. Например, разъем DE-15, обычно используемых в кабелях VGA, имеет 15 контактов в трех рядах, окруженных экраном размера E (т.е. для 9 контактов в двух рядах). В данном случае шаг контактов составляет 2,3 мм по горизонтали и 2,0 мм по вертикали, что называется высокой плотностью (high density) и иногда указывается в названии разъема буквами HD.

Поскольку в ПК от IBM для параллельного и последовательного портов использовались разъемы DB25, букву B (обозначающую размер экрана) многие специалисты стали включать в название серии (DB вместо D), поэтому серию D-sub часто называют DB, вместо того, чтобы использовать правильное обозначения DA, DC или DE. Когда последовательный порт перевели на 9-контактный разъем, их начали называть DB9 вместо DE9. Сейчас под DB9 почти всегда подразумевают 9-контактный разъем с размером экрана Е.


Стандартная (двухрядная) вилка DB25

Кроме того, в некоторых разъемах серии D-sub количество контактов по «фактическому стандартному» отсчету (который может отличаться от отсчета по размеру экрана) не совпадает с реальным числом контактов (например, в наших разъемах VGA). Сделано это для реализации дополнительного «ключа», защищающего разъем от неправильной вставки – один контакт в среднем ряду просто отсутствует, что не позволяет вставить в разъем интерфейса VGA какой-нибудь другой разъем DE-15 от неизвестно какого оборудования.


Разъем VGA с отсутствующим контактом в среднем ряду (фото: Wikipedia)

Разъемы D-sub специфицированы в немецком стандарте DIN 41652 и американском военном стандарте MIL-DTL-24308.

Итак, правильное название для разъема интерфейса VGA: трехрядный 15-контактный соединитель DE15 с двойной плотностью расположения контактов и одним отсутствующим контактом. Именно этот разъем используется в видеокартах, компьютерных мониторах и телевизорах высокой четкости. На ноутбуках и других носимых устройствах часто можно обнаружить специальную уменьшенную версию, называемую mini-VGA. Разъем DE-15 часто называют не только разъемом VGA, но и RGB, D-sub 15, mini sub D15, mini D15, DB-15, HDB-15, HD-15 или HD15.

Разъем VGA (DE-15/HD-15) служит для передачи аналоговых компонентных сигналов RGB вместе с сигналами горизонтальной и вертикальной синхронизации HV (horizontal sync, vertical sync) и каналом данных VESA DDC (VESA Display Data Channel, канал данных дисплея по спецификации VESA). Ассоциация VESA несколько раз меняла состав сигналов в стандартном разъеме VGA (DE-15/HD-15), поэтому мы рассмотрим только последнюю версию расположения контактов в разъеме, которая может отличаться от нескольких предшествующих вариантов.

Также нужно отметить, что интерфейс VGA не предполагает подключение/отключение разъема в «горячем» режиме (т.е. без отключения электропитания оборудования), однако некоторые мониторы допускают такое обращение. Использовать этот метод нужно с осторожностью и лучше не применять его вовсе, поскольку ничто в конструкции разъемного соединения VGA не обеспечивает первоочередного подключения контактов заземления при вставке вилки в розетку и предварительное размыкание этих цепей при разъединении вилки и розетки.


Нумерация контактов в гнездовом соединителе (розетке) DE15 для интерфейса VGA

Расположение контактов в гнездовом разъеме VGA (DE15) на стороне видеокарты в компьютере:

Рассмотренная нами версия VGA называется 15-контактным разъемом VESA DDC2/E-DDC. До нее существовало еще как минимум три широко распространенных варианта (без E-DDC, в 9-контактном разъеме VGA и в разъеме Mini-VGA для ноутбуков).

Все сигналы интерфейса VGA (кроме аналоговых R, G, B) являются цифровыми с уровнями TTL (транзисторно-транзисторная логика). Наиболее важный из них: VESA Display Data Channel (канал данных дисплея), который был введен в аналоговый интерфейс для обмена данными между монитором и компьютером. Первая версия стандарта DDC была утверждена в августе 1994 года. В ней был реализован формат данных EDID 1.0 и физические каналы передачи данных DDC1, DDC2B и DDC2Ab. На практике это позволяло компьютеру узнать о названии монитора и его характеристиках (прежде всего, о поддерживаемых режимах работы в части разрешения и частоты смены кадров/полукадров). Версия DDC 2 появилась в 1996 году и выделила EDID в отдельный стандарт вместе с вводом нового протокола DDC2B+ для обмена данными. Версия DDC 3 от 1997 года ввела протокол DDC2Bi вместе с поддержкой VESA Plug and Display (автоматическая настройка параметров отображения по спецификации VESA) и интерфейса Flat Panel Display Interface (интерфейс отображения на плоских панелях) с разной адресацией устройств. Затем в 1999 году стандарт DDC был заменен спецификацией E-DDC, вместе с которой продолжает действовать спецификация EDID (Extended display identification data, расширенные идентификационные данные дисплея), определяющая формат компактного двоичного файла с описанием характеристик монитора. Этот файл хранится в памяти только для чтения (EEPROM) монитора и передается в компьютер по запросу.

Как уже упомянуто выше, DDC1 позволяет монитору сообщить свои характеристики в компьютер. Поэтому, когда видеокарта VGA обнаруживает передачу информации на линии данных, она запускает считывание по импульсам синхронизации монитора или вертикальной синхронизации. На время передачи данных DDC частота импульсов вертикальной синхронизации может увеличиваться до 25 кГц (такая частота не должна попасть на мониторы, не поддерживающие DDC1!).

DDC2 (DDC2B) обеспечивает двунаправленную связь: монитор может отчитаться о своих текущих параметрах, а компьютер может настроить параметры монитора. Двунаправленная шина данных для этого относится к синхронному типу и основана на протоколе I2C (сигналы на этой шине являются стандартными сигналами I2C).

Шина I2C (или IIC, т.е. Inter-Integrated Circuit, цепь взаимной интеграции) – это последовательная шина с несколькими ведущими устройствами и терминированием на концах, разработанная компанией Philips для низкоскоростной компьютерной периферии встроенных систем. Эта шина, под разными названиями, широко использовалась другими компаниями и, в частности, была заимствована в интерфейс VGA для организации обмена цифровыми данными между монитором и видеокартой компьютера. Однако в реализации для DDC2B эта шина стала однонаправленной с единственным ведущим устройством – графическим адаптером (видеокартой) компьютера. Монитор играет роль ведомого устройства с 7-разрядным адресом 50h на шине I²C, предоставляя 128-256 байт из памяти «только чтение» в формате EDID.

Следующая модификация – E-DDC (Enhanced Display Data Channel, улучшенный канал данных дисплея) – стала последним вариантом стандарта DDC. Причем версия 1 спецификации E-DDC была утверждена в 1999 году для 32 КБ информации из дисплея в новом формате Enhanced EDID (E-EDID). Версия E-DDC 1.2, утвержденная в 2007 году, добавила поддержку стандартов DisplayPort и DisplayID, что позволяет полностью отказаться от разъема и интерфейса VGA/SVGA. Кстати, канал передачи данных DDC в разных вариантах сохранился не только в DisplayPort, но и в интерфейсах DVI и HDMI.

Если VGA был «настоящим» стандартом компании IBM, то SVGA (Super VGA) никогда не был утвержден на официальном уровне. Наиболее близко к статусу официального документа находится спецификация для расширения VBE, разработанная ассоциацией стандартов видео и электроники VESA (Video Electronics Standards Association), открытым консорциумом для поддержания совместимости корпоративных стандартов в этой области. Причем согласно определению VESA: «Термин Super VGA служит для описания возможности контроллера графического дисплея поддерживать любые улучшения стандартного адаптера дисплея IBM VGA». По разрешению и в сравнении с VGA или XGA, термин SVGA первоначально определял разрешение 800 × 600 пикселей с 4-разрядным кодированием цвета (1989 г.), но вскоре этот показатель был улучшен до 1024 × 768 пикселей с 8-разрядным кодированием цвета, а затем и выше.

Классическая диаграмма соотношения разрешений и форматов экрана для различных версий SVGA:

Источник: Wikipedia

Для SVGA используется обычный разъем VGA (DE-15 / HD-15), хотя качество соединительного кабеля должно быть выше, особенно для последних широкоэкранных вариантов:

Соединительные кабели (шнуры) VGA/SVGA

Многие, но не все, соединительные кабели VGA с вилками DE-15 на обоих концах могут использоваться для надежной передачи сигналов интерфейса VGA с разными разрешениями, от 640×400 пикселей при частоте синхронизации 70 Гц (полоса пропускания 24 МГц) до 1280×1024 пикселей (SVGA) при 85 Гц (полоса 160 МГц) или 2048×1536 пикселей (QXGA) при 85 Гц (полоса 388 МГц). Специальных стандартов для VGA-кабелей не существует, но обычно качественные изделия отличаются коаксиальными жилами для аналоговых компонентных сигналов (RGB) и хорошим экранированием, что обычно делает такие кабели более толстыми и негибкими. Разумеется, качественный кабель должен защищать сигналы VGA от внешних и внутренних наводок, а также точно соответствовать предписанному волновому сопротивлению (75 Ом) для компонентных видеосигналов RGB, чтобы исключить ненужное отражение на концах, приводящее к двоению (ghosting) картинки на экране или иным искажением изображения. Как правило, чем короче кабель, тем меньше он подвержен наводкам.

Иногда кабели VGA имеют вилку DE-15 на одном конце и 5 отдельных разъемов BNC на другом, чтобы обеспечить подключение сигналов RGBHV к качественному монитору по пяти отдельным 75-омным коаксиальным кабелям в жгуте. Дело в том, что в 15-контактном разъеме сигналы RGB (контакты 1, 2, 3) не экранированы друг от друга, поскольку имеют общую «землю», оставляя возможность для перекрестных наводок. Отдельные коаксиальные кабели с разъемами BNC устраняют внутренние наводки, но кабель становится слишком большим по размерам и в нем, как правило, уже не поддерживается передача цифровых сигналов DDC.

Чем отличается vga от svga. Хотелось бы по подробнее.

Из Википедии:
VGA (англ. Video Graphics Array) — стандарт мониторов и видеоадаптеров. Выпущен IBM в 1987 году для компьютеров PS/2 Model 50 и более старших [1]. VGA являлся последним стандартом, которому следовало большинство производителей видеоадаптеров.

Видеоадаптер VGA подключается как к цветному, так и к монохромному монитору, при этом доступны все стандартные видеорежимы. Частота обновления экрана во всех стандартных режимах, кроме 640×480, — 70 Гц, в режиме 640×480 — 60 Гц. Видеоадаптер имеет возможность одновременно выводить на экран 256 различных цветов, каждый из которых может принимать одно из 262 144 различных значений (отводится по 6 битов на красный, зелёный и синий компоненты) . Объём видеопамяти VGA — 256 кБ.

Видеоадаптер VGA, в отличие от предыдущих видеоадаптеров IBM (MDA, CGA, EGA), использует аналоговый сигнал для передачи цветовой информации. Переход на аналоговый сигнал был обусловлен необходимостью сокращения числа проводов в кабеле. Также аналоговый сигнал давал возможность использовать VGA-мониторы с последующими видеоадаптерами, которые могут выводить большее количество цветов [2].

Официальным последователем VGA стал стандарт IBM XGA, фактически же он был замещен различными расширениями к VGA, известными как SVGA.

Термин VGA также часто используется для обозначения разрешения 640×480 независимо от аппаратного обеспечения для вывода изображения, хотя это не совсем верно (так, режим 640х480 с 16-, 24- и 32-битной глубиной цвета не поддерживаются адаптерами VGA, но могут быть сформированы на мониторе, предназначенном для работы с адаптером VGA, при помощи SVGA-адаптеров) . Также этот термин используется для обозначения 15-контактного D-subminiature разъёма VGA для передачи аналоговых видеосигналов при различных разрешениях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *