Какой диапазон акустических волн соответствует звуковому диапазону
Перейти к содержимому

Какой диапазон акустических волн соответствует звуковому диапазону

  • автор:

Основные понятия и физический смысл звука

Ухо здорового человека еще в утробе матери начинает улавливать и воспринимать самые разные звуки: разговор, музыку, стук и т.п. Так как различный звуковой шум окружает людей всю сознательную жизнь, мы редко задумываемся о том, что это за явление. Тем не менее, современная физика может подробнейшим образом ответить на этот вопрос, описать характеристики и свойства звука.

Что такое звук — определение в физике

Звуком называют механические колебания, распространяющиеся в окружающей среде и воспринимаемые органом слуха человека.

Звук

Раздел физики, который занимается изучением звуковых колебаний, называется акустикой.

Основные понятия явления

Звуковая волна — это поперечная волна, представляющая собой ряд чередующихся между собой разряженной и сжатой среды, которые имеют различную частоту. Звуковые волны возникают за счет колебаний, вызываемых и производимых вибрацией от любых тел.

Звуки могут возникать и распространяться в следующих видах упругой среды:

  • газообразной;
  • жидкой;
  • твердой.

Возникая в одной из перечисленных сред, звуковые колебания влекут за собой изменения этой среды:

  • плотности воздуха;
  • давления воздуха;
  • перемещение частиц воздуха и т.п.

Скорость звука находится в зависимости от двух условий:

  • среды;
  • температуры.

В атмосфере при температуре равной 0 градусов, скорость звука равняется 331 м/с, при повышении температуры на 1 градус, скорость увеличивается на 1,7 м/с.

Звукопоглощением называется процесс преобразования одного вида энергии (звуковой или колебательной) в другую (тепловую).

Теория звука и акустики понятным языком

Рассмотрим чуть подробнее физическую природу явления. Все звуки, которые распространяются в воздухе, являются вибрациями звуковой волны.

Эти вибрации возникают за счет колебания объекта и расходятся от источника по всем направлениям. Распространяясь в пространстве, звуковая волна отражается от всех объектов, которые встречаются ей на пути, и создает изменения в окружающей среде. Когда эти изменения достигают органов слуха, они воздействуют на барабанную перепонку, нервные окончания в ухе подают сигналы в мозг, и человек воспринимает колебания как звук.

Какими характеристиками обладают звуковые волны

Звуковые волны, как и любой другой вид волн, обладают рядом волновых свойств.

Описание волны и её свойства

Простейшая форма описания звуковых колебаний — это синусоида.

Несмотря на то, что такой вид волн редко встречается в природе, любые звуки могут быть представлены комбинацией синусоидных волн.

Синусоида позволяет продемонстрировать основные физические критерии звука, которые называются специальными терминами:

  • частоту;
  • амплитуду;
  • фазу.

Частотой называется физическая величина, которая характеризует количество колебаний в единицу времени (секунду) и измеряется в герцах (Гц). Ухо человека способно воспринимать звуковые сигналы в диапазоне от 20 Гц до 20 КГц. Звуки, которые находятся выше указанного диапазона называется ультразвуком, ниже – инфразвуком, для человеческих органов слуха они неуловимы.

Амплитуда или интенсивность звуковой волны — это сила звука, которую органы слуха воспринимают как громкость звукового сигнала. Для измерения громкости звука используются фонометры, единицами ее измерения являются децибелы.

Характеристика волн

Значение длины волны соответствует одной из следующих формул:

где \( \lambda\) — длина волны, \(V \) — скорость распространения звуковой волны, \(T\) — период колебания, v — частота колебания.

Такая величина, как фаза, нужна для того, чтобы описать свойства 2-х звуковых волн. Если два звуковых сигнала обладают одинаковой амплитудой и частотностью, говорят о том, что они находятся в фазе. Диапазон измерения фазы лежит в пределах от 0 до 360, где 0 означает, что две волны синхронны, т.е находятся в фазе, а 180 означает, что волны находятся в противофазе.

При нахождении двух звуковых волн в фазе, происходит наложение звуков друг на друга и усиление сигнала. Если совместить два не совпадающих по амплитуде, сигнала, произойдет их подавление из-за разницы давления, что приведет к исчезновению звука. Этот эффект известен в физике как «подавление фазы».

Волны в фазе

Что такое децибел

Децибелы — это единицы измерения уровня электрического напряжения или звукового давления. Бел назван в честь ученого-американца — слишком большая единица для измерения звука, именно поэтому на практике стали использовать децибел, который составляет всего 1/10 от бела.

Громкость звука измеряется в децибелах. Этот показатель определяется амплитудой сигнала: чем выше амплитуда звуковой волны, тем громче сигнал. Громкость человеческого слуха измеряется в фонах и обозначается Фон.

Уровень шума

Не можете разобраться со сложной темой по физике? По другому предмету? Не отчаивайтесь и не переживайте! Обращайтесь за помощью к экспертам Феникс.Хелп.

Диапазон звуковых частот. Взаимосвязь частоты звуковой волны, ее длины и скорости

Сейчас в Интернете очень много возможностей проверить остроту своего слуха онлайн. Для этого нужно запустить видео со звуком, частота которого нарастает. Создатели теста рекомендуют проводить проверку в наушниках, чтобы не мешали посторонние шумы. Диапазон звуковых частот в ролике начинается с таких высоких значений, услышать которые могут единицы. Дальше частота звука плавно понижается, и в конце видео слышен звук, который услышит даже человек с ослабленным слухом.

На протяжении ролика пользователю показывают значение частоты звука, который воспроизводится. Условия теста предполагают, что видео нужно остановить в тот момент, когда человек сможет расслышать звук. Далее следует посмотреть, на какой отметке остановилась частота. Ее значение даст понять, что слух в норме, лучше, чем у большинства людей, либо стоит обратиться к врачу. Некоторые тесты показывают, какому возрасту соответствует предельная частота, которую смог услышать человек.

Людвиг Нобель: биография, деятельность, наследие Вам будет интересно: Людвиг Нобель: биография, деятельность, наследие

Проверка остроты слуха онлайн

Что собой представляет звук и звуковая волна

Звук — это субъективное ощущение, но слышим мы его, потому что в наше ухо попадает что-то реально существующее. Это звуковая волна. Физиков интересует, как ощущения, которые мы испытываем, связаны с характеристиками звуковой волны.

Запомните несколько правил приличия. Это несложно Вам будет интересно: Запомните несколько правил приличия. Это несложно

Очень громкий звук

Звуковые волны — это продольные механические, обладающие малой амплитудой волны, диапазон частот которых 20 Гц-20 кГц. Малая амплитуда — это когда изменение давления вследствие сжатия-разрежения гораздо меньше, чем давление в этой среде. В воздухе в областях сжатия-разрежения изменение давления гораздо меньше атмосферного. Если амплитуда того же порядка или больше атмосферного давления, то это уже не звуковые волны, а ударные, они распространяются со сверхзвуковой скоростью.

Слышимость звуков

Мы уже выяснили, каков диапазон звуковых частот, но что же лежит за его границами? Если частота меньше 20 Гц, такие волны называются инфразвуковыми. Если больше 20 кГц — это ультразвуковые волны. И инфра-, и ультразвук не вызывают слуховых ощущений. Границы достаточно размыты: младенцы слышат 22-23 кГц, нестарые люди могут воспринять 21 кГц, кто-то слышит 16 Гц. То есть чем младше человек, тем выше частоты он может услышать.

Собаки слышат более высокие частоты. Эту их способность используют дрессировщики, они подают команды ультразвуковым свистком, не слышимым людьми. На рисунке показаны диапазоны частот, доступные для восприятия разными животными.

Диапазон воспринимаемых частот разных животных

Звук как оружие полицейских

Приведем пример случая, который показывает, что диапазон звуковых частот, слышимых человеком, приблизителен и зависит от индивидуальных особенностей.

В Вашингтоне полиция нашла способ ненасильственного разгона молодежи. Юноши и девушки постоянно собирались около одной из станций метро, общались. Власти посчитали, что их бесцельное времяпрепровождение мешает другим, т. к. у входа скапливается слишком много людей. Полицейские установили устройство «Москит», издававшее звук на частоте 17,5 кГц. Этот прибор предназначен для отпугивания насекомых, но производители уверяли, что звуковые волны данной частоты воспринимаются только подростками от 13 и не старше 25 лет.

Ультразвуковой отпугиватель

Благодаря устройству от молодежи удалось избавиться, но мужчина 28 лет услышал звук и пожаловался в администрацию города. Местным властям пришлось прекратить использование прибора.

Диапазон длины волны

Волны звуковых частот в разных средах имеют разные характеристики. Отличаются длина и скорость распространения волны. В воздухе (при комнатной температуре) скорость составляет 340 м/ с.

Рассмотрим волны с частотами, находящимися в слышимом для нас диапазоне. Их минимальная длина — 17 мм, максимальная — 17 м. Звук с наименьшей длиной волны находится на грани ультразвука, а с наибольшей — приближается к инфразвуку.

Скорость звуковой волны

Считается, что свет распространяется мгновенно, а для распространения звука нужно определенное время. На самом деле свет тоже имеет скорость, просто она является предельной, быстрее, чем свет, ничего не движется. Что касается звука, то наибольший интерес представляет его распространение в воздухе, хотя скорость звуковой волны в более плотных средах намного выше. Вспомним грозу: вначале мы видим вспышку молнии, затем слышим раскат грома. Звук запаздывает, потому что его скорость во много раз ниже, чем скорость света. Впервые скорость звука измеряли, фиксируя промежуток времени между выстрелом из мушкета и звуком. Затем брали расстояние между орудием и исследователем и делили его на время «опоздания» звука.

Такой способ имеет два недостатка. Во-первых, это погрешность секундомера, особенно на близком расстоянии до источника звука. Во-вторых, это скорость реакции. При таком измерении результаты не будут точными. Для вычисления скорости удобнее брать известную частоту определенного звука. Существует генератор частот, прибор с диапазоном звуковых частот от 20 Гц до 20 кГц.

Генератор звуковых частот

Его включают на нужную частоту, в ходе эксперимента измеряют длину волны. Перемножив обе величины, получают скорость звука.

Гиперзвук

Длина волны вычисляется путем деления скорости на частоту, поэтому с увеличением частоты длина волны уменьшается. Можно создать колебания настолько высокой частоты, что длина волны будет одного порядка с длиной свободного пробега молекул газа, например, воздуха. Это и есть гиперзвук. Он плохо распространяется, потому что воздух перестает считаться сплошной средой, т. к. длина волны ничтожно мала. В нормальных условиях (при атмосферном давлении) длина свободного пробега молекул равна 10-7 м. Каков диапазон частот волн? Звуковыми они не являются, потому что мы их не слышим. Если рассчитать частоту гиперзвука, то окажется, что она составляет 3×109 Гц и выше. Измеряют гиперзвук в гигагерцах (1 ГГц = 1 миллиард Гц).

Как частота звука влияет на его высоту

Диапазон звуковых частот влияет на диапазон высоты. Хотя высота звука — это субъективное ощущение, но определяется она объективной характеристикой звука, частотой. Высокие частоты порождают высокий звук. Зависит ли высота звука от длины волны? Конечно, скорость, частота и длина волны взаимосвязаны. Однако звук одной и той же частоты будет иметь разную длину волны в разных средах, но восприниматься он будет одинаково.

Мы слышим звук, потому что изменения давления заставляют колебаться нашу барабанную перепонку. Давление меняется с одной и той же частотой, поэтому неважно, что в разной среде длина волны разная. Из-за одинаковой частоты мы воспримем звук как высокий или низкий хоть в воде, хоть в воздухе. В воде скорость звука составляет 1,5 км/ с, что почти в 5 раз больше, чем в воздухе, следовательно, намного больше и длина волны. Но если тело будет вибрировать с неизменной частотой (допустим, 500 Гц) в обоих средах, высота звука будет одинаковой.

Существуют звуки, не имеющие высоты, например, звук «ш-ш-ш». Их колебания частоты не периодические, а хаотичные, поэтому мы воспринимаем их как шум.

Какой диапазон акустических волн соответствует звуковому диапазону

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Звук или звуковые волны – это волны, которые способно воспринять человеческое ухо.

При этом звуковые частоты имеют диапазон: примерно от 20 Г ц до 20 к Г ц .

Инфразвук – звуковые волны, имеющие частоту менее 20 Г ц .

Ультразвук – волны звука, имеющие частоту более 20 к Г ц .

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Акустика – это направление физики, занимающееся изучением звуковых явлений.

Когда звук получает распространение в газе, атомы и молекулы испытывают колебания вдоль направления распространения волны, следствием чего становится изменение локальной плотности ρ и давления p .

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

В случае простых гармонических звуковых волн, получающих распространение вдоль оси O X , изменение давления p ( x , t ) имеет зависимость от координаты x и времени t , которая записывается так:

p ( x , t ) = p 0 cos ω t ± k x .

В аргументе косинуса мы видим два противоположных знака, что имеет отношение к двум направлениям распространения волны. Запишем выражение, которое покажет соотношение таких величин, как круговая частота ω , волновое число k , длина волны λ , скорость звука υ (соотношение будет таким же, как применимо для поперечных волн в струне или резиновом жгуте):

υ = λ T = ω k ; k = 2 π λ ; ω = 2 π f = 2 π T .

Одной из ключевых характеристик звука является скорость распространения.

Скорость распространения – величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

В указанной формуле B является модулем всестороннего сжатия, ρ – средней плотностью среды.

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению p а т м . В таком случае значение скорости звука в воздушной среде – менее 300 м / с , в то время как истинная скорость звука при нормальных условиях (температура 0 ° С и давление 1 а т м ) равна 331 , 5 м / с , а скорость звука при температуре 20 ° С и давлении 1 а т м составит 343 м / с . Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П. Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне. В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Формула Лапласа для определения скорости звука имеет запись:

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ = 332 м / с .

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении C p и постоянном объеме C V .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

В данной формуле T – абсолютная температура, M – молярная масса,
R = 8 , 314 Д ж / м о л ь · К – универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Когда звук распространяется в воздушной среде ( M = 29 · 10 – 3 к г / м о л ь ) при нормальных условиях: υ = 331 , 5 м / с ;

Когда звук распространяется в гелии ( M = 4 · 10 – 3 к г / м о л ь ) : υ = 970 м / с ;

Когда звук распространяется в водороде ( M = 2 · 10 – 3 к г / м о л ь ) : υ = 1270 м / с .

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ = 1480 м / с (при 20 ° С ), в стали υ = 5 – 6 к м / с .

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Звуковое давление – это амплитуда p 0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана.

Порог слышимости – минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог – это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Порог слышимости представляет собой значение p 0 около 10 – 10 а т м , т. е. 10 – 5 П а : такой слабый звук характеризуется колебанием молекул воздуха в волне звука с амплитудой всего лишь 10 – 7 с м ! Болевой же порог соответствует значению p 0 порядка 10 – 4 а т м или 10 П а . Т.е., человеческое ухо способно к восприятию волн, в которых звуковое давление изменяется в миллион раз. Поскольку интенсивность звука пропорциональна квадрату звукового давления, диапазон интенсивностей оказывается порядка 10 12 !

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 10 6 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны – еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Высокий тон – это звуки с колебаниями высокой частоты.

Низкий тон – это звуки с колебаниями низкой частоты.

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

К примеру, диапазон наиболее низкого мужского голоса – баса – находится в пределах примерно от
80 до 400 Г ц , а диапазон высокого женского голоса – сопрано – от 250 до 1050 Г ц .

Октава – это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Скрипка, к примеру, звучит в диапазоне примерно трех с половиной октав ( 196 – 2340 Г ц ) ,
а пианино – семи с лишним октав ( 27 , 5 – 4186 Г ц ) .

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f 1 основного тона. Однако колебания струн содержат также гармоники, частоты f n которых отвечают соотношению:

f n = n f 1 , ( n = 1 , 2 , 3 , . . . ) .

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды A n этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

Аналогичный процесс мы наблюдаем, когда звучат духовые музыкальные инструменте. Трубы духовых инструментов служат акустическими резонаторами – акустическими колебательными системами, имеющими способность возбуждаться (резонировать) от звуковых волн определенных частот. Определенные же условия способствуют возникновению внутри трубы стоячей звуковой волны. Рисунок 2 . 7 . 1 демонстрирует несколько видов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого. Звучание духовых инструментов, так же, как и струнных, состоит из целого спектра волн с кратными частотами.

Рисунок 2 . 7 . 1 . Стоячие волны в трубе органа (закрыта лишь с одной стороны). Стрелки указывают направления движения частиц воздуха за один полупериод колебаний.

Музыкальные инструменты необходимо периодически настраивать.

Камертон – устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

Гортань певца – по сути тоже акустический резонатор. Рисунок 2 . 7 . 2 демонстрирует спектры звуковых волн, издаваемых камертоном, струной пианино и низким женским голосом (альтом), звучащими на одной и той же ноте.

Рисунок 2 . 7 . 2 . Относительные интенсивности гармоник в спектре волну звука при звучании камертона ( 1 ) , пианино ( 2 ) и низкого женского голоса (альт) ( 3 ) на ноте «ля» контроктавы ( f 1 = 220 Г ц ) . По оси ординат отложены относительные интенсивности I I 0 .

Звуковые волны, чьи частотные спектры показаны на рисунке 2 . 7 . 2 , имеют одну и ту же высоту, но различные тембры.

Биения

Разберем также такое явление, как биения.

Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p 1 и p 2 , которые осуществляют воздействие на ухо:

p 1 = A 0 cos ω 1 t и p 2 = A 0 cos ω 2 t .

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p 0 = A 0 0.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

p = p 1 + p 2 = 2 A 0 cos ω 1 — ω 2 2 t cos ω 1 + ω 2 2 t = 2 A 0 cos 1 2 ∆ ω t cos ω с р t ,

где ∆ ω = ω 1 — ω 2 , а ω с р = ω 1 + ω 2 2 .

Рисунок 2 . 7 . 3 ( 1 ) отображает, каким образом давления p 1 и p 2 зависимы от времени t . В момент времени t = 0 оба колебания находятся в фазе, и их амплитуды суммируются. Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t 1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся». К моменту времени t 2 = 2 t 1 колебания вновь окажутся в фазе и т. д. (рисунок 2 . 7 . 3 ( 2 ) ).

Период биений Т б – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

A = 2 A 0 cos 1 2 ∆ ω t .

Период Т б изменения амплитуды равен 2 π Δ ω . Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T 1 и T 2 являются такими, что T 1 < T 2 (т. е. ω 1 > ω 2 ). За период биений Т б наблюдается некоторое число n полных циклов колебаний первой волны и ( n – 1 ) циклов колебаний второй волны:

T б = n T 1 = ( n — 1 ) T 2 .

T б = T 1 T 2 T 2 — T 1 = 2 π ω 1 — ω 2 = 2 π ∆ ω или f б = 1 T б = 1 T 1 — 1 T 2 = f 1 — f 2 = ∆ f .

f б есть частота биений, определяемая как разность частот Δ f двух звуковых волн, которые воспринимаются ухом одновременно.

Органы слуха человека способны к восприятию звуковых биений до частот 5 – 10 Г ц . Прослушивание биений – это важный элемент техники настройки музыкальных инструментов.

Рисунок 2 . 7 . 3 . Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.

Диапазон звуковых частот. Взаимосвязь частоты звуковой волны, ее длины и скорости

Сейчас в Интернете очень много возможностей проверить остроту своего слуха онлайн. Для этого нужно запустить видео со звуком, частота которого нарастает. Создатели теста рекомендуют проводить проверку в наушниках, чтобы не мешали посторонние шумы. Диапазон звуковых частот в ролике начинается с таких высоких значений, услышать которые могут единицы. Дальше частота звука плавно понижается, и в конце видео слышен звук, который услышит даже человек с ослабленным слухом.

На протяжении ролика пользователю показывают значение частоты звука, который воспроизводится. Условия теста предполагают, что видео нужно остановить в тот момент, когда человек сможет расслышать звук. Далее следует посмотреть, на какой отметке остановилась частота. Ее значение даст понять, что слух в норме, лучше, чем у большинства людей, либо стоит обратиться к врачу. Некоторые тесты показывают, какому возрасту соответствует предельная частота, которую смог услышать человек.

Проверка остроты слуха онлайн

Что собой представляет звук и звуковая волна

Звук — это субъективное ощущение, но слышим мы его, потому что в наше ухо попадает что-то реально существующее. Это звуковая волна. Физиков интересует, как ощущения, которые мы испытываем, связаны с характеристиками звуковой волны.

Очень громкий звук

Звуковые волны — это продольные механические, обладающие малой амплитудой волны, диапазон частот которых 20 Гц-20 кГц. Малая амплитуда — это когда изменение давления вследствие сжатия-разрежения гораздо меньше, чем давление в этой среде. В воздухе в областях сжатия-разрежения изменение давления гораздо меньше атмосферного. Если амплитуда того же порядка или больше атмосферного давления, то это уже не звуковые волны, а ударные, они распространяются со сверхзвуковой скоростью.

Слышимость звуков

Мы уже выяснили, каков диапазон звуковых частот, но что же лежит за его границами? Если частота меньше 20 Гц, такие волны называются инфразвуковыми. Если больше 20 кГц — это ультразвуковые волны. И инфра-, и ультразвук не вызывают слуховых ощущений. Границы достаточно размыты: младенцы слышат 22-23 кГц, нестарые люди могут воспринять 21 кГц, кто-то слышит 16 Гц. То есть чем младше человек, тем выше частоты он может услышать.

Собаки слышат более высокие частоты. Эту их способность используют дрессировщики, они подают команды ультразвуковым свистком, не слышимым людьми. На рисунке показаны диапазоны частот, доступные для восприятия разными животными.

Диапазон воспринимаемых частот разных животных

Звук как оружие полицейских

Приведем пример случая, который показывает, что диапазон звуковых частот, слышимых человеком, приблизителен и зависит от индивидуальных особенностей.

В Вашингтоне полиция нашла способ ненасильственного разгона молодежи. Юноши и девушки постоянно собирались около одной из станций метро, общались. Власти посчитали, что их бесцельное времяпрепровождение мешает другим, т. к. у входа скапливается слишком много людей. Полицейские установили устройство «Москит», издававшее звук на частоте 17,5 кГц. Этот прибор предназначен для отпугивания насекомых, но производители уверяли, что звуковые волны данной частоты воспринимаются только подростками от 13 и не старше 25 лет.

Ультразвуковой отпугиватель

Благодаря устройству от молодежи удалось избавиться, но мужчина 28 лет услышал звук и пожаловался в администрацию города. Местным властям пришлось прекратить использование прибора.

Диапазон длины волны

Волны звуковых частот в разных средах имеют разные характеристики. Отличаются длина и скорость распространения волны. В воздухе (при комнатной температуре) скорость составляет 340 м/ с.

Рассмотрим волны с частотами, находящимися в слышимом для нас диапазоне. Их минимальная длина — 17 мм, максимальная — 17 м. Звук с наименьшей длиной волны находится на грани ультразвука, а с наибольшей — приближается к инфразвуку.

Скорость звуковой волны

Считается, что свет распространяется мгновенно, а для распространения звука нужно определенное время. На самом деле свет тоже имеет скорость, просто она является предельной, быстрее, чем свет, ничего не движется. Что касается звука, то наибольший интерес представляет его распространение в воздухе, хотя скорость звуковой волны в более плотных средах намного выше. Вспомним грозу: вначале мы видим вспышку молнии, затем слышим раскат грома. Звук запаздывает, потому что его скорость во много раз ниже, чем скорость света. Впервые скорость звука измеряли, фиксируя промежуток времени между выстрелом из мушкета и звуком. Затем брали расстояние между орудием и исследователем и делили его на время «опоздания» звука.

Такой способ имеет два недостатка. Во-первых, это погрешность секундомера, особенно на близком расстоянии до источника звука. Во-вторых, это скорость реакции. При таком измерении результаты не будут точными. Для вычисления скорости удобнее брать известную частоту определенного звука. Существует генератор частот, прибор с диапазоном звуковых частот от 20 Гц до 20 кГц.

Генератор звуковых частот

Его включают на нужную частоту, в ходе эксперимента измеряют длину волны. Перемножив обе величины, получают скорость звука.

Гиперзвук

Длина волны вычисляется путем деления скорости на частоту, поэтому с увеличением частоты длина волны уменьшается. Можно создать колебания настолько высокой частоты, что длина волны будет одного порядка с длиной свободного пробега молекул газа, например, воздуха. Это и есть гиперзвук. Он плохо распространяется, потому что воздух перестает считаться сплошной средой, т. к. длина волны ничтожно мала. В нормальных условиях (при атмосферном давлении) длина свободного пробега молекул равна 10 -7 м. Каков диапазон частот волн? Звуковыми они не являются, потому что мы их не слышим. Если рассчитать частоту гиперзвука, то окажется, что она составляет 3×10 9 Гц и выше. Измеряют гиперзвук в гигагерцах (1 ГГц = 1 миллиард Гц).

Как частота звука влияет на его высоту

Диапазон звуковых частот влияет на диапазон высоты. Хотя высота звука — это субъективное ощущение, но определяется она объективной характеристикой звука, частотой. Высокие частоты порождают высокий звук. Зависит ли высота звука от длины волны? Конечно, скорость, частота и длина волны взаимосвязаны. Однако звук одной и той же частоты будет иметь разную длину волны в разных средах, но восприниматься он будет одинаково.

Мы слышим звук, потому что изменения давления заставляют колебаться нашу барабанную перепонку. Давление меняется с одной и той же частотой, поэтому неважно, что в разной среде длина волны разная. Из-за одинаковой частоты мы воспримем звук как высокий или низкий хоть в воде, хоть в воздухе. В воде скорость звука составляет 1,5 км/ с, что почти в 5 раз больше, чем в воздухе, следовательно, намного больше и длина волны. Но если тело будет вибрировать с неизменной частотой (допустим, 500 Гц) в обоих средах, высота звука будет одинаковой.

Существуют звуки, не имеющие высоты, например, звук «ш-ш-ш». Их колебания частоты не периодические, а хаотичные, поэтому мы воспринимаем их как шум.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *