Какие частицы входят в состав атомного ядра
Перейти к содержимому

Какие частицы входят в состав атомного ядра

  • автор:

Физика

Урок 6: Состав атомного ядра. Массовое число.Зарядовое число. Ядерные силы

  • Видео
  • Тренажер
  • Теория

Физика 9 класс

Тема: Строение атома и атомного ядра. Использование энергии атомных ядер

Урок 56. Состав атомного ядра. Массовое число. Зарядовое

число. Ядерные силы

Ерюткин Евгений Сергеевич

учитель физики высшей категории ГОУ СОШ №1360

Москва

2011

Здравствуйте! Сегодняшний урок будет посвящен вопросу, связанному с обсуждением строения ядра атома, зарядовому числу, массовому числу, поговорим также о том, что такое ядерные силы. Наш урок – это подведение некоторого промежуточного итога по всем ранее изученным вопросам. Мне бы хотелось сказать то, что мы изучали вопросы, связанные со строением атома и строением ядра. Поэтому сегодня мы поговорим именно об этом. Некоторый итог предыдущим темам, предыдущим вопросам. Прежде чем мы перейдем к тому вопросу, который обозначен первым, мы поговорим вот о чем. На предыдущем уроке мы говорили, что Резерфорд в своих экспериментах установил, что существует такая частица, как протон. Через некоторое время в 1932 году Чедвик установил, что существует еще одна частица, которая называется нейтрон. После этого открытия независимо друг от друга два человека, русский ученый Иваненко и немецкий ученый Гейзенберг, предложили протонно-нейтронную модель строения ядра атома. По этой теории Иваненко – Гейзенберга, ядро любого атома содержит протоны и нейтроны. Эти протоны и нейтроны вместе, те, которые находятся в ядре атома, было решено называть нуклонами. Таким образом, «нуклон» (от лат. «ядро») – общее название для протонов и нейтронов. Те частицы, которые имеют заряд, и те частицы, которые заряд не имеют, нейтроны, эти все частицы вместе называются нуклонами. Давайте еще вот о чем поговорим. Идея о заряде ядра была впервые выдвинута в 1913 году английским ученым Генри Мозли. Он предложил, что, раз атом электронейтрален, порядковый номер элемента, умноженный на элементарный электрический заряд, это и есть заряд ядра. Каким образом Мозли пришел к такому заключению? Дело в том, что количество электронов в атоме соответствует порядковому номеру. Значит, заряд всех электронов – это произведение порядкового номера на заряд одного электрона. Поскольку в ядре сосредоточен положительный заряд, значит, то же самое можно говорить и о ядре. Давайте посмотрим на то, как пришел Мозли именно к тому, что мы называем зарядовым числом. Посмотрите:

qЯ = Z . |e|

qЯ – заряд ядра

е – заряд электрона

Z – число протонов в ядре, зарядовое число

Заряд числа, по такому утверждению, определяется как произведение порядкового номера на элементарный электрический заряд. В данном случае е – это заряд электрона, элементарный электрический заряд его называют, и взят он по модулю, потому что понятно, что заряд ядра у нас положительный. В этом случае порядковый номер стали называть зарядовым числом, порядковый номер – это число, соответствующее числу протонов в ядре. Таким образом, мы, говоря о порядковом номере, можем говорить о количестве протонов в ядре. Следующее число, о котором необходимо сказать, – это число массы. Оно, это число, обозначено буквой А, и это самое число берут то же из таблицы Менделеева и округляют его до целых. Дальше мы можем говорить о том уравнении, которое называется во всем мире уравнением Иваненко – Гейзенберга. Это уравнение состоит из трех чисел: массового числа, зарядового числа и числа нейтронов. Давайте посмотрим, как оно записывается и как обозначаются данные величины.

Уравнение Иваненко — Гейзенберга

А = Z + N

А – массовое число,

Z – порядковый номер элемента,

N – число нейтронов в ядре

Посмотрите: массовое число А говорит о том, какое количество нуклонов входит в ядро. Оказалось, что, по таблице Менделеева определяя массовое число химического элемента, мы определяем число нуклонов в ядре атома.

Z, как мы говорили, будет порядковый номер и число протонов в ядре. N в данном случае – это число нейтронов. Таким образом, мы можем из этого уравнения определить число нейтронов, число протонов, зная массовое число и порядковый номер. Здесь необходимо отметить важный момент. Дело в том, что в 1913 году еще один ученый Содди (вы помните, что этот человек работал вместе с Резерфордом) установил интересную вещь. Выяснено было, что существуют химические элементы с абсолютно одинаковыми химическими свойствами, но разным массовым числом. Такие элементы, у которых одинаковые химические свойства, но разное массовое число, стали называть изотопами. Изотопы – это химические элементы с одинаковыми химическими свойствами, но с различной массой атомных ядер.

Еще надо добавить, что у изотопов разная радиоактивность. Все это вместе привело к изучению этого вопроса. Здесь показаны изотопы легких и тяжелых элементов химических. Давайте посмотрим. Мы выбрали специально разные области таблицы Менделеева, чтобы показать, что практически все элементы химические имеют изотопы.

Изотопы:

Н – протий U

H – дейтерий U

У водорода этих изотопов три. Первый изотоп Н называется протий. Обратите внимание, что порядковый номер ставится внизу, вот это число Z, а сверху пишется массовое число – это число А. Сверху А, внизу Z, и если мы понимаем, что это обозначает, что в ядре атома протия самый простой химический элемент, самый распространенный во вселенной. Там всего лишь 1 протон, а нейтронов в этом ядре совсем нет. Есть второй вид водорода – это дейтерий. Наверное, многие слышали такое слово. Обратите внимание: порядковый номер 1, а массовое число равно 2. Так что ядро дейтерия состоит уже из 1 протона и из одного нейтрона. И есть еще один изотоп водорода. Называется тритий. Тритий как раз (порядковый номер первый), а массовое число говорит о том, что в ядре этого изотопа находятся 2 нейтрона. И еще один элемент – это уран. Совсем другая сторона таблицы Менделеева. Это уже тяжелые элементы. У урана 2 изотопа распространенных. Это уран 235. Порядковый номер 92, а массовое число 235. Сразу можно говорить о том, чем отличается ядро одного элемента от другого. Второй изотоп: тоже порядковый номер 92, а массовое число 238. Очень часто, когда идет речь об изотопах, в частности урана, никогда не говорят порядкового номера. Просто говорят «уран», называют химический элемент и говорят его массовое число – 238. Или уран 235. Мы обсуждаем этот вопрос по той простой причине, что знаем, как сегодня этот химический элемент важен для энергетики нашей страны и вообще мировой энергетики в целом.

Следующий вопрос, который мы должны затронуть, вытекает из сказанного. Как эти частицы, эти нуклоны удерживаются внутри ядра? Мы назвали различные химические элементы, изотопы различные, особенно у тяжелых элементов, там, где нуклонов, т.е. протонов и нейтронов, много. Как, каким образом они удерживаются внутри ядра? Мы знаем, что в маленьком ядре расстояния, размеры ядра очень и очень малы, бывает собрано большое количество частиц нуклонов. Как эти нуклоны там так плотно, тесно удерживаются, какими силами? Ведь за счет электростатического отталкивания эти частицы должны очень быстро распадаться, разлетаться. Мы знаем, что разноименные только заряды притягиваются, частицы, заряженные разноименными зарядами. Если частицы заряжены одноименно, понятно, что они должны отталкиваться. Внутри ядра находятся протоны. Они положительно заряжены. Размер ядра очень мал. В этом же ядре находятся еще и нейтроны, значит, должны быть силы, которые удерживают вместе те и другие частицы. Эти самые силы называют ядерными силами. Ядерные силы – это силы притяжения, действующие между нуклонами. Можно сказать, что у этих сил существуют свои особые свойства.

Первое свойство, о котором мы должны сказать, – это то, что ядерные силы должны превосходить силы электростатического отталкивания. И это так, когда удалось их определить, то выяснилось, что они в 100 раз превосходят силы электростатического отталкивания. Еще одно очень важное замечание, что действуют ядерные силы на малом расстоянии. Например, 10 -15 м – это и есть диаметр ядра, эти силы действуют. Но стоит только увеличиться размеру ядра до 10 -14 , казалось, совсем немного, то это приводит к тому, что ядро обязательно распадется. На этом расстоянии уже ядерные силы не действуют. А силы электростатического отталкивания продолжают действовать и именно они отвечают за то, что ядро распадается.

Еще можно сказать о ядерных силах то, что они не центральны, т.е. они не действуют вдоль прямой, соединяющей эти частицы. И то, что ядерные силы не зависят от того, обладает частица зарядом или не обладает, потому что в ядро входят и протоны, и нейтроны. Вместе эти частицы находятся. Таким образом, вывод: эти частицы, нуклоны, удерживаются в ядре за счет ядерных сил, и эти силы действуют только в ядре. Еще можно отметить, что ядерные силы имеют важное значение в плане стабильности ядра. Отвечают за долговременность существования этого элемента. В заключение мы можем отметить еще одно: когда мы будем говорить об энергетике, вот здесь именно ядерные силы будут играть основную роль. Об этом мы поговорим на следующих уроках. До свидания.

Задание к уроку.

1. Определите нуклонный состав ядер железа (количество нуклонов, протонов, нейтронов).

2. В ядре атома химического элемента 22 протона и 26 нейтронов. Назовите этот химический элемент.

3. Оцените силу гравитационного взаимодействия между двумя нейтронами в ядре. Масса нейтрона примерно равна 1,7*10 -27 кг, расстояние между нейтронами примите равным 10 -15 м, значение гравитационной постоянной 6,67*10 -11 (Н*м 2 )/кг 2 .

Как атомное ядро устроено в физике

В 1911 году британский физик Э. Резерфорд заявил об открытии, перевернувшее представления о химии не только общества философов, перед которым выступал ученый, но и всего научного мира.

В докладе «Рассеяние α- и β-лучей и строение атома» Резерфорд говорил об:

«…атоме, который состоит из центрального электрического заряда, сосредоточенного в точке и окруженного однородным сферическим распределением противоположного электричества равной величины».

Открытие атомного ядра послужило началом для ядерной физики, изучающей свойства атомных ядер химических элементов.

Современное определение атомного ядра звучит так:

Атомное ядро — центральная часть атома, в которой сосредоточена его основная масса.

Атомное ядро состоит из элементарных частиц:

  • протонов p;
  • нейтронов n.

Наука воспринимает атомное ядро как физический объект с характерными для него свойствами. Теоретическое описание модели атомного ядра практически не представляется возможным из-за малого размера частиц, составляющих атом. Из-за этого появляется множество представлений о строении атомного ядра, некоторые из которых могут взаимоисключать, противоречить или дополнять друг друга.

Теории строения атомного ядра:

  1. Оболочечная.

Предложена Д. Д. Иваненко и Е. Н. Гапоном в 1932 году, дополнена М. Гепперт-Майер и Х. Йенесоном в 1949 году.

Модель ядра представляет собой систему протонов и нейтронов, которые движутся в усредненном поле независимо друг от друга из-за силовых воздействий от других нуклонов.

Отрицательные частицы заполняют электронные оболочки до предела, а дальше электроны продолжают присоединяться со значительным понижением энергии связи.

Теория является неполной из-за невозможности объяснения деформированных ядер.

  1. Капельная.

Предложена Н. Бором в 1936 году.

Согласно данной теории, ядро по форме представляет собой сферическую равномерно заряженную каплю, которая напоминает жидкость. Она обладает несжимаемостью, насыщением ядерных сил, испарением нуклонов.

Теория является макроскопической, не объясняя свойств и строение ядра на микроскопическом уровне.

  1. Кластерная или модель нуклонных ассоциаций.

Появление относится ко второй половине 30-х годов прошлого века.

Согласно теории, ядро представляет собой α-частичные кластера.

Теория подходит для описания некоторых легких ядер, но не пригодна для более сложных систем.

  1. Статистическая.

В 1936 году и в 1937 году была параллельно открыта Я. Френкелем и Л. Ландау.

Рассматривает модель атома с точки зрения уровней разного порядка, средние и тяжелые ядра на которых возбуждаются при высокой энергии, но расстояние между ними остается маленьким.

  1. Коллективная.

Открытие относится к 1952 году, когда О. Бор и Б. Моттельсон разработали свою систему на основе теории капельной модели строения атомного ядра.

По теории ядро образуется нуклонами заполненных электронных оболочек и окружается внешними нуклонами.

  1. Обобщенная Бора — Моттельсона.

Также предложена в 1952 году О. Бором и Б. Моттельсоном. Объясняла некоторые особенности поведения ядер тем, что нуклоны, образующие ядро, могут деформироваться и становиться вытянутыми или сплюснутыми.

  1. Сверхтекучая.

Предложена в 1958 году О. Бором и Дж. Валатином.

Согласно теории, спаривание нуклонов приводит к сверхтекучести ядерного вещества. Причина спаривания — взаимодействие частиц, которые движутся по индивидуальным орбитам.

  1. Ротационная.

Описывала причину сочетания вращения всего ядра с движением отдельных нуклонов. Согласно этой модели, ядро атома должно быть несферическим.

  1. Оптическая.

Ядро — полупрозрачная сфера, которая обладает определенным коэффициентом преломления и поглощения, а частица, попадающая в такую среду, испытывает все характерные для полупрозрачной оптической среды виды взаимодействия.

  1. Вибрационная.

Ядро воспринимается как жидкая капля. Используется для объяснения спектра коллективных возбуждений сферических ядер.

Ядерно-физические характеристики

Важным понятием для определения ядерно-физических характеристик является понятие нуклида.

Нуклид — атом, который определяется четко установленным массовым числом, атомным номером и энергетическим состоянием. Нуклид имеет определенное время жизни, которое является достаточным для наблюдений и опытов.

К ядерно-физическим характеристикам относятся понятия:

  • заряда;
  • массы;
  • радиуса;
  • моментов ядра;
  • энергия связи.

Заряд Z атомного ядра определяется числом протонов, так же, как и порядковый номер химического элемента. Впервые заряд ядра в 1913 году определил английский физик Г. Мозли, сделавший вывод, что найденная в его опытах константа атома не может быть ничем другим, кроме как зарядом атомного ядра.

Изотопы химических элементов имеют разную массу M из-за разницы в числе нейтронов A — Z. Ядерная физика измеряет массу ядер в а.е.м. — атомных единицах массы, которая рассчитывается как 1/12 массы 12С.

Для определения массы ядра необходимо из общей массы M вычесть все электроны.

Энергетический эквивалент массы вычисляется согласно соотношению Эйнштейна по формуле:

Какие частицы входят в состав атомного ядра

Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10 -12 см, что на четыре порядка меньше диаметра атома (10 -8 см). Плотность вещества в ядре – около 230 млн.тонн/см 3 .
Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда. В 1932 г. после открытия там же Дж. Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг, Д.Д. Иваненко, Э. Майорана).
Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58 Ni, либо никель-58.

Рис.1. Зависимость плотности вещества в ядре никеля-58 от расстояния до центра ядра.

Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 10 9 -10 10 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями Протоны и нейтроны имеют размер около 10 -13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном. Радиус ядра можно приближённо оценить по формуле где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 10 14 г/см 3 ) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах до центра ядра.
Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействия между кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).
Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.
Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами. Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.
Различные типы ядер часто называют нуклидами. Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов. Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов Из них 116-118 протонов.
Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t > 10 -23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы — стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате с превращением нейтрона ядра в протон.
Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами и подвержены также (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия Bp = 0 (Bp – энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия Bn = 0 (Bn – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (

10 -23 – 10 -22 c) с испусканием нуклонов.
При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия. Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы. Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.
Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.
Для теоретического описания атомных ядер используется квантовая механика и различные модели.
Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму

Состав атомного ядра

К началу $1932$ г. Было известно только три элементарные частицы: электрон, протон и нейтрон. По этой причине было сделано предположение, что ядро атома состоит с протонов и электронов (протонно-электронная гипотеза). Считалось, что в состав ядра с номером $Z$ в периодической системе элементов Д. И. Менделеева и массовым числом $A$ входит $A$ протонов и $Z-A$ нейтронов. В соответствии с этой гипотезой электроны, которые входили в состав ядра, выполняли роль «цементирующего» средства, с помощью которого положительно заряженные протоны удерживались в ядре. Сторонники протонно-электронной гипотезы состава атомного ядра считали, что $\beta ^-$ — радиоактивность — это подтверждение правильности гипотезы. Но эта гипотеза оказалась на в состоянии объяснить результаты эксперимента и была отброшена. Одним с таких затруднений была невозможность объяснить то, что спин ядра азота $^<14>_7N$ равен единице $(\hbar )$. В соответствии с протонно-электронной гипотезой, ядро азота $^<14>_7N$ должно состоять с $14$ протонов и $7$ электронов. Спин протонов и электронов равен $1/2$. По этой причине ядро атома азота, которое состоит в соответствии с этой гипотезой с $21$ частицы, должно иметь спин $1/2,\ 3/2,\ 5/2,\dots 21/2$. Это несоответствие протонно-электронной теории названо «азотной катастрофой». Так же непонятным было то, что при наличии электронов в ядре его магнитный момент имеет малый магнитный момент по сравнению с магнитным моментом электрона.

В $1932$ году Дж. Чедвик открыл нейтрон. После этого открытия Д. Д. Иваненко и Е. Г. Гапон выдвинули гипотезу о протонно-нейтронном строении атомного ядра, какую подробно разработал В. Гейзенберг.

Протонно-нейтронный состав ядра подтвержден не только теоретическими выводами, но и непосредственно опытами по расщеплению ядра на протоны и нейтроны. Сейчас общепринято, что атомное ядро состоит с протонов и нейтронов, которые так же называются нуклонами (от латинского nucleus — ядро, зерно).

Строение атомного ядра

Ядро являет собой центральную часть атома, в которой сосредоточено положительный электрический заряд и основная часть массы атома. Размеры ядра, в сравнении с орбитами электронов чрезвычайно малы: $10^<-15>-10^<-14>\ м$. ядра состоят с протонов и нейтронов, которые почти одинаковы по массе, но электрический заряд несет только протон. Полное число протонов называется атомным номером $Z$ атома, который совпадает с числом электронов у нейтральном атоме. Нуклоны удерживаются в ядре большими силами, по своей природе эти силы не относятся ни к электрическим ни к гравитационным, а по величине они на много превышают силы, которые связывают электроны с ядром.

Согласно протонно-нейтронной модели строения ядра:

  • ядра всех химических элементов состоят из нуклонов;
  • заряд ядра обусловлен только протонами;
  • число протонов в ядре равно порядковому номеру элемента;
  • число нейтронов равно разности между массовым числом и числом протонов ($N=A-Z$)

Протон ($^2_1H\ или\ p$) — положительно заряженная частица: её заряд равен заряду электрона $e=1.6\cdot 10^<-19>\ Кл$, а масса покоя $m_p=1.627\cdot 10^<-27>\ кг$. Протон является ядром налёгшего нуклона атома гидрогена.

Для упрощения записей и расчётов массу ядра зачастую определяют в атомных единицах массы (а.е.м) или в единицах энергии (записывая вместо массы соответствующую энергию $E=mc^2$ в электрон-вольтах). За атомною единицу массы берут $1/12$ массы нуклида углерода $^<12>_6С$. В этих единицах получаем:

Протон подобно электрону имеет собственный момент импульса — спин, который равен $1/2$ (в единицах $\hbar $). Последний, во внешнем магнитном поле может ориентироваться только так, что его проекция и направления поля равны $+1/2$ или $-1/2$. Протон, как и электрон, подлежит квантовой статистике Ферми-Дирака, т.е. принадлежит к фермионам.

Протон характеризируется собственным магнитным моментом, который для частицы со спином $1/2$ зарядом $e$ и массой $m$ равен

Для электрона собственный магнитный момент равен

Для описания магнетизма нуклонов и ядер используют ядерный магнетон (в $1836$ раз меньше магнетона Бора):

Поначалу считали, что магнитный момент протона равен ядерному магнетону, т.к. его масса в $1836$ раз больше массы электрона. Но измерения показали, что на самом деле собственный магнитный момент протона в $2,79$ раз больше от ядерного магнетрона, имеет положительный знак, т.е. направление совпадает со спином.

Современная физика объясняет эти разногласия тем, что протоны и нейтроны взаимопреобразуются и на протяжении некоторого времени пребывают в состоянии диссоциации на $\pi ^\pm $ — мезон и соответственного знака другой нуклон:

Масса покоя $\pi ^\pm $ — мезона равна $193,63$ МэВ, по этому его собственный магнитный момент в $6,6$ раз больше от ядерного магнетона. В измерениях появляется некоторое эффективное значение магнитного момента протона и $\pi ^+$ — мезонного окружения.

Нейтрон ($n$) — электрически нейтральная частица; ее масса покоя

Хоть нейтрон и лишен заряда, он имеет магнитный момент $\mu _n=-1.91\mu _Я$. Знак «$-$» показывает, что за направлением магнитный момент противоположный спину протона. Магнетизм нейтрона определяется эффективным значением магнитного момента частиц, на которые он способен диссоцыировать.

В свободном состоянии нейтрон неустойчивая частица и произвольно распадается (период полураспада $12$ мин): излучая $\beta $ — частицу и антинейтрино он превращается в протон. Схема распада нейтрона записывается в таком виде:

В отличии от внутриядерного распада нейтрона $\beta $ — распад принадлежит и до внутреннего распада и до физики элементарных частиц.

Взаимное преобразование нейтрона и протона, равенство спинов, приближённость масс и свойств дают основания предполагать, что речь идет о двух разновидностях одной и той же ядерной частицы — нуклона. Протонно-нейтронная теория хорошо согласуется с экспериментальными данными.

Как составляющие ядра протоны и нейтроны обнаруживают в многочисленных реакциях деления и синтеза.

В произвольных и штучных делениях ядер наблюдаются так же потоки электронов, позитронов, мезонов, нейтрино и антинейтрино. Масса $\beta $ — частицы (электрон или позитрон) в $1836$ раз меньше массы нуклона. Мезоны — положительные, отрицательные и нулевые частицы — по массе занимают промежуточное место между $\beta $ — частицами и нуклонами; время жизни таких частиц очень мало и составляет миллионные доли секунды. Нейтрино и антинейтрино — элементарные частицы, масса покоя которых равна нулю. Однако электроны, позитроны и мезоны не могут быть составляющими ядра. Эти легкие частицы не могут быть локализованы в малом объеме, которым является ядро радиусом $\sim 10^<-15>\ м$.

Для доказательства этого определим энергию электрического взаимодействия (например, электрона с позитроном или протоном в ядре)

и сравним ее с собственной энергией электрона

Посколькy энергия внешнего взаимодействия превышает собственную энергию электрона, он не может существовать и сохранять собственную индивидуальность, в условиях ядра он будет уничтожен. Другая ситуация с нуклонами, их собственная энергия более $900$ МэВ, поэтому в ядре они могут сохранять свои особенности.

Легкие частицы излучаются с ядер в процессе перехода их с одного состояния в другое.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *