Что такое электрическая постоянная
Перейти к содержимому

Что такое электрическая постоянная

  • автор:

ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(e 0 ) -физ постоянная, входящая в ур-ния законов электрич. поля (напр., в Кулона закон )при записи этих ур-ний в рационализованной форме, в соответствии с к-рой образованы электрич. и магн. единицы Международной системы единиц; по старой терминологии Э. п. называется диэлектрич. проницаемостью вакуума. 469-512_09-10.jpg 469-512_09-11.jpgгде m 0 — магнитная постоянная. В отличие от диэлектрич. проницаемости e, зависящей от типа вещества, темп-ры, давления и др. параметров, Э. п. e 0 зависит только от выбора системы единиц. Напр., в гауссовой СГС системе единиц 469-512_09-12.jpg

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Полезное

Смотреть что такое «ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ» в других словарях:

ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ — коэффициент пропорциональности ?о в законе Кулона определяющем (в единицах СИ) силу взаимодействия F двух находящихся на расстоянии r точечных электрических зарядов q1 и q2; ?о = (?оc2) 1 Ф/м = 8,854187817.10 12 Ф/м, где ?о магнитная постоянная.… … Большой Энциклопедический словарь

электрическая постоянная — Коэффициент, применяемый при записи ряда соотношений в СИ, равный величине, обратной произведению магнитной постоянной на квадрат скорости света в пустоте. Примечание — Электрическая постоянная приблизительно равна 8,85419 • 10 12 Ф/м … Справочник технического переводчика

ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ — (см.) … Большая политехническая энциклопедия

электрическая постоянная — электрическая постоянная; отрасл. диэлектрическая проницаемость пустоты Скалярная величина, характеризующая электрическое поле в пустоте, равная отношению суммарного электрического заряда, заключенного внутри некоторой замкнутой поверхности, к… … Политехнический терминологический толковый словарь

Электрическая постоянная — 14. Электрическая постоянная Постоянная, равная в системе СИ величине, обратной произведению магнитной постоянной на квадрат скорости света в пустоте. П .р и м е ч а н и е. Электрическая постоянная приблизительно равна 8,35*4 • 10 12 Ф/м Источник … Словарь-справочник терминов нормативно-технической документации

электрическая постоянная — коэффициент пропорциональности ε0 в законе Кулона , определяющем (в единицах СИ) силу взаимодействия F двух находящихся на расстоянии r точечных электрических зарядов q1 и q2; ε0 = (μ0c2) 1Ф/м = 8,854187817·10 12Ф/м, где μ0 магнитная постоянная … Энциклопедический словарь

Электрическая постоянная — (ранее также носила название диэлектрической постоянной)  физическая константа, скалярная величина, определяющая напряжённость электрического поля в вакууме; входящая в выражения некоторых законов электромагнетизма, в том числе закона Кулона … Википедия

электрическая постоянная — elektrinė konstanta statusas T sritis automatika atitikmenys: angl. electric constant; permittivity constant; permittivity of free space; permittivity of vacuum vok. dielektrische konstante, f; Dielektrizitätskonstante, f; elektrische… … Automatikos terminų žodynas

электрическая постоянная — elektrinė konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric constant; permittivity of vacuum vok. absolute Dielektrizitätskonstante, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электрическая постоянная — elektrinė konstanta statusas T sritis fizika atitikmenys: angl. permittivity constant; permittivity of free space; permittivity of vacuum vok. Dielektrizitätskonstante, f; elektrische Feldkonstante, f; Verschiebungskonstante, f rus. абсолютная… … Fizikos terminų žodynas

Электрическая постоянная

  • Электри́ческая постоя́нная (ранее также носила название диэлектрической постоянной) — физическая константа, скалярная величина, входящая в выражения некоторых законов электромагнетизма, в том числе закона Кулона, при записи их в рационализованной форме, соответствующей Международной системе единиц (СИ).

Связанные понятия

Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.

Упоминания в литературе

Связанные понятия (продолжение)

В теории поля представление системы зарядов в виде некоторых квадрупо́лей, аналогично представлению её в виде системы диполей, используется для приближённого расчёта создаваемого ей поля и излучения. Более общим представлением является разложение системы на мультиполи, соответствующее разложению потенциалов в ряд Тейлора по некоторым переменным. Квадруполь — частный случай мультиполя. Квадрупольное рассмотрение системы оказывается особенно важным в том случае, когда её дипольный момент и заряд равны.

Мультипо́ли (от лат. multum — много и греч. πόλος — полюс) — определённые конфигурации точечных источников (зарядов). Простейшими примерами мультиполя служат точечный заряд — мультиполь нулевого порядка; два противоположных по знаку заряда, равных по абсолютной величине — диполь, или мультиполь 1-го порядка; 4 одинаковых по абсолютной величине заряда, размещённых в вершинах параллелограмма, так что каждая его сторона соединяет заряды противоположного знака (или два одинаковых, но противоположно направленных.

В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.

Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.

Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость.

Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.

9.Закон Кулона. Электрическая постоянная

Электрическая постоянная называется также диэлектрической проницаемостью вакуума. Используется в Законе Кулона.

В системе Си электрическая постоянная имеет размерность фарад на метр .

Кулон установил следующий закон: Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними.

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А.

10.Закон радиоактивного распада. Ядерные реакции

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов [1] . Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Ядерные реакции, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц (двух ядер, ядра и нуклона и т. д.) на расстояние

10 -13 см. Энергия налетающих положительно заряженных частиц должна быть порядка или больше высоты кулоновского потенциального барьера ядер (для однозарядных частиц

10 Мэв). В этом случае Я. р., как правило, осуществляются бомбардировкой веществ (мишеней) пучками ускоренных частиц. Для отрицательно заряженных и нейтральных частиц кулоновский барьер отсутствует, и Я. р. могут протекать даже при тепловых энергиях налетающих частиц.

Я. р. записывают в виде: A (a, bcd)B,где А — ядро мишени, а — бомбардирующая частица, в, с, d — испускаемые частицы, В — остаточное ядро (в скобках записываются более лёгкие продукты реакции, вне — наиболее тяжёлые). Часто Я. р. может идти несколькими способами

11.Закон Фарадея. Применение электролиза. Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита. Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный [1] . Положительные ионыкатионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионыанионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду. Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений, диоксида марганца, пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование).Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

Первый закон Фарадея В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества. Второй закон Фарадея Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты. Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где постоянная Фарадея. Второй закон Фарадея записывается в следующем виде:

где молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; — время, в течение которого проводился электролиз, с; — постоянная Фарадея, Кл·моль −1 ; — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Электрическая постоянная

Электрическая постоянная имеет размерность фарада на метр.

Содержание

Определение [ править | править код ]

Применение [ править | править код ]

Электрическая постоянная появляется в вакуумных уравнениях Максвелла, описывающих свойства электрических и магнитных полей, а также электромагнитного излучения, и связывает поля с их источниками.

В веществе используются материальные уравнения электромагнитного поля, при этом вектор электрической индукции D выражается через электрическую постоянную, вектор напряжённости электрического поля E и вектор электрической поляризации P: D = ε 0 E + P . \mathbf = \varepsilon_0 \ \mathbf + \mathbf

.

Как правило можно считать, что P = ε 0 χ E \mathbf P = \varepsilon_0 \chi \mathbf E , где величина χ \chi представляет собой тензор и называется электрической поляризуемостью. Данное выражение означает, что вектор электрической поляризации как некоторая реакция вещества порождается вектором напряжённости электрического поля в веществе, причём направления этих векторов могут не совпадать.

В слабом поле величина χ \chi имеет особое название диэлектрическая восприимчивость и является почти постоянной, зависящей от типа вещества и его состояния. В этом случае можно записать: D = ε 0 E + ε 0 χ E = ε 0 ( 1 + χ ) E = ε 0 ε r E = ε a E . \mathbf = \varepsilon_0 \ \mathbf + \varepsilon_0 \chi \mathbf E= \varepsilon_0 (1+\chi) \mathbf E= \varepsilon_0 \varepsilon_r \mathbf E= \varepsilon_a \mathbf E.

Электрическая постоянная входит в запись закона Кулона, дающего выражение для силы, действующей между двумя электрическими зарядами: F 12 = q 1 q 2 4 π ε 0 r 12 2 r 12 r 12 , \mathbf_<12>=\frac<4\pi\varepsilon_0 r_<12>^2> \frac<\mathbf_<12>>>,

Выражение через параметры вакуумного поля [ править | править код ]

В концепции силового вакуумного поля [2] предполагается, что электрогравитационный вакуум заполнен потоками частиц, создающих гравитационные и электромагнитные силы между телами. В частности, за возникновение силы Кулона между зарядами считаются ответственными потоки заряженных частиц – праонов, движущихся с релятивистскими скоростями и передающих свой импульс заряженному веществу.

В модели кубического распределения потоков праонов для электрической постоянной получается следующее: [3] ε 0 = e 2 6 p q D 0 q ϑ 2 = e 2 ε c q ϑ 2 .

p_q есть импульс праонов, взаимодействующих с заряженным веществом; мощность флюенса D 0 q

D_ <0q>обозначает количество праонов dN, попавших за время dt на перпендикулярную потоку площадь dA одного из граней некоторого куба, ограничивающего рассматриваемый объём; ϑ = 2 , 67 ⋅ 10 − 30

\vartheta = 2,67 \cdot 10^ <-30>м² представляет собой сечение взаимодействия праонов с нуклонами; e

e – элементарный заряд; ε c q = 4 ⋅ 10 32

\varepsilon_= 4 \cdot 10^ <32>Дж/м³ – плотность энергии потоков праонов для кубического распределения.

В модели сферического распределения потоков праонов в пространстве: ε 0 = e 2 16 π p q B 0 q ϑ 2 = 3 e 2 2 ε s q ϑ 2 ,

где мощность флюенса B 0 q

B_ <0q>обозначает количество праонов dN, попавших за время dt из единичного телесного угла d α d <\alpha>внутрь сферической поверхности dA; ε s q = 6 ⋅ 10 32

\varepsilon_ = 6 \cdot 10^ <32>Дж/м³ – плотность энергии потоков праонов для сферического распределения.

Отсюда следует, что электрическая постоянная является динамической переменной, зависящей от параметров частиц вакуумного поля.

См. также [ править | править код ]

Примечания [ править | править код ]

  1. ↑CODATA Value: electric constant. The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2015. Retrieved 2015-09-25. 2014 CODATA recommended values.
  2. ↑Fedosin S.G.The Force Vacuum Field as an Alternative to the Ether and Quantum Vacuum. WSEAS Transactions on Applied and Theoretical Mechanics, ISSN / E-ISSN: 1991-8747 / 2224-3429, Volume 10, Art. #3, pp. 31-38 (2015); статья на русском языке: Силовое вакуумное поле как альтернатива эфиру и квантовому вакууму.
  3. ↑ Fedosin S.G. The charged component of the vacuum field as the source of electric force in the modernized Le Sage’s model. Journal of Fundamental and Applied Sciences, Vol. 8, No. 3, pp. 971-1020 (2016). http://dx.doi.org/10.4314/jfas.v8i3.18, https://dx.doi.org/10.5281/zenodo.845357. // Заряженная компонента вакуумного поля как источник электрической силы в модернизированной модели Лесажа.

Внешние ссылки [ править | править код ]

При написании этой статьи использовались материалы страницы «Электрическая постоянная» Русской Википедии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *