Что является источником света в светодиоде
Перейти к содержимому

Что является источником света в светодиоде

  • автор:

Принцип работы светодиода

Светодиоды повсюду вокруг нас: в наших телефонах, наших автомобилях и даже в наших домах. Каждый раз, когда горит что-то электронное, есть большая вероятность, что за ним стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта это самая популярная вещь в электроники.

Светодиоды («LED») — это особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». И можно увидеть сходство на схеме диода и светодиода:

В светодиоде положительный вывод называется анодом, а отрицательный вывод — катодом. Для правильной работы светодиода анод светодиода должен иметь более высокий потенциал, чем катод, так как ток в светодиоде течет от анода к катоду. Что произойдет, если мы подключим светодиод в обратном направлении? Ничего, так как светодиод не будет проводить ток.

Прямой ток светодиодов

Светодиоды являются очень чувствительными устройствами, и величина тока, протекающего через светодиод, очень важна. Кроме того, яркость светодиода зависит от величины тока, потребляемого светодиодом. Каждый светодиод имеет максимальный прямой ток, который может безопасно проходить через него, не перегорая. Да, допустимый ток, превышающий номинальный ток, фактически подожжет светодиод.

Например, наиболее часто используемые 5-миллиметровые светодиоды имеют номинальный ток от 20 мА до 30 мА, а 8-миллиметровые светодиоды имеют номинальный ток 150 мА (точные значения приведены в техническом описании). Как нам регулировать ток, протекающий через светодиод? Для контроля тока, протекающего через светодиод, мы используем резисторы с ограничением тока.

Прямое напряжение LED

Светоизлучающие диоды также рассчитаны на максимальное напряжение, то есть количество напряжения, которое необходимо для светодиода. Например, все 5-миллиметровые светодиоды имеют номинальный ток 20 мА, но прямое напряжение меняется от одного светодиода к другому. Максимальное напряжение на красных светодиодах составляет 2,2 В, максимальное напряжение на синих светодиодах — 3,4 В, а на максимальном напряжении белых светодиодов — 3,6 В.

Как работает светодиод

Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.

Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной. При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.

Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.

Интенсивность света, излучаемого светодиодом, будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала. В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.

Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала. Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.

Простая светодиодная схема

На следующем рисунке показана схема простой светодиодной цепи, состоящей из 5-миллиметрового белого светодиода с источником питания 5 В.

Поскольку это белый светодиод, номинальные значения тока и напряжения следующие: типичный прямой ток составляет 20 мА, а типовое прямое напряжение составляет 2 В.

Типы светодиодов

  • Сквозные светодиоды: они доступны в различных формах и размерах, и наиболее распространенными являются светодиоды 3 мм, 5 мм и 8 мм. Эти светодиоды доступны в различных цветах, таких как красный, синий, желтый, зеленый, белый и т. Д.
  • Светодиоды SMD (светодиоды для поверхностного монтажа): Светодиоды для поверхностного монтажа представляют собой специальную упаковку, которую можно легко установить на печатную плату. Светодиоды SMD обычно различаются в зависимости от их физических размеров. Например, наиболее распространенными светодиодами SMD являются 3528 и 5050.
  • Двухцветные светодиоды. Следующим типом светодиодов являются двухцветные светодиоды, как следует из названия, могут излучать два цвета. Двухцветные светодиоды имеют три контакта, обычно два анода и общий катод. В зависимости от конфигурации проводов, цвет будет активирован.
  • Светодиод RGB (красный — синий — зеленый): светодиоды RGB являются самыми любимыми и популярными среди любителей и дизайнеров. Даже компьютерные сборки очень популярны для реализации светодиодов RGB в корпусах компьютеров, материнских платах, оперативной памяти и так далее.
  • Светодиоды высокой мощности: Светодиод с номинальной мощностью, превышающей или равной 1 Вт, называется светодиодом высокой мощности. Это потому, что нормальные светодиоды имеют рассеиваемую мощность в несколько милливатт. Мощные светодиоды очень яркие и часто используются в фонариках, автомобильных фарах, прожекторах и так далее.

Преимущества светодиодов

  1. Для управления светодиодом достаточно очень низкого напряжения и тока. В диапазоне voltage- от 1 до 2 вольт. Ток — от 5 до 20 миллиампер.
  2. Общая выходная мощность будет менее 150 милливатт.
  3. Время отклика очень меньше — всего около 10 наносекунд.
  4. Устройство не требует нагрева и разогрева.
  5. Миниатюрный по размеру и, следовательно, легкий.
  6. Имеют прочную конструкцию и поэтому могут противостоять ударам и вибрациям.
  7. Срок службы светодиода составляет более 20 лет.

Недостатки светодиодов:

  • Небольшое превышение напряжения или тока может повредить устройство.
  • Известно, что устройство имеет более широкую полосу пропускания по сравнению с лазером.
  • Температура зависит от выходной мощности излучения и длины волны.

Устройство светодиода

– чипа – полупроводникового кристалла;

– электродов (катода и анода),

– тонкого проволочного контакта, соединяющего анод (в некоторым конструкциях также и катод) с чипом (полупроводниковым кристаллом),

– подложки, на которой размещен сам чип (полупроводниковый кристалл);

– корпуса, оснащенного контактными выводами;

Оптическое излучение возникает в результате прохождения прямого электрического тока через кристалл, а излучаемый цвет зависит от материала (химического состава), из которого тот изготовлен, а также возможного включения в состав чипа (кристалла) различных добавок. Большинство светодиодов имеет один полупроводниковый кристалл, но существуют диоды с двумя и более чипами. Такие приборы изготавливаются, если требуется увеличить их мощность или получить разноцветное свечение.

Обычно светодиод подключается к электрической сети через резистор, устанавливаемый на вводе.

Резистор предохраняет светодиод от скачков напряжения и высокой силы тока. В случае отсутствия резистора светодиод может перегореть.

Принцип работы светодиода:

Отличительной особенностью светодиода от более привычных нам осветительных устройств (лампы накаливания, люминесцентные лампы) считается отсутствие в нем нити накаливания и хрупкой колбы, заполненной газом.

Свет в светодиоде образуется благодаря p-n-переходу, пропускающему электрический ток. Так, полупроводниковые материалы p-типа обладают возможностью накапливать заряды с положительными частицами, а полупроводниковые материалы n-типа – с отрицательными. Материалы n-типа представляют собой «накопительный склад» электронов, тогда как в материалах p-типа появляются свободные пространства (дырки), где электронов нет. В тот момент, когда в диод через контакты поступает электрический ток, электроны начинают движение, устремляясь к электронно-дырочному переходу, где инжектируются непосредственно в p-тип. Одновременно в n-типе, представляющем собой отрицательный контакт, также возникает подобное движение.

При протекании электрического тока через p-n-переход в прямом направлении носители заряда (электроны и дырки) рекомбинируют, т.е. происходит исчезновение пары свободных носителей противоположного заряда с выделением энергии в виде излучения фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Однако не все полупроводниковые материалы эффективно испускают свет (фотоны) при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам. Диоды, сделанные из непрямозонных полупроводников, свет практически не излучают.

Изменяя состав полупроводниковых материалов, можно создавать светодиоды, испускающие свет в видимой части спектра, а также в ультрафиолетовом и среднем инфракрасном диапазоне.

Характеристики светодиодов:

LED-приборы имеют несколько основных параметров.

– сила светового потока.

Практически все эти характеристики указаны на самом электроприборе, но есть и другие показатели, которые считаются специфическими.

Сила потребляемого тока. Сила потребляемого тока определяет яркость свечения светодиода. Ток потребления светодиода измеряется в амперах и чаще всего соответствует показателю 0,02 А. Это параметр одного кристалла. Если чипов несколько, то и показатель увеличивается: 0,04 А при двух кристаллах, 0,06 А при трех и т.д. Учитывать показатель потребляемого тока следует для выбора резистора, устанавливаемого на вводе. Если показатели не будут соответствовать друг другу, высокий ток преодолеет сопротивление светодиода и он перегорит, причем практически мгновенно. Также резистор защищает прибор от скачков тока в сети, возникающих при различных перепадах напряжения.

Сопротивление светодиода. Этот показатель способен изменяться, т.к. является нелинейным и колеблется в зависимости от включения в цепь. При включении в одну сторону он может достигать приблизительно одного килоома (кОм), в другую – увеличиваться до нескольких мегаом (МОм). Соответственно, чем более высокое напряжение испытывает диод, тем меньше оказываемое им сопротивление.

Номинальное напряжение. Данная характеристика светодиода напрямую зависит от его цвета, а последний параметр – от материала, выбранного для его изготовления и включения в его состав различных добавок.

Инфракрасное свечение характерно для арсенида галлия (GaAs) и арсенида алюминия галлия (AlGaAs). В этом случае при силе тока в 20 мА диапазон напряжения составляет 1,1-1,6 В, а типовое значение напряжения – 1,2 В.

Красный, оранжевый и желтый цвета диода достигаются благодаря твердым растворам арсенида-фосфида галлия (GaAsP), фосфида галлия (GaP) и фосфида алюминия-галлия-индия (AlInGaP). Диапазоны напряжения при той же силе тока 20 мА составляют:

  • красного светодиода – 1,5-2,6 В;
  • оранжевого светодиода – 1,7-2,8 В;
  • желтого светодиода – 1,7-2,5 В.

Типовое значение напряжение всех цветов равно 2,0 В.

Зеленый светодиод получают благодаря материалам фосфида галлия (GaP) и нитрида индия-галлия (InGaN). При тех же номинальных 20 мА диапазон напряжения составит 1,7-4,0 В, а типовое значение напряжения – 2,2 В.

Голубой оттенок диода позволяют получить бинарное соединение цинка и селена – селенид цинка (ZnSe) и нитрид индия-галлия InGaN. Для этого цвета при силе тока в 20 мА диапазон напряжения определяется в рамках 3,2-4,5 В, типовое значение напряжения составляет 3,6 В.

Для получения белого света используют синие или ультрафиолетовые диоды с покрытием из люминофора либо сочетание трех светодиодов основных цветов (красный, синий, зеленый). Их параметры напряжения при силе тока в 20 мА колеблются в пределах от 2,7 до 4,3 В, типовое значение напряжения соответствует 3,6 В.

Мощность потребления светодиодов. Данный параметр необходим для выбора блока питания электроприбора, оснащенного определенным количеством светодиодов. У каждого светодиода она индивидуальна и колеблется в диапазоне от 0,5 до 3,0 Вт.

Цветовая температура светодиода. Эта характеристика измеряется в Кельвинах (К) и имеет несколько показателей. Основное разделение представлено такими оттенками свечения:

  • от 2700 К до 3500 К – теплый свет;
  • 3500-5300 К – нейтральный;
  • 5300-7000 К – холодное свечение.

Светоотдача и угол свечения светодиода. Яркость (интенсивность светового потока) светодиода прямо пропорциональна протекающему через него электрическому току, то есть чем напряжение будет выше, тем будет больше яркость светодиода. Единицей измерения светового потока служит люмен (лм).

Световая отдача источника света (светоотдача) – отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется светоотдача в люменах на ватт (лм/Вт). Она является показателем эффективности и экономичности источников света.

Сила и угол светового потока светодиода могут варьироваться, т.к. имеют зависимость от формы и материала, выбранных для изготовления светового прибора. Однако величина угла не может превышать 120 градусов. Для увеличения угла рассеивания могут применяться специальные линзы и/или отражатели. Так, при правильном подборе подобных устройств, увеличить силу светового потока светодиода мощностью в 3 ватта возможно до 300-350 люменов.

Виды светодиодов:

Индикаторные представляют собой слабые по яркости и мощности элементы, применяемые чаще всего в различных электронных приборах в качестве индикаторов включения/выключения той или иной функции: подсветка панели приборов в транспортном средстве, жидкокристаллическом телевизоре, компьютерном блоке питания и прочее. Их распространение весьма широко, т.к. эти маломощные LED-приборы не требуют дорогостоящего оборудования для изготовления, а потому их себестоимость мала.

Осветительные диоды – это элементы с высокой мощностью и яркостью, основная область применения которых – осветительные электрические приборы.

Особенности светодиодов

Излучение приборов находится в прямой зависимости от угла направленности, который зависит от конструкции.

Определенное влияние на интенсивность излучения оказывают:

  • материал, применяющийся непосредственно для защиты кристалла;
  • установленная линза.

Полупроводниковый прибор способен выделять не только узконаправленный, но и рассеянный свет. Температурный режим внешней среды может оказывать влияние на свойства светодиодов. От него зависит их яркость. При повышении температуры свечение становится тусклее, а при понижении – ярче. В связи с этим сфера эксплуатации имеет особое значение.

Высокие требования предъявляются к продукции, предназначенной для наружного применения. Она должна исправно функционировать при значительных колебаниях температур. Яркость света в ходе эксплуатации не должна заметно изменяться. Современные решения позволяют обеспечить нормальное свечение, независимо от температуры окружающей среды.

Принцип работы светодиода основывается на высокой скорости действия.

Излучение появляется в течение нескольких секунд после прямого воздействия электрического тока непосредственно на полупроводник.

Изготавливаемые приборы могут иметь технологические отличия, от которых будет зависеть сфера применения.

Светодиоды типа DIP

Полупроводниковые элементы данной категории относятся к слаботочным изделиям, поэтому они в основном применяются для дополнительной подсветки. Обычно они устанавливаются в качестве индикаторов или основных источников в гирляндах. С появлением более совершенных технологий их производство существенно сократилось.

Принцип работы светодиода малой мощности сравнительно прост. В качестве основы выступает корпус, имеющий цилиндрическую форму. Он изготавливается из эпоксидной смолы. Во внутренней части находятся специальные выводы, вставленные в печатную плату. Закругленный цилиндр позволяет создать направленный световой поток.

Излучающий элемент в виде кристалла размещен на катоде, который напоминает небольшой флажок. Он при помощи сверхтонкого провода соединен с анодом. Встречаются изделия сразу с двумя или тремя кристаллами, имеющими разные цвета. При необходимости в корпус внедряется управляющий чип, необходимый для контроля над свечением.

Для наращивания уровня светового потока в таких светодиодах начали делать четыре вывода вместо двух. Однако при таком варианте нагрев кристалла значительно увеличился, что привело к ограничению возможной сферы применения.

Светодиоды типа SMD

Такие элементы имеют более широкое назначение, что связано с основными характеристиками. Принцип работы светодиодов данного типа позволяет организовывать освещение различных форматов. Полупроводниковые приборы с фиксированной печатной платой имеют компактные габариты, благодаря чему они могут использоваться даже в самых маленьких светильниках.

Базовая часть корпуса, на которую фиксируется кристалл, обладает высокой теплопроводностью, поэтому отвод тепла производится эффективно. Обычно между линзой и основным элементом укладывается слой люминофора, предоставляющий возможность нейтрализовать ультрафиолет, а также задать определенную цветовую температуру. В изделиях с рассеянным излучением линза не устанавливается. Сам элемент по форме напоминает параллелепипед.

Светодиоды типа COB

Подобные элементы начали использоваться для лампочек и фонарей с мощным светодиодом. Принцип работы изделий остается тем же, но к алюминиевой основе в данном случае крепятся десятки кристаллов при помощи диэлектрического клеевого состава. Полученная матрица обрабатывается одним слоем люминофора, в результате чего образуется световой источник с равномерным распределением основного потока.

Одной из разновидностей технологии является вариант с распределением большого количества кристаллов по стеклянной поверхности. По этой схеме изготавливаются филаментные лампы, у которых в качестве базового источника выступает центральный стержень из стекла, покрытый мелкими светодиодами и обработанный люминофором.

Технология RGB

Принцип работы RGB-светодиода основывается на оптическом эффекте, позволяющем получить разнообразные цветовые оттенки в результате смешения трех основных компонентов палитры. На одной матрице установлены сразу три кристалла. Для адаптации к различным условиям существует несколько модификаций изделий. Они изготавливаются с общим катодом или анодом, а иногда и без таковых (с шестью основными выводами).

Чаще всего световая технология используется для оформления рекламных щитов, декорирования строений, обрамления мостов, памятников архитектуры и других конструкций. Принцип работы многоцветного светодиода идентичен. Однако конструктивные особенности увеличивают конечную стоимость изделий и усложняют схему подсоединения к электрической сети.

Основные технические характеристики

Существует несколько параметров, характеризующих светодиоды.

  1. Яркость выражается в единицах силы света. Она пропорциональна величине проходящего через полупроводниковый элемент электрического тока. С увеличением напряжения повышается уровень яркости.
  2. Сила тока может быть пульсирующей или постоянной. Она может колебаться в широком диапазоне. Индикаторные приборы могут иметь силу тока всего 20 мА, а одноваттные аналоги – 300-400 мА.
  3. Длина волны оказывает влияние на цветовую гамму. Ее измерения производятся в нанометрах. Границы волны сопоставляются с базовыми компонентами палитры необходимым образом.

Цветовая гамма испускаемого излучения меняется при введении в полупроводниковый материал химически активных веществ.

Принцип работы драйвера для светодиодов

Для получения стабилизированного тока применяется специальное устройство, которое выбирается с учетом следующих параметров:

  • определенной мощности;
  • напряжения непосредственно на выходе;
  • номинального тока.

Устанавливаемые драйверы могут быть линейными или импульсными.

Первые из них призваны обеспечивать плавную стабилизацию электрического тока при изменчивом напряжении на входе.

Импульсные приборы формируют в выходном канале высокочастотные толчки. Они отличаются высоким коэффициентом полезного действия.

Существуют еще диммируемые драйверы, предоставляющие возможность настраивать яркость свечения светодиодов. Днем интенсивность излучения можно несколько уменьшить, благодаря чему удастся экономить ресурс полупроводниковых изделий и электрическую энергию.

Как устроены и работают светодиоды

Как устроены и работают светодиоды Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Устройство светодиода

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Светодиод

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

Устройство светодиода

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Девиация угла свечения светодиода

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Конструкция светодиода

Принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Принцип получения света полупроводником

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан p-n переход.

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот;

2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным.

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

Рабочая температура светодиода и нити накаливания

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

1. внутри самого полупроводникового перехода — внутренний;

2. в конструкции всего светодиода в целом — внешний.

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация;

2. высоких требований к содержанию примесей.

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

1. смешивание цветов по методике RGB;

2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона;

3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора.

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой;

вызывать различные цветовые оттенки, меняющиеся по времени;

создавать эффектные осветительные комплексы для рекламы.

Простым примером такой реализации служат цветовые елочные гирлянды. Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

неоднородный цвет светового пятна по центру и краям;

неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра.

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

в слое люминофора происходят потери световой энергии, которые понижают светоотдачу;

сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры;

люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации.

Особенности светодиодов разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

1. величиной подключаемого напряжения;

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Работы на производстве светодиодов

Физический ручной труд человека полностью исключен из производственного процесса.

Технологическая линия производства светодиодов

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

Контроль за производством светодиодов

Анализ качества выпускаемой продукции тоже входит в их обязанности.

Контроль за качеством светодиодов

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Все про светодиоды

Светодиод (LED): как устроен, принцип работы, применение

Светоизлучающий диод, называемый сокращенно LED (от light-emitting diode), подобно выпрямительному диоду, использует явления, происходящие на p-n-переходе. Однако выбор материала позволяет не столько обеспечить хорошую проводимость тока в одном направлении, сколько преобразовать энергию тока в световую энергию. Явление преобразования энергии тока в световую энергию называется электролюминесценцией.

Как устроен светодиод?

Светодиоды, как и все полупроводниковые диоды, состоят из полупроводников p-типа и n-типа, соединенных вместе. Полупроводниковые материалы названы в честь доминирующих носителей тока в соответствующем типе материала. В n-типе доминирующими носителями тока являются электроны, которые несут отрицательный — отрицательный заряд, отсюда и название n-типа. В p-типе доминирующими носителями являются дырки, которые несут положительный заряд — положительный, отсюда и название p.

Зонная теория твердых тел утверждает, что валентные электроны, получившие энергию, соответствующую зоне проводимости, оставляют состояние со свободной энергией в валентной зоне. Это позволяет этому состоянию быть занятым другими электронами с энергией в зоне валентного уровня. Это явление можно описать как движение положительных носителей тока — т.е. дырок (рис. 1.).

Образование свободных электронно-дырочных пар в естественных полупроводниках

Рис. 1. Образование свободных электронно-дырочных пар в естественных полупроводниках

В собственном полупроводнике количество электронов и дырок одинаково — каждый валентный электрон, который получает энергию из зоны проводимости, оставляет дырку в зоне проводимости. Количество электронов или дырок увеличивается при добавлении соответствующих легирующих добавок для «подпитки» одного типа носителей тока.

Если соединить p- и n-полупроводник, то в результате явления диффузии электроны из n-полупроводника «переходят» в p-полупроводник и дырки в обратном направлении.

Затем в области перехода электроны и дырки с обеих сторон объединяются. Это в конечном итоге приводит к пространственному распределению заряда на переходе — с повышенной концентрацией отрицательного заряда на стороне p-полупроводника и положительного заряда на стороне n-полупроводника — противоположно типичному распределению носителей в полупроводнике. Такое пространственное распределение заряда достигает насыщенного состояния и образует барьер, препятствующий дальнейшему движению заряда (рис. 2.).

Схема распределения электрического заряда на p-n переходе в диоде

Рис. 2. Схема распределения электрического заряда на p-n переходе в диоде

Если к n-стороне полупроводника приложено отрицательное напряжение, а к p-стороне — положительное, внешнее электрическое поле заставляет электроны на n-стороне двигаться к барьеру, как и дырки на p-стороне. При достижении барьера электроны и дырки объединяются — электроны с энергией в диапазоне зоны проводимости переходят в диапазон энергии валентной зоны, испуская избыточную энергию в виде электромагнитного излучения. Это явление называется радиационной рекомбинацией.

Принцип работы светодиода

Световое излучение светодиода можно представить так, как показано на рисунке 3.

Схема работы светодиода

Рис. 3. Схема работы светодиода. Белые точки символизируют дырки, а черные — электроны. Комбинация электронов и дырок на переходе приводит к испусканию фотонов.

Энергетическое расстояние между валентной полосой и полосой проводимости называется энергетическим зазором (шириной запрещенной зоны) и обычно обозначается символом Eg. Когда электрон переходит в более низкое энергетическое состояние, он может испускать избыточную энергию в виде электромагнитного излучения, или он может передать часть этой энергии кристаллической решетке путем увеличения тепловых колебаний. Полупроводники, в которых электроны практически всю свою избыточную энергию излучают в виде электромагнитного излучения, используются для изготовления светодиодов.

Электроны испускают электромагнитное излучение порциями, называемыми фотонами. Энергия фотонов зависит от частоты электромагнитного излучения. Связь между энергией фотона и частотой выражается формулой Планка:

где Ef — энергия фотона, h — постоянная Планка, f — частота фотона.

Когда свет испускается в результате радиационной рекомбинации, энергия фотона приблизительно равна энергии ширины запрещенной зоны Eg.

Цвет света, который мы наблюдаем, напрямую зависит от частоты фотонов. Таким образом, цвет света, излучаемого диодом, зависит от величины энергии Eg материала диода.

Для светодиодов используются другие материалы, чем для выпрямительных диодов. Кремний и германий имеют слишком низкое значение Eg и, кроме того, передают часть энергии, потерянной при переходе в валентную зону, кристаллической решетке.

Примеры материалов, используемых для изготовления светодиодов, и цвета излучаемого ими света приведены в таблице:

Полупроводниковый состав Цвет испускаемого излучения
AlGaAs красный, инфракрасный
AlGaP зеленый
AlGaInP оранжево-красный, оранжевый, желтый, зеленый
GaAsP красный, красно-оранжевый, желтый
GaP красный, желтый, зеленый
GaN зелёный, синий
InGaN зеленый, синий, ближний ультрафиолет
SiC синий
Al2O3 синий
ZnSe синий

Схема конструкции светодиода показана на рис. 4.

Схема конструкции светодиода

Рис. 4. Схема конструкции светодиода

Светоизлучающим элементом является светодиодный чип — т.е. светодиод, задача термопрокладки — отводить выделяемое тепло, а задача линзы — соответствующим образом фокусировать свет, излучаемый светодиодом.

Применение светодиодов

Ширина запрещенной зоны является характеристикой материала диода — именно поэтому диоды по своей природе испускают монохроматическое излучение. Изобретение в начале 1990-х годов диода с синей подсветкой и, соответственно, способность диодов создавать любой цвет света положили начало эпохе светодиодов. Значительное снижение стоимости производства светодиодных источников света в последние годы (например, светодиодные «лампочки» за последние пять лет стали дешевле почти в десять раз) означает, что светодиоды становятся доминирующим источником света практически во всех областях.

Белый свет от светодиодных источников обычно получают тремя способами:

  1. Три светодиода разного цвета помещаются в один корпус, чтобы в сумме получить белый свет. Этот тип диодов называется RGB. Если к этому типу диодов подключить регулятор, позволяющий регулировать ток, проходящий через отдельные диоды, то можно получить различные цвета света.
  2. Светодиод, излучающий ультрафиолет, покрыт трехцветным люминофором, который преобразует ультрафиолетовое излучение в белый свет.
  3. Синий светоизлучающий диод покрыт люминофором, который при возбуждении синим светом излучает желтый свет. При смешивании синего и желтого света получается белый свет.

Основными преимуществами светодиодов являются их эффективность, долговечность — светодиоды могут проработать до 100 000 часов, а также универсальность.

Эффективность источников света описывается величиной, называемой световой отдачей. Световая отдача, обозначаемая буквой , определяет общую мощность полученного света по отношению к мощности электрического тока, который этот свет производит. Она выражается формулой:

где Ф — световой поток, а P — мощность электрического тока, потребляемого источником, создающим поток. Световой поток — это величина, характеризующая мощность излучаемого света, а его единицей является люмен (лм). Световая отдача измеряется в люменах на ватт (лм/Вт). Сравнение световой отдачи различных источников света показано в таблице:

Источник света Световая отдача [лм/Вт] Приблизительный эквивалент традиционных ламп накаливания [единиц]
Традиционная лампочка 5‑20 1
Лампа с парами ртути 15‑25 2
Галогенная лампа 20‑30 2
Ртутная газоразрядная лампа 30‑65 4
Энергосберегающая люминесцентная лампа 40‑100 6
Светодиод (LED) 50‑300 6
Металлогалогенная лампа 80‑125 6
Галогенная ртутная лампа 70‑100 7

Как видно из таблицы, диоды значительно превосходят по эффективности традиционные источники света: лампы накаливания, галогенные или люминесцентные лампы (флуоресцентные трубки). Диодам уступают более дорогие натриевые и металлогалогенные лампы, в которых свет излучается в результате разрядов, возникающих в парах металлов. Эти источники используются для освещения улиц, спортивных залов и стадионов.

Универсальность светодиодов также является важным преимуществом. Мощность светодиодных источников варьируется от нескольких милливатт до нескольких десятков ватт. Они используются в качестве всех типов индикаторных лампочек в различных типах электрических и электронных устройств. Например: лампочки — индикаторы работы электрических и электронных устройств, индикаторы заряда батареи и т.д.

Светодиоды начали вытеснять традиционные источники света в подсветке ЖК-экранов телевизоров и ноутбуков несколько лет назад, что позволило уменьшить их толщину. Следующим шагом в развитии технологии стало использование органических соединений для производства светодиодов и появление технологии OLED и ее последующих вариантов (AMOLED, Super AMOLED). Дисплеи, изготовленные с использованием технологии OLED, очень тонкие, поскольку не требуют подсветки, так как диоды генерируют свет самостоятельно. Этот тип дисплея сначала получил широкое распространение в смартфонах, а затем в телевизионных экранах.

В данной статье представлены лишь некоторые из областей применения светодиодной технологии. Практически везде, где используются источники света, можно встретить светодиоды. К вышеперечисленным преимуществам этих светодиодов можно добавить, что они начинают светить сразу после включения, достаточно устойчивы к частоте включений, устойчивы к ударам и влиянию атмосферы, а также могут быть использованы для получения практически любого цвета света.

Светодиод

Из чего состоит светодиод?

svetodiod - Светодиод фото

Как мы видим на изображении, подобно обычному диоду, внутри светодиода есть два слоя полупроводника p- и n-типа. Они закреплены на клемме-подложке, которая непосредственно связана с катодом. Верхний слой полупроводника связан с анодом проволочной связью.

Принцип работы светодиода

kristally svetodiodov izgotovleny s razlichnymi primesyami - Светодиод фото

Применение светодиодов

svetodiod gde ispolzuyutsya - Светодиод фотоЭлементарная функция светодиода это – индикация. Это может быть индикация состояния прибора ВКЛ/ВЫКЛ, или индикация режима, в котором работает прибор. Чтобы подсветить панель прибора, на помощь так же приходят светодиоды. Например, вы включаете аудиоколонки на компьютере и зеленый светодиод информирует вас о том, что питание включено. Монитор компьютера перешел в “энергосберегающий режим” – об этом информирует мигающий оранжевый светодиод, вместо обычно горящего синего. А чтобы вы не искали в темноте выключатель – он подсвечивается светодиодом.

svetodiod gde ispolzuyutsa 500x349 - Светодиод фото

Разновидности, обозначение

svetodiod gde ispolzuyutsya raznovidnosti - Светодиод фото

svetodiod gde ispolzuyutsya shema rus - Светодиод фото

  • Сопротивление: R = (Uпит – ULED) / ILED
  • Мощность: P = (Uпит – ULED) * ILED
  • Uпит – напряжение источника питания;
  • ULED – прямое падение напряжения светодиода;
  • ILED – рабочий ток светодиода.

svetodiod gde ispolzuyutsya stabilizatsia 500x337 - Светодиод фото

При эксплуатации светодиодов, обезопасьте их от обратного тока. Если обратный ток превысит допустимое производителем значение – светодиод выйдет из строя. Включать светодиоды можно как последовательно, так и параллельно, но обязательно корректируйте ток резисторами. Наиболее эффективная схема подключения группы светодиодов – последовательная.

svetodiod gde ispolzuyutsya vidi podkluchenija - Светодиод фото

Допускается подключение светодиода в цепь переменного тока. В этом случае, когда через светодиод будет проходить импульс прямого тока – он будет светиться, импульс обратного – нет (т.е. будет мигать с частотой переменного тока). При таком подключении используйте в схеме диод, который защитит светодиод от импульсов обратного тока.

  • индикаторные;
  • осветительные.

svetodiod gde ispolzuyutsya paralelnoe soedinenie - Светодиод фотоsvetodiod gde ispolzuyutsya posledovatelnoe soedinenie - Светодиод фото

Виды индикаторных светодиодов

DIP-светодиод
svetodiod gde ispolzuyutsya dip 278x138 - Светодиод фото
RGB–светодиод

rgb 278x191 - Светодиод фото

На одной матрице размещает сразу три кристалла: красный, зеленый и синий. Благодаря управлению каждым таким кристаллом независимо друг от друга, можно добиться практически любого цвета.

Super Flux «Piranha»

svetodiod gde ispolzuyutsya super flux piranha 278x155 - Светодиод фото

Straw Hat

svetodiod gde ispolzuyutsya straw hat 278x167 - Светодиод фото

Кристалл полупроводника в таком светодиоде расположен близко к линзе, за счет этого угол рассеивания 100°-140°.

SMD-светодиоды

svetodiod gde ispolzuyutsya smd 278x139 - Светодиод фото

Миниатюрность – главное достоинство SMD-светодиода.

svetodiod gde ispolzuyutsya smd 1 - Светодиод фото

Виды осветительных светодиодов

Осветительный SMD LED

svetodiod gde ispolzuyutsya smd led 278x201 - Светодиод фото

Осветительный SMD LED схож с индикаторным SMD конфигурацией и размерами корпуса.

COB-светодиод

svetodiod gde ispolzuyutsya cob 278x212 - Светодиод фото

COB состоит из множества синих светодиодов, которые объединили в одном кристалле. Несколько десятков светодиодов расположены на общем люминофорном покрытии.

Filament LED

svetodiod gde ispolzuyutsya filament led 278x222 - Светодиод фото

Лазерный светодиод

svetodiod gde ispolzuyutsya lazernyj svetodiod 278x226 - Светодиод фото

Кристалл лазерного светодиода имеет специфическую конфигурацию, которая позволяет долго удерживать внутри излучаемый фотон. При этом фотон вызывает образование новых фотонов, пока сила светового потока не превысит уровень потерь.

Маркировка светодиодов, измерения

opredeleniya polyarnosti svetodioda 500x321 - Светодиод фото

razmer posadochnyh ploshchadok svetodiodov 278x181 - Светодиод фото

Размер посадочных площадок некоторых светодиодов может отличаться.

svetodiod markirovka raznyh proizvoditelej 500x362 - Светодиод фото

Вольтамперная характеристика

vah svetodioda 500x374 - Светодиод фото

На графике представлена вольтамперная характеристика для всех типов светодиодов. Значения тока и напряжения могут колебаться в зависимости от модели светодиода. Но все они имеют прямую зависимость: с ростом напряжения увеличивается сила прямого тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *