Зануление и заземление в чем разница
Перейти к содержимому

Зануление и заземление в чем разница

  • автор:

Самый скандальный вопрос — заземление (зануление)

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно — нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Если опустить вступление «библии электрика» (ПУЭ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется «Заземление и защитные меры электробезопастности».

В п. 1.7.2. ПУЭ сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ;
  • электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • электроустановки до 1 кВ с глухозаземленной нейтралью;
  • электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль . Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд — нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

Введем немного терминов — так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться «вытащенными из контекста». Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно — как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети — всегда можно обратиться к первоисточнику.

  • 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
  • 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.
  • 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
  • 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
  • 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
  • 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
  • 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
  • 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между «землей» и «нулем» очень небольшие. На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены «в одном флаконе»). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

  • при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках (см. также 1.7.44 и 1.7.48);
  • при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого — ВСН 59-88 (Госкомархитектуры) «Электрооборудование жилых и общественных зданий. Нормы проектирования» Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, — от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин «Вятка-автомат» моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает — хочешь «заземлить» — сначала «занули». Кстати, это имеет прямое отношение к знаменитому вопросу «забатареивания» — которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Следующий аспект, которые необходимо рассмотреть — числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к к оторому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно — первая цель заземления — обеспечить безопасность человека в классическом случае попадания «фазы» на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться «на корпусе» в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое «на корпус» существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр — сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых — 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сеч ение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной «бытовой» ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью ( 7.1.12 ПУЭ. Групповая сеть — сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников ). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети ( 7.1.11 ПУЭ. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков ). Это желательно хорошо понимать, ведь часто «ноль» и «земля» отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего ос вещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или «хвостика» грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку. И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепу тает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако «рабочий ноль» идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно «заземленого» устройства окажется 220 вольт. Или еще проще — отгорит где-то в цепи контакт — и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека — прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) от личается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:

Картина довольна необычная (для бытового восприят ия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос — ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой — потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни — в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

  • Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман.
  • Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Чем отличается зануление и заземление Статья

Зануление и заземление защищает человека от удара током при работе с электроприборами и установками. Что это такое, в чем разница между занулением и заземлением и когда лучше использовать первый или второй вариант? Ответы ниже.

Что такое зануление

Зануление – мера защиты пользователя электроустановок и приборов, которая нужна в случае аварии и подачи напряжения на корпус в результате пробоя изоляции. Суть зануления заключается в соединении через проводник корпуса и элементов электроприбора с заземленным выводом однофазного тока, заземленной точкой в сети постоянного тока или трансформатора.

Схематическое изображение зануления

На иллюстрации представлена схема зануления, где нулевой защитный проводник (PE) подключен к глухому заземлению. В свою очередь, рабочий ноль (N) подключен к защитному нулю (PE).

Существует три схемы зануления:

  • TN-C. Рабочий ноль и защита объединены в один проводник (PEN). Эту схему категорически запрещено использовать в сетях постоянного тока и однофазных сетях.
  • TN-CS. Рабочий ноль и защита объединены в проводник PEN, который разделяется на PE и N, которые подводятся к однофазной сети.
  • TN-S. Рабочий ноль и фаза разделены. Это наиболее безопасная схема.

При аварии и пробое изоляции благодаря занулению происходит короткое замыкание. Из-за короткого замыкания срабатывают автоматы-предохранители, поэтому подача тока на корпус мгновенно прекращается. Это защищает людей от удара током.

Зануление используется в промышленности, на магистральных линиях электропередач.

Что такое заземление

Заземление – способ защиты пользователя от удара током при подаче напряжения на корпус прибора в результате аварии. Суть заземления заключается в соединении корпуса электроустановки или прибора с землей.

Заземление выполняется с помощью заземляющего устройства. Оно состоит из заземлителя и заземляющего электрода. Заземлитель находится непосредственно в земле. Заземляющий электрод соединяет его с любой точкой электроустановки или сети.

Схематическое изображение заземления

На иллюстрации заземляющий проводник (PE) соединен с землей и рабочим нулем (N).

Есть несколько систем заземления:

  • Система TN с описанными выше схемами TN-C, TN-S и TN-CS. В этих системах нейтральный проводник глухо заземлен.
  • Система TT. Токопроводящие части электроустановок и нейтральный проводник заземляются независимо друг от друга.
  • Система IT. Токопроводящие части электроустановок заземлены, нейтральный проводник не заземлен.

При аварии и подаче электричества на корпус благодаря заземлению срабатывают автоматы-предохранители. Если предохранители не срабатывают, большая часть электричества уходит в землю. Это защищает человека от опасного для жизни и здоровья удара током.

Заземление применяется в промышленности и в быту.

В чем практическая разница между заземлением и занулением

Как отмечалось выше, главная функция зануления и заземления – защита человека от удара током при пробое изоляции и подаче напряжения на корпус электроприбора или установки. Эти способы защиты работают по-разному.

Заземление на корпусе электроприбора

Обозначение заземления на схемах и электроприборах

При использовании зануления пробой изоляции и подача электричества на корпус вызывает короткое замыкание. Чтобы зануление защитило человека от удара током, должен сработать автомат-предохранитель.

Заземление надежнее защищает человека от удара током. При пробое изоляции и подаче электроэнергии на корпус срабатывает автомат-предохранитель и напряжение отключается. Если автомат не срабатывает, а человек прикасается к корпусу, благодаря заземлению большая часть тока уходит в землю.

Заземление обеспечивает двойную защиту от удара током.

У заземления есть еще одно важное отличие от зануления. Кроме защитной функции или профилактики электротравм, оно снимает электрический потенциал с корпуса электроприборов. Это необходимо для корректной работы чувствительной аппаратуры, например измерительных приборов, микрофонов, акустических систем и так далее.

Заключение

Зануление и заземление защищают человека от удара электрическим током при аварийных ситуациях, в результате которых напряжение подается на корпус электроприбора. При занулении происходит короткое замыкание и срабатывает предохранитель-автомат, который прекращает подачу напряжения. При заземлении срабатывает предохранитель или большая часть тока уходит в землю.

Кроме защитной функции, заземление обеспечивает корректную работу чувствительных приборов. Оно снимает электропотенциал с корпуса устройства.

Зануление сложнее реализовать. Также его эффективность зависит от качества автоматов-предохранителей. Поэтому зануление чаще используется в промышленности.

Заземление более надежно и его проще реализовать. Поэтому этот способ защиты чаще применяется в быту и при строительстве жилых зданий.

Зануление и заземление: в чем разница и что лучше

Зануление и заземление: в чем разница

Электрика и освещение

Ежедневно в быту и на работе нам приходится иметь дело с электричеством, которое делает жизнь человека комфортнее. Но, несмотря на блага, которые дает нам использование электричества оно все же представляет определенную опасность, например, поражение электротоком. Чтобы избежать этого, разработаны требования по электробезопасности и предпринимаются специальные меры по защите. К таким мерам относится зануление и заземление. В чем разница между ними и есть ли она, разберемся в этой статье.

Зануление и заземление: в чем разница

Все работы, связанные с электричеством, должны выполнять только специалисты

Основные требования к электробезопасности

Главное требование, предъявляемое к бытовым электроприборам – безопасность. В большей мере это касается устройств, которые контактируют с водой, ведь даже незначительный дефект в электропроводке оборудования может стать смертельным для пользователя. Чтобы обезопасить себя и окружающих необходимо содержать электросеть и оборудование в исправном состоянии и регулярно проводить их ревизию. Чтобы исключить вероятность возникновения пожара из-за неисправной проводки и поражение электротоком, необходимо устанавливать защитные устройства (УЗО).

В соответствии с основными правилами электробезопасности:

  • Не рекомендовано устройство временных электропроводок.
  • Соединение проводов должно выполняться методом сварки, опрессовки, зажимов или клеммных колодок. Регулярно проверяйте качество и прочность соединений проводки.
  • В помещениях с высокой влажностью используйте только сертифицированные влагозащищенные устройства.
  • Электророзетки и выключатели должны располагаться от труб отопления, газо- и водоснабжения на расстоянии не менее 500 мм.
  • Регулярно проверяйте исправность проводки и электрооборудования.
  • Нельзя использовать любые виды электрооборудования без защитного кожуха.
  • Не используйте самодельные электроприборы и не проводите самостоятельно ремонт неисправного электрооборудования.

Это только краткий перечень требований по электробезопасности. Более подробно с правилами безопасности можно ознакомиться в различных нормативных актах и специальной литературе по электричеству, которые сейчас легко найти в интернете.

Что такое заземление, принцип действия и устройство

При создании электросети, в помещениях различного назначения, требуется создание защиты, которая предотвратит вероятное поражение током. Чтобы избежать этого выполняется устройство заземления. В соответствии с ПЭУ п.1.7.53 заземление выполняется в электрооборудовании с напряжением более 50 В переменного и 120 В постоянного тока.

Шина заземления от ГРЩ к потребителю

Шина заземления от ГРЩ к потребителю

Заземление – намеренное соединение нетоковедущих металлических частей электроустановок (которые могут оказаться под напряжением) с землей или ее эквивалентом. Данная защитная мера предназначена для исключения вероятности поражения человека электротоком при замыкании на корпус оборудования.

Принцип действия

Принцип работы защитного заземления заключается в:

  • снижении разности потенциалов, между заземляемым элементом и другими токопроводящими предметами с естественным заземлением, до безопасного значения;
  • отвод тока в случае непосредственного контакта заземляемого оборудования с фазным проводом. В грамотно спроектированной электросети возникновение тока утечки вызывает мгновенное срабатывание устройства защитного отключения (УЗО).

Из вышесказанного следует, что заземление имеет большую эффективность при использовании в комплексе с УЗО.

Устройство заземления

Конструкция системы заземления состоит из заземлителя (проводящая часть, которая имеет непосредственный контакт с землей) и проводника, обеспечивающего контакт между заземлителем и нетоковедущими элементами электрооборудования. Обычно в качестве заземлителя используется стальной или медный (очень редко) стержень, в промышленности это как правило, сложная система, состоящая из нескольких элементов специальной формы.

Эффективность системы заземления во многом определяется величиной сопротивления защитного устройства, которую можно уменьшить, повышая полезную площадь заземлителей или увеличивая проводимость среды, для чего задействуется несколько стержней, повышается уровень солей в земле и т.п.

Заземляющее устройство это…

Выше мы рассмотрели в общих чертах, что такое защитное заземление. Однако стоит упомянуть, что используемые в системе заземлители различаются на естественные и искусственные.

В качестве устройств заземления в первую очередь предпочтительнее использовать такие естественные заземлители, как:

  • трубы водоснабжения, находящиеся в грунте;
  • металлоконструкции зданий и сооружений, имеющие надежный контакт с землей;
  • обсадные трубы артезианских скважин;
  • металлические оболочки кабелей (исключение составляет алюминий).

Важно! Запрещено использовать в качестве элемента заземления трубопроводы с газом и горючими жидкостями, а также теплотрассы.

Естественные заземлители должны иметь соединение с защитной системой из двух и более разных точек.

В роли искусственного заземлителя может использоваться:

  • стальная труба с толщиной стенок 3,5 мм и диаметром 30÷50 мм и длиной порядка 2÷3 м;
  • стальные полосы и уголки толщиной от 4 мм;
  • стальные пруты длиной до 10 и более метров и диаметром от 10 мм.

Для агрессивных почв необходимо использование искусственных заземлителей с высокой устойчивостью к коррозии и изготовленных из меди, оцинкованного или омедненного металла. Итак, мы разобрались с тем, что является определением понятия искусственного и естественного заземлителя, теперь же рассмотрим, когда применяется заземление.

Предлагаемое видео наглядно объясняет, что такое защитное заземление:

Когда и где применяется заземление

Как уже говорилось, защитное заземление предназначается для устранения вероятности поражения людей электротоком в случае подачи напряжения на токопроводящие детали оборудования, то есть при замыкании на корпус. Защитным заземлением оснащаются металлические нетоковедущие элементы электроустановок, которые вследствие вероятного пробоя изоляции проводов могут оказаться под напряжением и нанести вред здоровью и жизни людей и животных в случае их непосредственного контакта с неисправным оборудованием.

Заземлению подлежат электросети и оборудование с напряжением до 1000 В, а именно:

  • переменного тока;
  • трехфазные с изолированной нейтралью;
  • двухфазные, изолированные от земли;
  • постоянного тока;
  • источники тока с изолированной точкой обмотки.

Также заземление необходимо для электросетей и электроустановок постоянного и переменного тока с напряжением свыше 1000 В с любой нейтралью или средней точкой обмотки источника тока.

Основные способы устройства заземления

При устройстве заземляющей системы, в качестве заземлителя обычно используют вертикальные металлические пруты. Это связанно с тем, что горизонтальные электроды вследствие малой глубины залегания имеют повышенное электрическое сопротивление. В качестве вертикальных электродов практически всегда применяют стальные трубы, пруты, уголки и прочую металлопрокатную продукцию с длиной превышающую 1 метр и имеющую сравнительно небольшое поперечное сечение.

Схема заземления в частном доме

Схема заземления в частном доме

Существует два основных метода монтажа вертикальных заземляющих электродов.

Статья по теме:

Зануление и заземление: в чем разница и что лучшеЭлектричество способно не только создавать комфортные условия жизни, но и несет еще и определенную опасность. Для снижения вероятности возникновения этой опасности требуется заземление в частном доме своими руками 220В. Как его сделать — читайте в публикации.

Несколько коротких электродов

В данном варианте используется несколько стальных уголков или прутьев длиной 2-3 метра, которые соединяются вместе при помощи металлической полосы и сварки. Соединение выполняется у поверхности земли. Монтаж заземлителя происходит простым забиванием электрода в грунт при помощи кувалды. Подобный способ больше известен под названием «уголок и кувалда».

Использование арматуру в качестве заземлителя

Использование арматуру в качестве заземлителя

Минимально разрешенное сечение заземляющих электродов приведено в ПУЭ, но чаще всего справленные и дополненные величины из технического циркуляра №11 «РусЭлектроМонтаж». В частности:

  • для уголка и полосы из черной стали с сечением не менее 150 мм2 и толщиной стенок 5 мм;
  • для стального прута с диаметром не менее 18 мм;
  • для стальной трубы с толщиной стенок от 3,5 мм и диаметром не менее 32 мм.

Преимущества этого способа заключаются в простоте, дешевизне и доступности материалов и монтажа.

Одиночный электрод

В данном случае в качестве заземлителя используется электрод в виде стальной трубы (как правило, одиночный), который помещается в глубокое отверстие, пробуренное в грунте. Бурение грунта и установка электрода требует использования специальной техники.

Одиночный электрод заземления, монтируемый в пробуренную скважину

Одиночный электрод заземления, монтируемый в пробуренную скважину

Увеличение площади контакта заземлителя с грунтом обеспечивается большей глубиной установки электрода. Более того данный способ более эффективный в сравнении с предыдущим вариантом, при одинаковой общей длине электродов, благодаря достижению глубинных слоев грунта, которые как правило имеют низкое удельное электрическое сопротивление.

К достоинствам данного способа относят высокую эффективность, компактность и сезонная «независимость», т.е. вследствие зимнего промерзания грунта удельное сопротивления заземлителя практически не изменяется.

Еще один способ – прокладка заземлителя в траншею. Однако такой вариант требует больших физических и материальных затрат (большее количество материала, копка траншеи и т.д.).

Для такого способа нужно много физических усилий

Для такого способа нужно много физических усилий

Разобравшись с тем, как работает и для чего нужно заземление стоит теперь второй вопрос нашей статьи, а именно что представляет собой зануление, для чего оно нужно и чем отличается от заземления.

Что такое зануление

Термином зануление обозначается преднамеренное соединение открытых нетоковедущих проводящих частей электросети и оборудования с глухозаземленной точкой в одно- и трехфазных сетях постоянного и переменного тока. Зануление выполняется в целях электробезопасности и является основным защитным средством от попадания под напряжение.

Зануление для трех- и однофазной электросети

Зануление для трех- и однофазной электросети

Принцип действия

Замыкание в электросети происходит при контакте находящегося под напряжением фазного провода с корпусом прибора, соединенного с нулем. Сила тока резко возрастает, и срабатывают защитные устройства, отсекающие питание от неисправного оборудования. По правилам время срабатывания УЗО для отключения неисправной электросети не должно превышать 0,4 сек. Для этого необходимо, чтобы фаза и ноль имели незначительную величину сопротивления.

Статья по теме:

Зануление и заземление: в чем разница и что лучшеВы когда-нибудь слышали аббревиатуру УЗО? Что это такое узнаете, прочитав обзор до конца. Вкратце хочется добавить, что это устройство способно уберечь жильё и всех его обитателей от ЧП, связанных с электричеством.

Схема зануления

Схема зануления

Для создания зануления в однофазной сети, как правило, используют третий (неиспользуемый) провод трехжильного кабеля. Для создания хорошей защиты требуется обеспечить качественное соединение всех элементов системы зануления.

Устройство

Система зануления, например, в многоквартирном доме, начинается с заземленного силового трансформатора, от которого нейтраль с трехфазной линией приходит в главный распределительный щит (ГРЩ) здания. Далее происходит разводка по этажным электрощитам. От нейтрали создается рабочий ноль, который вместе с фазовым проводом образуют привычное однофазное напряжение.

Схема устройства зануления от подстанции до квартиры

Схема устройства зануления от подстанции до квартиры

Непосредственно само зануление для защиты электросети и оборудования создается в щитке при помощи проводника, присоединенного к заземленной нейтрали. Следует знать, что между нулем и нейтралью запрещено устанавливать коммутационные устройства (автоматы, пакетники, рубильники и т.д.).

Где применяется схема зануления

Согласно требованиям ПЭУ защитным занулением должны быть оснащены:

  • одно- и трехфазные сети переменного тока с заземленным выводом и напряжением до 1 000 В;
  • электросети постоянного тока, имеющие среднюю точку заземления и напряжение до 1 000 В.

Заземление не может спасти от поражения электротоком, как заземление. Данная защитная схема просто обрывает подачу напряжения в случае короткого замыкания и отключает локальную электросеть.

Можно ли делать зануление в квартире с помощью заземления

Мы уже знаем, что такое заземление и зануление и попутаемся выяснить, можно ли делать зануление, используя заземленный ноль, находящийся в электрощите. Дело в том, что многие люди далекие от электротехники задаются этим вопросом и часто совершают непростительные ошибки, поступая именно таким образом.

Во-первых, это запрещено ПЭУ. Дело в том, что если, например, при проведении монтажных работ, по какой-либо причине перепутать местами фазу и ноль, да к тому же зануление вывести на рабочий ноль, то можно ожидать самых неприятных ситуаций. При включении электрооборудования в сеть корпус окажется под напряжением и человек поражается электротоком, поскольку не произойдет защитного срабатывания УЗО.

Для создания защитного зануления в этажном электрощите выделяется отдельная шина, соединяющаяся с глухозаземленной нейтралью. И лучше всего не выполнять данные работы самостоятельно, а поручить специалисту, имеющему знания в электротехнике.

На видеоролике показано как создать зануление, если его нет в этажном электрощите:

Чем отличается заземление от зануления

Сразу стоит сказать, что несмотря на то, что заземление и зануление являются защитными мерами, у них имеются различия по принципу действия и назначению. Заземление – более эффективный и надежный способ защиты, чем зануление, поскольку позволяет быстро уравнять разницу между потенциалами до необходимой величины. Также заземление имеет более простую конструкцию и проще в монтаже, и для его устройства нужно просто следовать инструкции. К тому же данная защитная схема не зависит от фазности подключенного оборудования. Варианты заземления разнообразны, и это позволяет выбрать определенный вид для каждого конкретного случая

Разница между заземлением и занулением

Разница между заземлением и занулением

Защитное зануление это защитная мера, которая при неисправности сети просто обеспечивает мгновенное прекращение подачи напряжения от электросети посредством срабатывания УЗО. Для создания зануления и подключения оборудования требуется опыт и определенные знания в электротехнике. Все работы по монтажу, особенно определение точки зануления, необходимо выполнить правильно, иначе в аварийной ситуации возможно поражение электротоком.

Разобравшись, что такое заземление и зануление, многие предпочитают использовать оба метода. Однако, заземление является обязательным при устройстве бытовых и промышленных сетей, а также эксплуатации оборудования.

Чтобы лучше понять, в чем разница между заземлением и занулением, предлагаем посмотреть это видео:

Требования к заземлению и занулению

Заземление – более серьезная защитная мера, чем зануление. Для этой схемы требуется создание отдельной шины с малым сопротивлением, которая соединяется с заземлителем вкопанным в грунт и обустроенным в соответствии со стандартами. Все требования к заземлению, его элементам и обустройству прописаны в ПЭУ и ГОСТе 12.2.007.0.

Установки с изолированной нейтралью

Установки с изолированной нейтралью

В промышленном секторе заземлению подлежат:

  • электроприводы;
  • корпуса электрооборудования;
  • металлоконструкции зданий;
  • экранированная оплетка низковольтных электрокабелей;
  • корпуса распределительных электрощитов и аналогичных конструкций.

К занулению предъявляются более лояльные требования, а именно:

  • нулевые и фазные проводники выбираются таким образом, чтобы при пробое на корпус оборудования возникал ток достаточный для срабатывания УЗО или другого защитного механизма;
  • проводник зануления от прибора до заземленной нейтрали должен быть непрерывным, то есть не содержать в цепи каких-либо коммутационных устройств.

Подведем итоги

Обеспечение безопасности жизни и здоровья – первоочередная задача государства, общества и естественно самого человека. Для этого необходимо строго придерживаться установленных правил, инструкций и требований. Одним из факторов опасных для здоровья человека является электричество, поэтому очень важно обеспечить достаточную электробезопасность на производстве и в быту при помощи определенных мероприятий и защитных технических средств.

Если у вас остались вопросы по этой теме или возникли новые, то пишите в комментариях, наша команда постарается ответить на них.

Основные отличия между занулением и заземлением

Главное требование к любому электробытовому прибору — безопасность эксплуатации. Особенно это касается техники, контактирующей с водой. При отсутствии дополнительной защиты даже небольшая проблема с электропроводкой (прожог изоляционного слоя, пробивка между витками двигателя) опасны. На корпусе неисправного прибора появляется электрический потенциал. В этом случае человека или животное, прикоснувшихся к корпусу, может ударить током. Чтобы избежать этого, разработаны такие способы защиты, как зануление и заземление.

Задачи заземления

Искусственно созданный контакт между электроустановкой и землей называется заземлением. Его задача — понизить напряжение на корпусе устройства до безопасного для живых существ уровня. При этом большая часть тока отводится в грунт. Чтобы заземлительная система работала эффективно, ее сопротивление должно быть значительно ниже, чем на остальных участках цепи. Такое требование основывается на свойстве электрического тока всегда выбирать наименьшее сопротивление на своем пути.

Защитное заземление электроустановок

Обратите внимание! Заземление используется исключительно в электросетях с изолированной нейтралью.

Тока замыкания иногда недостаточно при использовании заземлителя с относительно высоким для реакции защитных устройств сопротивлением. Поэтому еще одна задача заземлительной системы — рост аварийного тока замыкания.

Типы заземляющих устройств:

  1. Молниезащитные. Отводят импульсные токи, поступающие в систему в результате ударов молнии. Используются в молниеотводах и разрядниках.
  2. Рабочие. Предназначены для поддержания нормальной работоспособности электрических установок. Используются как в обычных, так и в аварийных ситуациях.
  3. Защитные. Защищают людей и животных от поражения током, проходящим по металлическим предметам в случае пробоя фазовых проводников.

Устройства заземления бывают естественными и искусственными:

  1. К естественным относят металлические изделия, основная функция которых не заключается в отводе тока в землю. К таким заземлителям относятся трубопроводы, железобетонные элементы зданий, обсадные магистрали и т.п.
  2. Искусственные заземлители — системы, созданные специально для отвода тока. Это стальные полосы, трубы, уголки и другие металлические элементы.

Для заземлительной системы нельзя использовать трубы, предназначенные для транспортировки горючих веществ (как газов, так и жидкостей), алюминиевые детали, кабельные оболочки. Также не подходят для этой цели предметы, покрытые антикоррозийным изоляционным слоем. Запрещено использовать как заземляющие проводники трубы водопровода и отопления.

Техническое исполнение систем заземления

Существует несколько схем соединения с разным составом защитных и рабочих проводников:

  • TN-C;
  • TN-C-S;
  • TT;
  • IT.

На разновидность заземления указывает первая буква в обозначении:

  • I — токоведущие элементы не касаются грунта;
  • T — нейтраль источника электропитания заземлена.

Способ заземления открытых проводников определяется по второй букве:

  • N — прямой контакт между местом заземления и источником питания;
  • T — прямая связь с грунтом.

После дефиса стоят буквы, указывающие на метод функционирования защитного PE и рабочего N нулевых проводников:

S — работа проводников обеспечивается единственным PEN-проводником;

C — имеется несколько проводников.

Основные схемы устройства заземления

Система TN

Заземление разновидности TN включает подсистемы TN-C, TN-S, TN-C-S. Самая старая из этих подсистем — TN-C — применяется в 3-фазных четырехпроводных и 1-фазных двухпроводных электросетях. Такие сети обычно есть в старых строениях. При всей своей простоте и относительно невысокой стоимости система не обеспечивает достаточного уровня безопасности, а потому в новостройках не используется.

Подсистема TN-C-S применяется при реновациях старых зданий. Она актуальна там, где рабочий и защитный проводники объединены на вводе. Использование TN-C-S необходимо для реконструкции системы, когда в старом строении устанавливается компьютерное или телекоммуникационное оборудование. Данное заземление представляет собой переходный тип между TN-C и самой современной подсистемой — TN-S. TN-C-S — относительно безопасная и доступная финансово заземлительная схема.

Отличием подсистемы TN-S от других типов такого оборудования является местонахождение рабочего и нулевого проводников. Они установлены по отдельности, при этом нулевой защитный PE-проводник объединяет все имеющиеся токопроводящие элементы электрической установки. Во избежание дублирования создают трансформаторную подстанцию, оснащенную основным заземлением. Дополнительное преимущество подстанции состоит в возможности уменьшить протяженность проводника, идущего от входа кабеля в оборудование до заземлителя.

Заземление многоквартирного дома по схеме TN-S

Система TT

В данной системе заземления токоведущие открытые элементы непосредственно контактируют с грунтом. При этом электроды не зависят от заземлительного устройства нейтрали подстанции. TT применяется, когда по техническим причинам нельзя построить систему TN.

Система IT

В этой системе нейтраль источника питания не касается земли или заземляется с помощью электроустановки с повышенным сопротивлением. Схема популярна в ситуациях, когда необходимо подключение чувствительной аппаратуры (больницы, лаборатории и т.п.).

Защита электроустановок по схеме IT

Зануление

Процесс зануления состоит в объединении металлических элементов, не находящихся под напряжением с заземленной нейтралью понижающего источника 3-фазного тока. Также используют заземленный вывод генератора 1-фазного тока. Зануление используется с целью провоцирования короткого замыкания в случае пробоя изоляционного слоя или проникновения тока на нетоковедущий элемент оборудования. Смысл возникновения короткого замыкания в том, что после этого срабатывает автомат-выключатель, перегорают плавкие предохранители или включаются другие защитные средства. Зануление используется в электрических установках с глухозаземленной нейтралью.

Если установить на линию устройство защитного отключения, оно будет срабатывать из-за разницы сил тока на фазе и нуле. Установленный в дополнение к УЗО автомат-выключатель позволит срабатывать обоим устройствам в случае пробоя или же подключать наиболее быстро подключающийся элемент защиты.

При монтаже зануления следует иметь в виду, что короткое замыкание должно приводить к оплавлению предохранителя или отключению выключателя-автомата. Если этого не произойдет, свободное течение тока замыкания по электроцепи станет причиной появления напряжения на всех зануленных предметах, а не только на месте пробоя. Показатель напряжения — произведение сопротивления нуля на ток замыкания, что очень опасно при ударе током живого существа.

Схема зануления оборудования для трехфазной сети

Необходимо внимательно следить за исправным состоянием нулевого проводника. При его обрыве возникает напряжение на всех зануленных элементах, поскольку они автоматически входят в контакт с фазой. По этой причине запрещена установка на нулевой проводник любых защитных устройств (помимо выключателей и предохранителей), из-за которых происходит разрыв при срабатывании.

Чтобы снизить опасность удара током при обрыве нулевого проводника, каждые 200 метров линии создаются дополнительные заземления, как и на концевых и вводных опорах. Уровень сопротивления на каждом новом заземлителе не должен быть выше 30 Ом.

Отличие заземления от нуля

Главной разницей между заземлением и занулением является назначение систем. Заземление нужно, чтобы быстро понизить напряжение до приемлемого уровня. Задача зануления — полностью отключить ток на участке, где возник пробой на корпус или другой нетоковедущий элемент. Зануление связано с уменьшением потенциала корпуса в период между замыканием и отключением подачи электричества.

Разница между заземлением и занулением

В новостройках зануление не используют. В новых зданиях прокладывают 3-проводный кабель с фазой, нулем и землей (1-фазная система) или 5-проводный кабель (три фазы, ноль и земля) в 3-фазной системе. Чаще всего используется схема TN-S, но встречается и TN-C-S.

Нужно ли делать зануление в квартире

Применять зануление в целях защиты жильцов и электроустановок в квартире не стоит — бывают ситуации, когда холодильник (или другой прибор) занулен, и при этом случается пробой тока. Также нередко встречается некорректно выполненный электромонтаж (электрик ведь мог и перепутать провода и вместо нуля подключил фазу). В таких случаях бытовая техника выходит из строя еще до того, как сработает автомат-выключатель.

Установка устройства защитного отключения, дифференциального автомата или автомата-выключателя необходима только вместе с занулением.

Требования к заземлению и занулению

Все электроустановки и цепи, оснащенные изоляцией нулевого провода, нуждаются в монтаже защитной системы (занулении или заземлении).

Существует несколько правил, которых следует придерживаться при создании защитной системы:

  1. Зануление необходимо делать для установок с глухозаземленным проводником мощностью до 1000 вольт. Заземление в подобных системах не делают.
  2. Зануление следует снабжать трансформатором на 380 вольт. В зануленной системе вторичное напряжение не должно превышать 380 вольт, а понижающее — 42 вольт.
  3. При занулении допускается подключение от разделяющего трансформатора лишь к одному потребителю электроэнергии. Номинал тока защитного устройства — до 15 ампер. Зануление или заземление вторичной обмотки не допускается.
  4. При заземлении нуля в 3-фазной электроцепи нужно ставить защиту от пробоя тока. Монтировать ее в нулевом проводнике или фазе от нижнего напряжения.
  5. Защитное заземление или зануление необходимо создавать на расположенных на улице установках, а также в особо опасных условиях работы. Номинал напряжения составляет 42 вольта (переменный ток) или 110 вольт (постоянный ток).
  6. Для напряжения выше 380 вольт (постоянный ток) и 440 вольт (переменный ток) защита необходима вне зависимости от других условий.
  • корпуса электрических установок;
  • приводы оборудования;
  • каркасные части и металлоконструкции распредшкафов и щитов;
  • вторичные трансформаторные обмотки;
  • стальные кабельные оболочки;
  • шинопроводы;
  • тросы;
  • металлические трубы для проводки;
  • электрооборудование, установленное на движущихся элементах.

Что касается жилья, зануление и заземление необходимо для электрической бытовой техники мощностью более 1300 ватт. Заземлению для выравнивания потенциалов подлежат такие металлические изделия, как ванны и душевые поддоны, подвесные потолки.

Чтобы заземлить кондиционеры, электрические плиты или подобные им потребители электричества мощностью свыше 1300 ватт, используют выделенный проводник. Его следует соединить с нулем электросети.

Обратите внимание! Сечения фазного и нулевого проводника должны быть одинаковыми.

Подробный список электроустановок, на которых необходима защита путем заземления или зануления, указаны в Правилах устройства электроустановок. ПУЭ — официальный документ, в нем прописаны все нормативы. Документ также устанавливает перечень оборудования, для которого защита необязательна.

Создание системы заземления и зануления крайне важно, от этого зависит безопасность людей и сохранение имущества. Поэтому цена ошибки велика. Рекомендуется поручать эту работу только квалифицированным работникам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *