Что такое нагрузочный резистор, для чего он нужен и как его рассчитать
Для проверки работоспособности различных компонентов электроаппаратуры применяют измерительные приборы, контрольные индикаторы. Однако для оценки реальных параметров электрической цепи или всего прибора требуется измерять их в нагруженном состоянии.
Для решения этой задачи применяют так называемый нагрузочный резистор. Благодаря ему в цепи удаётся создать реальные условия работы всех компонентов схемы. Подробнее узнать о том, что такое нагрузочный резистор и о сфере его использования можно на сайте ElectronicsHacks.
Понятие и виды нагрузочного резистора
Под нагрузочным резистором понимают элемент радио или электроаппаратуры, обладающий конкретным значением сопротивления. Этот параметр, как и для обычных резисторов измеряется в омах (и его производных: килоом, мегаом).
- Номинал электрического сопротивления.
- Геометрические размеры.
- Основной (допустимый) разброс параметра. Существуют в основном два типа таких резисторов: обычные с допустимым изменением сопротивления в несколько процентов и прецизионные, у которых этот показатель не превышает сотые доли процента.
- Характер сопротивления: постоянный или переменный. Второй тип резисторов конструктивно выполнен с возможностью изменения выходного сопротивления в зависимости от параметров проверяемого устройства.
- Способ подключения.
- Область применения.
- Стоимость.
- Компания производитель.
Все основные характеристики таких резисторов определяются установленными стандартами.
Они указаны в паспорте на каждый элемент.
Основные характеристики
Конструктивно он состоит из керамической пустотелой трубки, по внешнему периметру которой наматывается медная проволока или специальная плёнка.
С торцов на трубку одевают токопроводящие заглушки с закреплёнными отводами для дальнейшего подключения к схеме или выходу устройства. Сверху для повышения надёжности и долговечности резистор покрывается лаком. На поверхности наносится номинал резистора или принятая маркировка.
- Форма резистора.
- Геометрические размеры.
- Номинал сопротивления.
- Номинальная мощность.
- Параметры определяющие электрическую прочность. (они характеризуют условия возможного наступления пробоя изоляционной оболочки).
- Допустимые электрические параметры (напряжение и протекающий электрический ток).
- Максимально допустимая температура нагрева.
- Максимальное значение возникающих потерь.
Область применения
- Проводят проверку выходных параметров различных источников электрической энергии. К ним относятся: аккумуляторы, электрические батареи, солнечные батареи.
- Проверяют выходные параметры автономных и встроенных блоков вторичного питания. Благодаря установке нагрузочного резистора получают истинные значения выходного тока и напряжения, которые должны быт во время работы всего устройства. Особенно важно для знания параметров маломощных источников питания.
- Проверяют работоспособность отдельных блоков или участков электроаппаратуры, параметры которых зависят от подключённой нагрузки.
- Для стабильной работы трансформаторов и автотрансформаторов.
- Нормализация работы установленных приборов учёта электроэнергии, подключённых к отводящим фидерам.
С помощью нагрузочных резисторов производится нормализация нагрузки вторичной цепи.
Что такое сопротивление нагрузки
И так, мы теперь знаем, как протекает электрический ток. Рассмотрели что такое сила и напряжение тока.
Еще раз повторим:
Сила тока. Условное обозначение: I. Измеряется в амперах (А).
Напряжение тока. Условное обозначение: U. Измеряется в вольтах (В).
Давайте рассмотрим пример, замкнутой цепи:
наведите или кликните мышкой, для анимации
Если вы заметили, на этот раз мы добавили в цепь «нагрузку». Нагрузкой может быть любое устройство или элемент (например: лампочка, электродвигатель и т.д.). В этой замкнутой цепи, мы наблюдаем электрический ток, то есть движение заряженных частиц.
А так же есть, какие-то количественные показатели силы тока и напряжения.
При движение через проводник, заряженные частицы встречают сопротивление. Отсюда мы получаем новую для нас величину – сопротивление проводника или электрическое сопротивление .
Исходя из этого, сопротивление проводника – это физическая величина, которая характеризует свойство проводника препятствовать проводить электрический ток. Более простыми словами это величина, которая мешает проводить электрический ток.
Условное обозначение сопротивления: R .
Единица измерения сопротивления – это Ом .
Сопротивление проводника зависит от его материала, длины и площади поперечного сечения. Так же на сопротивление материала может повлиять окружающая среда (температура, свет и т.д.)
Давайте рассмотрим как взаимосвязаны сила тока, напряжение и сопротивление в замкнутой цепи. Мы видим как протекает ток по проводнику через нагрузку, цепь замкнутая. Сопротивление проводника на всем участке одинаковая, а сопротивление нагрузки отличается, оно выше чем у проводника. То есть движению заряженных частиц, в нагрузке препятствии больше, чем в проводнике.
Обратим внимание на движению частиц через проводник и нагрузку:
наведите или кликните мышкой, для анимации
Можно отметить, что движущихся частиц, через поперечное сечение нагрузки (за определенное время), проходит меньше, чем через проводник. Другими словами, чем больше сопротивление тем меньше сила тока. Что такое сила тока, мы рассмотрели в предыдущей статье.
Обратную картинку можно наблюдать с напряжением, сила с которой происходит движение частиц больше на участке нагрузки, чем в проводнике. Из этого мы получаем, что чем больше сопротивление, тем больше напряжение на участке этой нагрузке:
наведите или кликните мышкой, для анимации
Зависимость тока и напряжения от сопротивления нагрузки в последующих статьях будут рассмотрены подробнее.
Что такое электрический импеданс
В цепях постоянного тока активное сопротивление R играет важную роль. Что касается цепей синусоидального переменного тока, то здесь не обойтись одним лишь активным сопротивлением. Ведь если в цепях постоянного тока емкости и индуктивности заметны только при переходных процессах, то в цепях переменного тока данные компоненты проявляют себя гораздо более значительно.
Поэтому для адекватного расчета цепей переменного тока вводится термин «электрический импеданс» — Z или комплексное (полное) сопротивление двухполюсника гармоническому сигналу. Иногда говорят просто «импеданс», отбрасывая слово «электрический».
Представление об импедансе позволяет применять закон Ома к участкам цепей переменного синусоидального тока. Проявление двухполюсником (нагрузкой) индуктивной составляющей приводит к отставанию тока от напряжения на данной частоте, а проявление емкостной составляющей — к отставанию напряжения от тока. Активная же составляющая не вызывает задержки между током и напряжением, проявляя себя по сути так же, как и в цепи постоянного тока.
Составляющая импеданса, содержащая емкостной и индуктивный компоненты, называется реактивной составляющей X. Графически активную составляющую R импеданса можно отложить по оси оX, а реактивную — по оси оY, тогда импеданс в целом представится в форме комплексного числа, где j-мнимая единица (мнимая единица в квадрате равна минус 1).
В данном случае наглядно видно, что реактивная составляющая X может быть разложена на емкостную и индуктивную составляющие, которые имеют противоположное направление, то есть оказывают противоположное влияние на фазу тока: при преобладании индуктивной составляющей, импеданс цепи окажется в целом положительным, то есть в цепи ток будет отставать от напряжения, если же станет преобладать емкостной компонент, то напряжение будет отставать от тока.
Схематически этот двухполюсник в приведенном виде изображается так:
Принципиально любая схема линейного двухполюсника может быть приведена к аналогичному виду. Здесь можно определить активную составляющую R, которая от частоты тока не зависит, и реактивную составляющую X, включающую в себя емкостную и индуктивную составляющие.
Из графической модели, где сопротивления представлены векторами, ясно, что модуль импеданса для заданной частоты синусоидального тока вычисляется как длина вектора, представляющего собой сумму векторов X и R. Измеряется импеданс в Омах.
Практически в описаниях цепей синусоидального переменного тока с точки зрения импеданса, можно встретить такие термины, как «активно-индуктивный характер нагрузки» или «активно-емкостная нагрузка» или «чисто активная нагрузка». Имеется ввиду следующее:
Если в цепи преобладает влияние индуктивности L, значит реактивная составляющая X положительна, при этом активная составляющая R мала — это индуктивная нагрузка. Пример индуктивной нагрузки — катушка индуктивности.
Если в цепи преобладает влияние емкости C, значит реактивная составляющая X отрицательна, при этом активная составляющая R мала — это емкостная нагрузка. Пример емкостной нагрузки — конденсатор.
Если в цепи преобладает активное сопротивление R, при этом реактивная составляющая X мала — это активная нагрузка. Пример активной нагрузки — лампа накаливания.
Если в цепи активная составляющая R значительна, но индуктивная составляющая преобладает над емкостной, то есть реактивная составляющая X положительна, нагрузку называют активно-индуктивной. Пример активно-индуктивной нагрузки — асинхронный двигатель.
Если в цепи активная R составляющая значительна, при этом емкостная составляющая преобладает над индуктивной, то есть реактивная составляющая X отрицательна, нагрузку называют активно-емкостной. Пример активно-емкостной нагрузки — блок питания люминесцентной лампы.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Закон Ома для полной цепи
Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!
Идеальный источник ЭДС
Давайте вспомним, что такое ЭДС. ЭДС — это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.
Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.
Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?
Внутреннее сопротивление источника ЭДС
Дело все в том, что в аккумуляторе «спрятано» сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой «r «.
Выглядит все это в аккумуляторе примерно вот так:
Итак, что у нас получается в чистом виде?
Лампочка — это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:
Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.
На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .
Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.
Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что
Закон Ома для полной цепи
Итак, последнее выражение носит название «закон Ома для полной цепи»
Е — ЭДС источника питания, В
R — сопротивление всех внешних элементов в цепи, Ом
I — сила ток в цепи, А
r — внутреннее сопротивление источника питания, Ом
Просадка напряжения
Итак, знакомьтесь, автомобильный аккумулятор!
Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус
Наш подопечный готов к бою.
Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на «ближний» свет.
Первым делом давайте замеряем напряжение на клеммах аккумулятора
12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.
Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:
Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!
А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:
Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр — силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.
Смотрим на показания приборов:
Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.
Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла
Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.
Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.
Как найти внутреннее сопротивление источника ЭДС
Давайте снова вернемся к этой фотографии
Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.
Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:
Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r
Вывод
Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.
Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.
Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.
Что такое активное сопротивление
При прохождении тока в электрической цепи он подвергается противодействию ее отдельных частей, которое в электротехнике называется сопротивлением. Это приводит к потере части мощности. Чтобы правильно рассчитать параметры электрической цепи, нужно учитывать природу сопротивления и знать, в чем заключается действие различных его видов.
Что такое сопротивление
Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.
Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.
Виды сопротивления
В электротехнике рассматривается активное электрическое сопротивление, а также две разновидности реактивного: индуктивное и ёмкостное.
Активное сопротивление
Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.
Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.
Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.
Формула для расчета активного сопротивления соответствует закону Ома:
- R — величина активного сопротивления между двумя точками в цепи;
- U — напряжение или разность потенциалов между ними;
- I — сила тока на рассматриваемом участке цепи.
Для расчета активного сопротивления проводника формула будет другая:
где K-коэффициент поверхностного эффекта, который равен 1,
- l — длина проводника,
- s — площадь поперечного сечения,
- p — “ро” удельное сопротивление.
Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).
Реактивное сопротивление
Этот вид возникает тогда, когда переменный ток проходит сквозь элемент, который обладает индуктивностью или емкостью. Основной особенностью реактивного сопротивления является преобразование электрической энергии в другую форму в прямом и обратном направлениях. Часто это происходит циклически. Реактивное сопротивление проявляется только при изменениях силы тока и напряжения. Существует два его вида: индуктивное и емкостное.
Индуктивное сопротивление
При увеличении силы тока порождается магнитное поле, обладающее различными характеристиками. Наиболее важной из них является индуктивность. Магнитное поле, в свою очередь, воздействует на проводник, по которому протекает ток. Влияние является противоположным направлению изменения тока. То есть, если сила тока увеличилась, то магнитное поле будет уменьшать его, и наоборот, если снизилась, то поле усилит его. Когда ток не меняется, реактивное сопротивление катушки индуктивности будет равно нулю.
Индуктивное сопротивление зависит от частоты тока. Чем она выше, тем выше скорость изменения данного параметра. Это значит, что будет образовано более сильное магнитное поле. Возникающая при этом ЭДС препятствует изменению электрического тока.
Расчет реактивного индуктивного сопротивления осуществляется по такой формуле:
XL = L×w = L×2π×f, где буквами обозначаются:
- L — индуктивность магнитного поля, которое порождается изменением силы тока;
- W — круговая частота изменения, которая используется в описании синусоидального изменения силы тока;
- Π — число «пи»;
- f — частота тока в обычном смысле.
При синусоидальном изменении напряжения сила тока будет меняться, отставая от него по фазе. Поэтому реактивное сопротивление трансформатора существенно зависит от его индуктивности.
Емкостное сопротивление
Оно имеет иную природу, чем индуктивное. Это понятие удобно проиллюстрировать на примере электрической цепи, состоящей из источника питания, клеммы которого соединены с обкладками конденсатора. Сразу после подключения на них будет постепенно накапливаться заряд, создавая ток в цепи.
После достижения предельной величины, которая определяется ёмкостью детали, ток не будет проходить по цепи. Если после этого отключить провода от клемм, а затем последние соединить, то между ними начнётся перемещение зарядов до тех пор, пока разность потенциалов станет равной нулю.
Если к конденсатору подключить источник переменного тока, то будет происходить следующее. С увеличением разности потенциалов заряд на обкладках конденсатора будет расти. Когда напряжение перейдёт в фазу уменьшения, накопленный заряд начнёт стекать с них, образуя ток противоположного направления. Затем разность потенциалов станет отрицательной, но по абсолютной величине будет расти до максимального значения. При этом конденсатор начнет вновь заряжаться, но при этом знак поступающих зарядов будет не такой, который был раньше.
Когда напряжение начнёт увеличиваться (уменьшаясь по абсолютной величине), заряд с обкладок конденсатора будет стекать. Когда разность потенциалов у источника достигнет нуля и продолжит увеличиваться, начнётся новый цикл изменений.
На каждом этапе описанной ситуации ток с обкладок конденсатора будет иметь направление противоположное тому, которое порождается переменной разностью потенциалов источника питания.
Происходящее таким образом уменьшение силы тока представляет собой физический смысл ёмкостного сопротивления. Оно обозначается буквами ХС и рассчитывается по формуле:
XС = 1/(w×C) = 1/(2π×f×C), где
- C — ёмкость используемого конденсатора;
- w — круговая частота переменного тока;
- π — число «пи»;
- f — частота переменного тока.
В рассматриваемом случае изменения тока отстают от напряжения.
Полное сопротивление
При использовании нескольких разновидностей важно знать, как они сочетаются между собой. Активное сопротивление присутствует в любых схемах. Оно способствует превращению части электрической энергии в нагрев. Реактивное сопротивление возникает лишь в цепи переменного тока. Чтобы определить его величину, необходимо из индуктивного вычесть ёмкостное. Эта характеристика показывает энергию, которая пульсирует в цепи, переходя из одной формы в другую.
Полное сопротивление представляет собой сумму активного и реактивного сопротивления в цепи переменного тока, но такое сложение необходимо выполнять особым образом. Для этого нужно начертить прямоугольный треугольник, катеты в котором должны иметь длину, равную величине активного и реактивного сопротивлений соответственно.
Длина гипотенузы будет численно выражать полное сопротивление электрической цепи. Для его определения используется правило, говорящее о том, что сумма квадратов катетов равна квадрату гипотенузы. Это правило называют теоремой Пифагора. Следовательно, формула, с помощью которой можно найти полное сопротивление, выглядит так:
- Z — полное сопротивление;
- R — величина активной составляющей;
- XL и XC — значение индуктивного и емкостного параметра соответственно.
Следовательно, при расчёте полного сопротивления или импеданса нужно учитывать, что такое ёмкость и индуктивность и как они могут проявляться в электрических схемах. Эти величины называются еще паразитными, так как они могут отрицательно влиять на работу электроприбора. Их возникновение относят к непредсказуемым факторам. При этом емкостным или индуктивным сопротивлением, имеющим небольшое значение, при выполнении расчетов можно пренебречь.
Заключение
Как видим, при расчете электрической цепи необходимо учитывать и активное, и реактивное, и полное сопротивление. Они отличаются друг от друга не только названием. Физика этих сопротивлений также разная. Если под воздействием активного сопротивления электроэнергия превращается в другой вид и поступает в окружающую среду, то реактивное возвращает ее обратно в сеть. Без понятия о сопротивлении и знания формул расчета невозможно конструировать электросхемы.
Что такое электрический импеданс
Полное сопротивление (импеданс) — комплексная величина электрической цепи, выраженная действительным сопротивлением и мнимым реактивным сопротивлением, препятствующая прохождению электрического тока. При измерении импеданса мы всегда должны питать цепь переменным током, в случае постоянного тока мы будем измерять только действительную составляющую импеданса.
Значение импеданса
В цепях постоянного тока активное сопротивление R играет важную роль. Что касается цепей синусоидального переменного тока, то здесь не обойтись одним лишь активным сопротивлением. Ведь если в цепях постоянного тока емкости и индуктивности заметны только при переходных процессах, то в цепях переменного тока данные компоненты проявляют себя гораздо более значительно.
Поэтому для адекватного расчета цепей переменного тока вводится термин «электрический импеданс» — Z или комплексное (полное) сопротивление двухполюсника гармоническому сигналу. Иногда говорят просто «импеданс», отбрасывая слово «электрический».
Представление об импедансе позволяет применять закон Ома к участкам цепей переменного синусоидального тока. Проявление двухполюсником (нагрузкой) индуктивной составляющей приводит к отставанию тока от напряжения на данной частоте, а проявление емкостной составляющей — к отставанию напряжения от тока. Активная же составляющая не вызывает задержки между током и напряжением, проявляя себя по сути так же, как и в цепи постоянного тока.
Выражение импеданса
Составляющая импеданса, содержащая емкостной и индуктивный компоненты, называется реактивной составляющей X. Графически активную составляющую R импеданса можно отложить по оси оX, а реактивную — по оси оY, тогда импеданс в целом представится в форме комплексного числа, где j-мнимая единица (мнимая единица в квадрате равна минус 1).
В данном случае наглядно видно, что реактивная составляющая X может быть разложена на емкостную и индуктивную составляющие, которые имеют противоположное направление, то есть оказывают противоположное влияние на фазу тока: при преобладании индуктивной составляющей, импеданс цепи окажется в целом положительным, то есть в цепи ток будет отставать от напряжения, если же станет преобладать емкостной компонент, то напряжение будет отставать от тока.
Схематически этот двухполюсник в приведенном виде изображается так:
Принципиально любая схема линейного двухполюсника может быть приведена к аналогичному виду. Здесь можно определить активную составляющую R, которая от частоты тока не зависит, и реактивную составляющую X, включающую в себя емкостную и индуктивную составляющие.
Из графической модели, где сопротивления представлены векторами, ясно, что модуль импеданса для заданной частоты синусоидального тока вычисляется как длина вектора, представляющего собой сумму векторов X и R. Измеряется импеданс в Омах.
Альтернативные термины
Практически в описаниях цепей синусоидального переменного тока с точки зрения импеданса, можно встретить такие термины, как «активно-индуктивный характер нагрузки» или «активно-емкостная нагрузка» или «чисто активная нагрузка». Имеется ввиду следующее:
Если в цепи преобладает влияние индуктивности L, значит реактивная составляющая X положительна, при этом активная составляющая R мала — это индуктивная нагрузка. Пример индуктивной нагрузки — катушка индуктивности.
Если в цепи преобладает влияние емкости C, значит реактивная составляющая X отрицательна, при этом активная составляющая R мала — это емкостная нагрузка. Пример емкостной нагрузки — конденсатор.
Если в цепи преобладает активное сопротивление R, при этом реактивная составляющая X мала — это активная нагрузка. Пример активной нагрузки — лампа накаливания.
Если в цепи активная составляющая R значительна, но индуктивная составляющая преобладает над емкостной, то есть реактивная составляющая X положительна, нагрузку называют активно-индуктивной. Пример активно-индуктивной нагрузки — асинхронный двигатель.
Если в цепи активная R составляющая значительна, при этом емкостная составляющая преобладает над индуктивной, то есть реактивная составляющая X отрицательна, нагрузку называют активно-емкостной. Пример активно-емкостной нагрузки — блок питания люминесцентной лампы.
Импеданс в электроснабжении
С импедансом также можно столкнуться при оценке безопасности низковольтных электроустановок (например, при ревизиях). Величина импеданса сети TN определяет безопасность установки, определяя скорость срабатывания вышестоящего аппарата защиты (предохранителя, автоматического выключателя и т. д.). Чтобы автоматический выключатель отключился в случае неисправности за достаточно короткое время, импеданс должен быть достаточно низким.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Что такое сопротивление нагрузки RL?
Цепь резистор-индуктор (цепь RL), или фильтр RL, или сеть RL, представляет собой электрическую цепь, состоящую из резисторы и индукторы с приводом от источника напряжения или тока. Цепь RL первого порядка состоит из одного резистора и одной катушки индуктивности и является самым простым типом цепи RL.
Что такое функция сопротивления нагрузки?
сопротивление нагрузки обычно сопротивление цепи, которая тянет весь ток, но это может быть что угодно, что потребляет мощность в цепи, хотя это то, что заботится о выходе вашей схемы. Нагрузочный резистор можно обозначить как светодиод или аккумулятор в зарядном устройстве.
В чем разница между сопротивлением нагрузки и сопротивлением?
Сопротивление — это просто константа пропорциональности (закон Ома), это электрическая инерция ckt. сопротивление вашей цепи определяется резистором, который вы разместили, и внутренним сопротивлением ваших компонентов. где в качестве сопротивления нагрузки берется мощность из цепи.
Как связаны сопротивление и нагрузка?
Резистор наблюдает за протеканием тока и излучает тепло. Но нагрузка что-то, что использует ток, протекающий по цепи, и работает согласно заявке. Сопротивление нагрузки по-прежнему остается сопротивлением. «нагрузка — это то, что использует текущий поток».
Есть ли у нагрузки сопротивление?
Электрическая мощность, подаваемая в нагрузку, V * I, передается от источника напряжения к нагрузке. . Вы правы, что для чистого источника напряжения с нет внутреннего сопротивления при подключении к простому резистору в качестве нагрузки, чем выше сопротивление, тем меньше энергии рассеивается в резисторе в виде тепла (P = V2 / R).
В чем разница между внутренним сопротивлением и сопротивлением?
внутреннее сопротивление — это сопротивление, обеспечиваемое электролитом потоку электронов.. Внешнее сопротивление — это сопротивление, оказываемое потоку электричества во внешней цепи.
Какое минимальное сопротивление нагрузки?
Минимальная нагрузка обычно составляет самое высокое сопротивление, которое потребляет наименьший ток от источника питания. Когда условия минимальной нагрузки не соблюдаются, источник питания может испытывать некоторую нестабильность, например мерцание и отключение. Минимальную нагрузку для резистивной нагрузки можно рассчитать, если известен минимальный ток.
Что такое эффективное сопротивление нагрузке?
Сопротивление нагрузки в цепи равно эффективное сопротивление всех элементов схемы, кроме источника ЭДС. С точки зрения энергии, его можно использовать для определения энергии, передаваемой нагрузке посредством электрической передачи, которая проявляется как внутренняя энергия, повышающая температуру резистора.
Как найти сопротивление нагрузке?
Используйте закон Ома, чтобы определить полное сопротивление. Следующая формула используется для определения общего сопротивления в цепи, когда известны как ток, так и напряжение: R = V / I, где R = сопротивление, V = напряжение и I = ток.
Какая формула сопротивления?
Сопротивление имеет единицы измерения Ом (Ом), относящиеся к вольтам и амперам на 1 Ом = 1 В / А. На резисторе возникает падение напряжения или IR, вызванное протекающим через него током, определяемое как V = IR.
Что такое формула внутреннего сопротивления?
Внутреннее сопротивление измеряется в Ом. . Отношение между внутренним сопротивлением (r) и ЭДС (e) ячейки s, определяемое выражением. е = I (г + R) Где e = ЭДС, т. Е. Электродвижущая сила (Вольт), I = ток (A), R = сопротивление нагрузки, а r — внутреннее сопротивление ячейки, измеренное в Ом.