Шаговый сервопривод применяется в системах где программа записана
Перейти к содержимому

Шаговый сервопривод применяется в системах где программа записана

  • автор:

8.5. Шаговые сервоприводы

Шаговый сервопривод был разработан для автоматических систем программного управления, в которых программа перемещений записывается в виде импульсов, дискретных во времени. При этом число импульсов соответствует требуемому числу единичных перемещений, а частота их следования — скорости перемещения.

Для шагового электропривода каждый такой импульс — это управляющий сигнал; он отрабатывает его, поворачивая ротор на определенный (единичный) угол (шаг). Значение единичного угла поворота определяется только конструкцией двигателя и не зависит ни от амплитуды управляющего сигнала, ни от его продолжительности.

На рис. 8.12 показана конструкция шагового двигателя, цилиндрический вытянутый статор 1 которого имеет четное число полюсов 2, равномерно расположенных по окружности. По длине статора полюсы разделены на три секции — А, Б, В, имеющие независимое друг от друга питание обмоток. Каждая смежная пара полюсов в одной секции имеет разную полярность. В роторе двигателя столько же секций и полюсов, сколько их в статоре, но полюса его секций сдвинуты на одну треть шага относительно соседней секции. Например, когда полюса секции А ротора расположены напротив полюсов статора, то полюса секции Б сдвинуты относительно них на 1/3 шага по часовой стрелке, а полюса секции В — на 2/3 шага в ту же сторону или, что то же самое, на 1/3 шага против часовой стрелки (рис. 8.13).

Если при таком положении ротора подать питание к полюсам статора секции А, то ротор останется на месте, так как его положение соответствует минимальному магнитному сопротивлению магнитопровода.

Рис. 8.12. Конструкция шагового двигателя:

1 — статор; 2 — полюс статора; 3 —

вал двигателя; 4 — полюс ротора;

А, Б, В — секции статора

I I I

Секция А Секция Б Секция В

Рис. 8.13. Схемы расположения полюсов ротора и статора в секциях Д Б, В

Если подать питание на обмотки полюсов статора секции Б, то ротор повернется против часовой стрелки на 1/3 межполюсного угла и остановится в таком положении. Когда полюсы секции Б ротора будут под полюсами статора, сопротивление магнитопровода будет минимальным. Выполненный ротором поворот на 1/3 межполюсного угла — это один шаг двигателя.

Если после подачи управляющего импульса в секцию Б статора следующий импульс подать в секцию В статора, то ротор сделает еще один шаг против часовой стрелки; если же после секции Б возбудить секцию А, то шаг ротором будет сделан в противоположном направлении.

Таким образом, подача импульсов в секции статора в порядке А, Б, В соответствует шагам ротора против часовой стрелки, а в порядке А, В, Б — шагам ротора в противоположном направлении (рис. 8.14).

Импульсы питания обмоток статора формируются специальными кольцевыми схемами с использованием реле, тиратронов или полупроводниковых элементов. Скорость шаговых двигателей может достигать 10 4 шагов в секунду при плавном ее повышении и обычно порядка 10 2 шагов в секунду при реверсировании (или так называемой приемистости).

Динамические свойства лучше у шаговых двигателей малых мощностей, поэтому в быстродействующих системах программного управления их используют в качестве первичного сервоприводного устройства, преобразующего импульсный ход в перемещение, а затем включают усилитель перемещения (обычно гидравлический), выполняющий перемещение нагрузки.

Сервопривод или шаговый двигатель?

В случаях, когда необходима высокая точность работы исполнительных механизмов, используют асинхронный электродвигатель с энкодером обратной связи. Однако в промышленных станках с особыми требованиями к точности позиционирования подобное оборудование не справится с задачами в силу ряда конструктивных недостатков — низкого момента на малых скоростях, проскальзывания ротора, инерции при разгоне и торможении. В таких случаях используются сервоприводы и шаговые двигатели. Рассмотрим преимущества и недостатки обоих типов приводов.

Сервоприводы

В состав сервопривода входят серводвигатель и электронный блок управления (сервоусилитель или сервопреобразователь). В качестве серводвигателей наиболее широко применяют синхронные трехфазные электродвигатели, в которых установлены мощные постоянные магниты для улучшения динамических характеристик. Обязательным компонентом сервопривода также является энкодер. Как правило, он превосходит по своим параметрам обычные энкодеры, поставляемые отдельно. Его разрешение может достигать сотен тысяч импульсов на оборот, за счет чего достигается сверхточное позиционирование. Для примера, разрешение встроенных энкодеров сервоприводов Delta ASD-A2 составляет 1 280 000 имп/об.

Сервоусилитель получает два сигнала управления — сигнал задания скорости (или угла поворота) и сигнал обратной связи с энкодера. В результате сервопривод обеспечивает движение какой-либо механической нагрузки с большой точностью не только по скорости вращения, но и по углу поворота, который может быть выдержан до долей градуса.

Шаговые двигатели

Шаговый двигатель — это особый вид многофазного синхронного двигателя, дискретное вращение которого производится путем подачи импульсов напряжения на нужные обмотки статора. При этом ротор не имеет обмоток и состоит из магнитного материала.

Основной параметр шагового двигателя — его шаг, или количество шагов на оборот. Для одного полного оборота ротора необходимо строго определенное количество импульсов. Чем меньше шаг, тем большую точность позиционирования может обеспечить данный шаговый двигатель.

Управляющие импульсы формируются специальным драйвером, который получает задание с контроллера. При этом обратной связи не требуется, поскольку путем подсчета импульсов всегда можно узнать, на какой угол повернулся вал шагового двигателя, и сколько оборотов он сделал.

Преимущества сервоприводов

  • Мощность серводвигателей может достигать 15 кВт, в то время как мощность шагового электродвигателя, как правило, не превышает 1 кВт.
  • Бесшумность работы благодаря принципу действия и сверхточному исполнению конструкции.
  • Скорость вращения в сервоприводах может достигать 10000 об/мин, в некоторых случаях и больше. У шаговых двигателей номинальная скорость вращения обычно не превышает 1000 об/мин вследствие падения момента и увеличения вероятности ошибок.
  • Высокая энергоэффективность. Потребляемая мощность сервопривода пропорциональна нагрузке на валу. Для шагового электродвигателя потребляемая мощность одинакова вне зависимости от нагрузки.
  • Наличие обратной связи обеспечивает точной информацией о повороте вала в любой момент времени. В шаговых двигателях возможно проскальзывание при перегрузке, накопление ошибки и потеря позиционирования.
  • Большая плавность хода. В шаговых двигателях добиться плавности можно только путем применения специальных методов управления.

Преимущества шаговых двигателей

  • Меньшая цена при одинаковой мощности в силу более простой конструкции двигателя и драйвера.
  • Возможность работы на экстремально низких оборотах без ухудшения характеристик и применения редукторов.
  • Более точное позиционирование, обусловленное конструкцией двигателя.
  • Отсутствие необходимости в обратной связи.
  • Для фиксации вала двигателя при останове достаточно снять с него напряжение. При останове серводвигателя необходимо расходовать мощность на удержание либо использовать электромеханический тормоз.

Применение

В промышленном оборудовании для выполнения задач позиционирования имеет смысл использовать и асинхронные двигатели с обратной связью, и сервоприводы, и шаговые двигатели.

Сервоприводы устанавливаются в тех узлах оборудования, где требуется точное позиционирование механизмов для их синхронизации с другими узлами. В частности сервоприводы широко используют в обрабатывающих станках.

Шаговые двигатели нашли наибольшее применение в станках с ЧПУ и в робототехнике.

На практике встречаются производственные линии, в которых в различных узлах используются все три типа электродвигателей.

Поддержание положения в сервоприводе: подчинённое регулирование vs шаговый режим


После выхода предыдущих статьей о векторном управлении электродвигателями поступило много вопросов о позиционном приводе – как приводом отрабатывать заданное положение? Как работает сервопривод в современных станках, как использовать сигнал с датчика положения, чем отличается шаговый привод от сервопривода с подчиненным регулированием? Давайте всё покажу в виде картинок и видео.

Итак, что же такое сервопривод с контуром положения? Для начала посмотрите вот это. Чтобы было видно графики на фоне советую смотреть в полноэкранном режиме.

Трехконтурная структура управления

Система управления стремится поддерживать заданное положение вала ротора. Я вношу возмущающее воздействие, отвожу ротор от заданного положения, но после отпускания вала он снова вмиг возвращается к заданию. Даже если его «закрутить» на несколько оборотов, система управления открутит эти несколько оборотов назад, причем с очень хорошей динамикой — такой, что движение даже не успевает попасть в кадры видео. На заднем фоне виден график работы привода: красным показан ток двигателя (пропорционален моменту), зеленым отображается текущее положение вала ротора, а желтым – задание положения. Максимальный разрешенный момент (ток) у двигателя в этом эксперименте был ограничен в три раза от максимального, на полном я бы не смог его так легко удерживать.

Как работает такая система управления? Это классическая трехконтурная система подчиненного регулирования с последовательной коррекцией, показанная на рис.1.

Рисунок 1. Трехконтурная система подчиненного регулирования

Почему подчиненного? Потому что каждый вложенный контур «подчиняется» заданию вышестоящего. В системе три контура, перечисляю начиная с внутреннего: конур тока (момента), контур скорости (частоты вращения), контур положения. Соответственно, каждый контур с помощью своего регулятора поддерживает на заданном уровне свою величину. В данном случае использовался ПИ-регулятор для токов, П-регулятор для скорости и ПИД-регулятор для положения. Никакой магии типа фаззи-логики, линейно-квадратичных регуляторов и прочего.

Почему именно три контура и именно таких? Попробую объяснить, как обычно, «на пальцах». Если мы хотим регулировать положение, то лучшее, чем мы можем для этого управлять – это скорость (частота вращения), потому что именно скорость напрямую влияет на изменение положения (скорость – это производная от положения), а все остальные величины (ток, напряжение и прочее) влияют на положение более сложным образом, более трудным для регулирования. Далее, если мы теперь хотим регулировать скорость, то лучшее, чем можем управлять – это момент двигателя, так как момент определяет ускорение привода, и оно также самым простым математическим законом связано со скоростью. Так как для двигателя момент — это ток (для двигателя постоянного тока это справедливо в явном виде, а для двигателей переменного тока справедливо для моментообразующего тока в векторном управлении), то для регулирования момента нужно управлять напряжением на инверторе преобразователя, потому что ток и напряжение тоже связаны в первом приближении через простое дифференциальное уравление.

Если какой-либо внутренний контур опустить, то… положение регулироваться будет, но будет регулироваться плохо, не с таким быстродействием, как в трехконтурной системе. Если выкинуть, например, контур тока, заставив регулятор скорости воздействовать напрямую на напряжение инвертора, то останется бесконтрольным момент привода (ток) – он будет меняться как хочет, переходные процессы будут пущены на самотёк. К сожалению, некоторые ардуиноводы делают структуру, показанную на рис.2.

Рис.2. То, как не нужно регулировать положение привода.

Такая структура работает отвратительно (медленно и качается), хотя как-то работает – ПИ-регулятор всё вытянет.

Постоянный и переменный ток: в чем разница для контура положения?

В чем разница в регулировании положения для двигателей постоянного тока и для двигателей переменного тока? В способе поддержания момента. В двигателе постоянного тока достаточно поставить один регулятор тока, который воздействует на напряжение якорной обмотки – получится регулирование момента. В двигателях переменного тока (например, синхронной машине с постоянными магнитами и асинхронном двигателе) придется применять векторное управление. Что это такое и как работает уже было подробно рассмотрено в статьях Векторное управление электродвигателем «на пальцах» и Векторное управление для асинхронного электродвигателя «на пальцах». Также, как и для двигателя постоянного тока, векторное управление позволяет регулировать момент на двигателе. Далее сверху «навешиваются» такие же регуляторы скорости и положения. Итоговая работоспособность контура положения не зависит от типа двигателя (меняются лишь незначительные нюансы).

Шаговый режим работы

Для синхронных машин с постоянными магнитами существует еще один вариант отработки положения – так называемый «шаговый» режим работы. Двигатели, для него оптимизированные, соответственно, называются шаговыми. Не все шаговые двигатели – синхронные машины с магнитами, но большая их часть именно такая (бывают еще шаговики индукторного типа). Как это работает? В двигатель просто подается постоянный ток в нужные фазы. И всё. Ротор под действием «магнитной пружины» сам встаёт в соответствующее току положение. Если нужно поменять положение вала, то вектор тока нужно поворачивать — плавно или дискретно зависит уже от «драйвера» шагового двигателя (с микрошагом или без). Про то, как работает синхронный двигатель, и где там в нем магнитная пружина уже было рассказано в статье.

Шаговый режим хорош тем, что кроме контура тока ему ничего не нужно – ни датчик положения, ни даже микроконтроллер. Система управления для такого режима собирается из трех с половиной микросхем и применяется во всех ЧПУ станках любительского (и не очень) уровня. В чем минусы? Положение поддерживается тоже отвратительно. Поддержанием положения в таком режиме занимается сам двигатель – в статор подается постоянный ток, а ротор стремится встать в соответствующее положение. Можно представить два прямоугольных магнита на одной оси, проходящей через их середину (рис 3). Одним магнитом мы управляем (статорный ток), а второй – ротор, болтается сам по себе и стремится повернуться согласно первому, параллельно ему.

Рис. 3. Шаговый режим работы синхронной машины

Момент на роторе в таком режиме изменяется по закону синуса от угла рассогласования между этими двумя магнитами. В согласованном положении момент равен нулю (на ротор не действует нагрузка), на 90 градусах (магниты перпендикулярны) момент двигателя максимален и стремится повернуть ротор в согласованное положение. А амплитуда этого синуса изменения момента зависит от величины поданного тока.

Число пар полюсов

Рис.4. Одна пара полюсов vs две пары полюсов.

Если пытаться провернуть такой двигатель с двумя парами полюсов с поданным постоянным током в фазы, то момент на роторе вырастет до максимального не за четверть оборота (90 градусов, как в одной паре полюсов), а за восьмую часть оборота (45 механических градусов). У двигателя будет два устойчивых положения ротора на механическом обороте. Для удобства описания процессов в двигателе вводят понятие «электрического оборота» – то, насколько надо провернуть ротор, чтобы магниты ротора одного полюса встали на место таких же от другого полюса, т.е. чтобы сделать один «шаг». Тогда говорят, что ротор провернулся на 360 электрических градусов, а чтобы перевести это в механические, надо поделить на число пар полюсов. На электрическом обороте поведение всех двигателей в плане управления одинаково, независимо от числа пар полюсов. Увеличение числа пар полюсов создает лишь эдакий «электрический редуктор» – можно взять машину с одной парой полюсов и поставить дальше четырехкратный понижающий редуктор, а можно взять машину с четырьмя парами полюсов и получить, грубо говоря, то же самое.

Шаговый режим vs подчиненное регулирование: теория

Для шаговых двигателей число пар полюсов делают очень большим – 50, 100 и более. В этом случае естественные возможности по поддержанию положения получаются очень хорошими – если гарантировать, что момент нагрузки никогда не превышает максимальный момент двигателя, то положение без всяких датчиков положения будет поддерживаться с точностью (±360/(число_пар_полюсов*4)) механических градусов. Правда, цена за это – сильное ухудшение показателей двигателя в массогабаритном плане и КПД. Если сравнить по мощности шаговый двигатель с сотней пар полюсов и такого же габарита синхронный двигатель с небольшим количеством пар полюсов, то длительно-допустимая мощность у шаговика будет в разы меньше. А еще из-за увеличения числа пар полюсов у шаговиков есть проблема с работой на больших частотах вращения. Частоту тока в них приходится подавать в количество_пар_полюсов раз большую, чем в «обычную» синхронную машину, что даёт частоты тока порядка килогерца и более – там и потери на перемагничивание железа огромные, и не всякая система управления такое может.

Кроме того, шаговики не обеспечивают хорошей динамики разгона и торможения, так как при разгоне двигатель должен перебороть два момента: момент нагрузки, а также динамический момент на разгон маховой массы и рабочего органа. И если сумма всех моментов превысит максимальный момент двигателя, он пропустит шаг, что для ЧПУ недопустимо. Поэтому шаговики разгоняют и тормозят обязательно плавно, с большим запасом между суммарным моментом на валу и максимальным моментом двигателя, чтобы не пропускать шаги.
Стоит также отметить, что в шаговом режиме при приложении к ротору нагрузки он всегда будет поддаваться и отклоняться от заданного положения на некоторый угол, каким бы ни был поданный в двигатель ток. Также при резком пропадании нагрузки возможны колебания – ротор на магнитной пружине будет качаться туда-сюда. Если с нагрузкой не повезет, и она будет импульсная, то она может совпасть внутренней частотой колебаний ротора, раскачать его, после чего ротор выпадет из синхронизма – двигатель «пропустит шаг».

Что же делать, если для решения задачи нужно и хорошо поддерживать положение, и получить динамичный, высокоскоростной привод? Не использовать шаговики! А использовать «обычную» синхронную машину с небольшим числом пар полюсов в качестве серводвигателя, установить датчик положения и построить трехконтурную систему управления. В векторной системе управления никаких «шагов» уже нет – теряться нечему. В шаговом режиме через двигатель всегда требуется пропускать большой ток, а в векторном режиме с трехконтурной структурой управления ток течет только тогда, когда к валу приложена нагрузка. Точность поддержания положения в системе подчиненного регулирования чаще всего определяется точностью датчика положения ротора. Чем точнее датчик, тем качественнее получается работа контура положения. А современные датчики положения бывают очень точны – сотни тысяч меток на один механический оборот. Это на порядки лучше, чем дают шаговые двигатели с самым сильным дроблением шага.

Шаговый режим vs подчиненное регулирование: практика

Рис. 5. Отладочный комплект для управления электродвигателем VectorCARD К1921ВК01Т

Серводвигатель – Leadshine ACM601V36-1000. Трехфазная синхронная машина с постоянными магнитами на 100Вт, 4 пары полюсов, напряжение питания 36В, номинальный ток 4А, пиковый 11А. Датчик положения – встроенный инкрементальный энкодер на 1000 периодов квадратурного сигнала (или, что то же самое, 4000 фронтов (меток) по двум каналам A и B суммарно).
Инвертор – шестиключевой инвертор на полевых транзисторах из комплекта DRV8301-HC-EVM Texas Instruments.
Контроллер – отладочная плата VectorCARD К1921ВК01Т на отечественном микроконтроллере К1921ВК01Т ОАО «НИИЭТ» (ARM Cortex-M4F, 100МГц).
Общая структура векторного трехконтурного подчиненного регулирования, создана программно, показана на рис. 6.

Рис. 6. Трехконтурная структура с векторным управлением синхронным двигателем: контура токов (момента), скорости, положения.

Если кому-то эта структура кажется страшной, то всё, что обведено в зеленую рамку было до основания разобрано в статье Векторное управление электродвигателем «на пальцах». По своему принципу структура ничем не отличается от структуры рис. 1.
Частота ШИМ задана равной 20кГц, частота обсчета структуры управления (всех трех контуров) – 10кГц. Датчики тока – шунтового типа, установлены последовательно с нижними ключами инвертора. Ресурсы микроконтроллера по производительности вычислений загружены чуть более, чем на половину.

Шаговый режим vs подчиненное регулирование: сравнение в статическом режиме

Сначала сравним шаговый режим работы и трехконтурную систему подчиненного регулирования с векторным управлением «в статике». Зададим одно и то же положение ротора, а затем будем плавно увеличивать момент нагрузки на валу. В шаговом режиме работы подадим номинальный ток 4А, а в векторном режиме работы поставим токоограничение 4А. Что мы ожидаем увидеть?

В шаговом режиме работы ток будет постоянным как по фазе, так и по амплитуде, а положение ротора должно «прогибаться» на магнитной пружине под нагрузкой. Так как число пар полюсов равно 4, то максимум момента должен достигаться при отклонении 360/4/4 = 22.5 механических градусов от первоначального согласованного положения.

Что будет в трехконтурной системе управления? Регулятор положения в этом опыте – ПИД (пропорционально – интегрально – дифференциальный). Ключевая буква здесь «И» – он имеет интегральную составляющую. Это значит, что до тех пор, пока между заданным положением и текущим есть хоть какое-то рассогласование, интегратор регулятора будет интегрировать и увеличивать свой выход, пока ошибка не придет в ноль. Это значит, что если нагружать вал медленно, так, чтобы интегратор успел наинтегрировать и скомпенсировать ошибку (т.е. в статическом режиме), то вал будет стоять в одном и том же положении «мёртво». Но когда запас по току (моменту) привода будет исчерпан (задание на ток дойдет до ограничения 4А) привод сразу начнет поддаваться и отклоняться от задания (тем не менее, всё время будет тянуть с максимальным моментом по направлению к заданию).

Для отслеживания текущего положения вала ротора удобно наблюдать сигнал ошибки с датчика положения (разница между заданием и текущим положением), а также ток статора. При проведении опыта осциллограмма с этими данными будет видна на заднем фоне. Для наблюдения текущего момента нагрузки в опыте использован высокоточный специализированный динамометр, который я достал из ящика кухонного стола. Вот, собственно, сам опыт (чтобы было что-то видно — полный экран!):

Видео подтверждает сказанное. В векторной трехконтурной системе управления ротор стоял неподвижно, пока я не «выбрал» доступные 4А тока, а потом ротор стал отклоняться. В разомкнутой по положению структуре с постоянным током ротор легко поддался внешнему моменту. Так как число пар полюсов этого двигателя равно 4, то ротор отклонился более, чем на 20 градусов от задания.

Шаговый режим vs подчиненное регулирование: сравнение в динамике

Всё становится интереснее в динамике. Что если приложить импульсную, ударную нагрузку? Здесь получается соревнование двух принципиально разных систем. В векторной системе управления быстродействие зависит напрямую от быстродействия трехконтурной структуры управления. Чем жестче настроены регуляторы, чем быстрее частота обсчета структуры, чем точнее и быстрее датчики, тем лучше получится реакция на возмущение в динамике. В шаговом режиме работы система управления «отдыхает». Она создала вектор тока – это всё, что от неё нужно. Всю реакцию на возмущающее воздействие обеспечивает сам двигатель. Момент на валу при отклонении вала ротора возникает «мгновенно», так как это, по сути, взаимодействие двух магнитов. Но момент увеличивается пропорционально синусу от электрического угла отклонения, а значит, такая система будет иметь определенную жесткость. В общем, это обычная «магнитная пружина». Сравнение в динамике – это очень хороший показательный опыт для трехконтурной системы управления. Если она медленная, то она не сможет показать результат лучше, чем разомкнутая структура. Да, в статике трехконтурная структура может выбрать ошибку по положению в ноль интегральной частью регулятора, но в динамике может и «просесть» сильнее, чем обычный шаговый режим работы. Проверим?

Для проведения этого опыта я воспользовался мерным грузом, который нашел в своем шкафу с инструментами, а также ниткой, привязанной к штанге, которая имеет консольное закрепление на муфте двигателя. Сбрасывая груз вниз с фиксированной высоты, получаем ударную импульсную нагрузку на вал ротора. Можно наблюдать, насколько отклонится вал ротора от задания в момент удара. Вот видео эксперимента:

Вначале включен шаговый режим работы с фиксированным вектором тока. Я показываю, как ротор прогибается под воздействием момента нагрузки, как, пересилив момент нагрузки, можно перескочить в другое фиксированное положение. Затем провожу эксперимент по сбросу груза. Далее то же самое для трехконтурной структуры управления. Заметили ли вы, насколько меньше отклонился вал ротора на видео в трехконтурной системе управления? Или, может быть, больше? Я нет.

Если бы похожее видео снимал канал Дискавери, они обязательно установили бы высокоскоростную камеру для красивых сравнительных кадров. Однако у нас есть инструмент поточнее – датчик положения ротора и микроконтроллер. Нужно просто снять осциллограмму ошибки отработки положения в момент приложения импульсной нагрузки. Как это делается подробно описано в статье Способы отладки ПО микроконтроллеров в электроприводе. Если кратко, то микроконтроллер по определенному событию записывает точки осциллограммы в массив, а затем осциллограмма скачивается на компьютер и отображается. Я в софте контроллера установил триггер захлопывания осциллограммы, когда ошибка по положению больше определенной уставки, вписав для этого пару строк кода на Си. После чего на компьютере я получил вот такую осциллограмму для шагового режима работы с током 5А:

Рис. 7. Осциллограмма реакции на импульсный наброс нагрузки в «шаговом» режиме работы – к двигателю приложен вектор тока фиксированной амплитуды и фазы. Фиолетовым показано отклонение ротора от заданного положения в электрических градусах (для перехода в механические делить на 4), голубым показана амплитуда тока статора, красным – частота вращения вала. В одной клетке по оси времени 21 миллисекунда.

В осциллограф я добавил три переменных системы управления: ошибка по положению, ток статора, частота вращения вала. Из осциллограммы видно, что ток статора оставался постоянным и равным 5А, ударная нагрузка внесла лишь небольшое возмущение в него (за счет ЭДС вращающегося двигателя). А вот положение скакнуло сильно. Максимальное отклонение положения вала от задания составило 36 электрических градусов (или 9 механических). Наблюдается затухающий колебательный режим ротора после удара. Я провел несколько таких опытов, убеждаясь в повторяемости. Все осциллограммы получились схожи – благо, что при наличии нужного инструментария время на проведение опыта и получение осциллограммы (в том виде, как вставлена в статью) составляет секунд 5-10.

Теперь посмотрим, что покажет трехконтурная структура управления (рис. 8). Предварительно я настроил у неё все регуляторы на среднее быстродействие.

Рис. 8. Осциллограмма реакции на импульсный наброс нагрузки с трехконтурной системой подчиненного регулирования. Фиолетовым показано отклонение ротора от заданного положения в электрических градусах (для перехода в механические делить на 4), голубым показан текущий ток статора по оси q (моментообразующий ток), синим – его задание, а красным – текущая частота вращения. В одной клетке по оси времени 21 миллисекунда.

Здесь процесс поинтереснее. Помимо, собственно, положения, я добавил в осциллограф еще всяких величин, по которым видно работу подчиненного регулирования. В начальный момент времени всё равно нулю: ошибка равна нулю, скорость, ток статора и его задание. На ротор не действует сил, он покоится за счет своей силы трения. Но изолента в этот момент уже неумолимо летит вниз, веревочка разматывается… В определенный момент длина нити выбирается, груз ударяет по валу, положение начинает меняться, ошибка (обратная связь регулятора положения) выстреливает вверх, вместе со скоростью вала. В ответ на это трехконтурная система резко наращивает момент на приводе, пытаясь вернуть его в первоначальное положение. Спустя пять миллисекунд после удара момент на двигателе достигает максимально-разрешенного (ток 5А), после чего положение нехотя начинает меняться в обратную сторону, скорость меняет знак. Перелетев нулевую точку и совершив пару колебаний, система приходит к заданию.

Видно, как задание на ток статора (синее) немного опережает текущее значение (голубое), но задержка менее миллисекунды, что говорит о высоком быстродействии контура тока. Однако в задании тока видна некоторая «пушистость» и «иголки», особенно под конец переходного процесса. Что это и откуда? Давайте рассмотрим, что выдает при этом процессе регулятор положения – выход его пропорциональной, интегральной и дифференциальной составляющих. Роняю изоленту еще раз, вот они:

Рис. 9. Осциллограмма реакции на импульсный наброс нагрузки с трехконтурной системой подчиненного регулирования. Фиолетовым показано отклонение ротора от заданного положения в электрических градусах (для перехода в механические делить на 4), голубым – выход пропорциональной части ПИД регулятора положения, красным – интегральной, синим – дифференциальной частей. В одной клетке по оси времени 21 миллисекунда.

Посмотрите, как отрабатывают переходной процесс все три части ПИД регулятора. Осциллограмма – как из учебника, но эта – живая, настоящая и свежая, только из двигателя. Выход пропорциональной части прямо пропорционален ошибке. Интегральная часть – это интеграл от ошибки, смотрите как он наинтегрировал «вниз» от первого большого колебания и потом нехотя приходит к нулю. Дифференциальная часть – это производная от ошибки. Но так как датчик положения инкрементальный и всего лишь на 1000 меток, то изменение каждой метки – событие. Поэтому положение для системы управления меняется дискретно, скачками, а значит и производная от такого изменения будет «игольчатой». Или даже импульсной, прямоугольной, шумной – что мы и видим.

Но постойте… Производная от положения – это же скорость! Пролистайте выше до рис. 8 и сравните тот график скорости с графиком дифференциальной части рис.9. То же самое, но без шума! Потому что скорость вращения модулем обработки инкрементального энкодера определяется более грамотно – аппаратной частью микроконтроллера, засекающего время между метками датчика. Та же самая «производная» от положения, но более правильно измеренная.

Какая же мораль? Не все составляющие регулятора одинаково полезны. То, что делает дифференциальная составляющая регулятора положения, теоретически должно делаться нижестоящим контуром скорости. Раз она мне понадобилась для более качественной настройки, то это означает лишь, что я недонастроил промежуточный контур скорости.

Ах, да. С чего мы там начали? С ошибки по положению. В разомкнутом по положению режиме работы ошибка была 36 электрических градусов (9 механических), а в трехконтурной системе подчиненного регулирования с данной настройкой регуляторов она равна 21 электрический градус (5.2 механических). Лучше, да. А можно еще лучше? Давайте задерем еще коэффициенты регулятора положения. Повышаю всё – Kп, Kи, Kд раза в полтора. Смотрим:

Рис. 10. Осциллограмма реакции на импульсный наброс нагрузки с трехконтурной системой подчиненного регулирования. Коэффициенты регулятора положения повышены в полтора раза.

Ошибка уменьшилась, да… 18 электрических градусов. Но что мы видим? Система управления практически сразу уперлась в токоограничение. Она хотела бы приложить ток больше 5А, но я поставил ограничение 5. Почему? Чтобы по-честному сравнить с разомкнутой системой управления, у которой тоже ток был 5А. Только вот получилось нечестно: векторная система управления создает ток только когда ей это нужно (когда надо реализовать момент), а разомкнутая система «гонит» заданный ток всегда. С точки зрения нагрева и потерь для двигателя гораздо предпочительнее векторая система управления.

Разрешим векторной системе «поддать» току? Хотя бы на короткое время. По паспорту двигатель допускает 11А. Разрешим 7А, чтобы оценить результат.

Рис. 11. Осциллограмма реакции на импульсный наброс нагрузки с трехконтурной системой подчиненного регулирования. Токоограничение поднято с 5А до 7А.

Ошибка всего 15 электрических градусов! Это в 2,5 раза меньше, чем в разомкнутой по положению системе управления. Но смотрите, что это там в конце графика? «Иголки» в задании тока… и они продолжаются и продолжаются, что я слышу акустически – двигатель «звенит». Это называется автоколебаниями – слишком сильно задрал коэффициенты регулятора.

Замкнутые контура и их шумы

В начале видео показан шум от контура тока. Был включен только контур тока с двумя регуляторами токов. В двигателе появился шум, который мой коллега сравнил с шумом от трубы, по которой течет вода. Похоже на «белый» шум. Этот шум рождается из-за шума измерений токов фаз. Регуляторы тока из-за сравнительно большой пропорциональной составляющей (необходима для требуемого быстродействия) ловят все небольшие флуктуации измерения тока и усиливают их, передавая на задание напряжения инвертора. Т.е. изначально ток в двигателе ровный и не шумит, но шумит его измерение, регуляторы тока пытаются его скомпенсировать, «дергают» за напряжение инвертора, тем самым заставляя реальный ток в двигателе на самом деле «шуметь». На осциллограмме это видно вот так:

Рис. 12. Осциллограмма переходного процесса скачка задания (1А) регуляторов тока и их последующий «шум». Показана обратная связь по регуляторам токов (сигнал с АЦП) и выход регуляторов, подающийся на инвертор. В одной клетке по оси времени 4.2мс.

На осциллограмме показан не только шум, но и переходной процесс регуляторов тока при включении. Ток отрабатывается менее чем за 1мс, а переходной процесс близок к настройке на технический оптимум. Шум в измерении тока порядка +-0.02А приводит к изменению выходного напряжения на 20% от текущего, что и слышится как шум. Если в 10 раз замедлить регуляторы, то можно получить такую картину:

Рис. 13. Осциллограмма переходного процесса скачка задания (1А) регуляторов тока с заниженным в 10 раз Кп и Ки по отношению к настройке на технический оптимум. В одной клетке по оси времени 4.2мс.

Регуляторы токов стали мягкие и тихие, как вата, и им абсолютно неинтересно реагировать на какой-то там шум в аналоговом канале – как, впрочем, и на собственное задание…

Далее в видео показаны различные звуки от регулятора положения. Опытов там много, покажу последний случай – автоколебания при чрезмерно завышенном Кп регулятора положения. Так как датчик положения инкрементальный, при большом Кп изменение положения всего на одну метку заставляет «бешеный» регулятор сильно нервничать, подкидывая задание на контур скорости, и, соответственно, на ток. Как-то так:

Рис. 14. Автоколебания контура положения с чрезмерно завышенным Кп. Фиолетовым и красным показан моментообразующий ток статора (задание и фактический), голубым – положение с энкодера в метках (инкрементах), синим – выход регулятора положения (задание на контур скорости).

Видно, как при изменении положения всего на одну метку (один «тик» датчика положения) система управления подкидывает задание тока на 0,3А. Это немалый момент, учитывая номинал двигателя 5А, что приводит к началу движения и, соответственно, колебаниям. На видео видно, как «страшно» звучат автоколебания, хотя положение скачет на одну безобидную метку туда-сюда.

В связи с этим возникает философский вопрос: какие колебания и шумы страшны, а на какие не стоит обращать внимания? Всё зависит от объекта – где применяется сервопривод. Если это трехкоординатный станок с редуктором и люфтами, рука-манипулятор для сварки или быстродействующий сервопривод какого-то рулевого механизма – то там «звон» не так страшен. В таких применениях только именно акустический шум может вызывать недовольство, но на технический процесс едва ли что-то из показанного в видео повлияет. А вот если это прямой привод позиционирования каких-нибудь там подложек на кремниевой фабрике или если это прямой привод микроскопа – вот там шумы не допускаются никакие «от слова совсем». Не то что скрипы контура положения от энкодера, но и даже тот едва слышимый шум от контура тока уже может быть проблемой. Потому что всё это передается на рабочий орган и приведет к нарушению техпроцесса.

Да, нужно сказать, что все те звуки, которые показаны в видео – это не просто звуки. Если схватиться за вал, то все они ощущаются, и очень хорошо. Человеческие пальцы очень чувствительны – гораздо лучше многих датчиков. Даже ощущается тот шум «текущей воды» от регуляторов тока. Точно так же, как от трубы водопровода. Поэтому для задач сервопривода, которые взаимодействуют с человеком, шумы и колебания тоже нежелательны. Представьте себе симулятор самолета с наклоняющейся кабиной, где привода под ней хрустят и стонут.

Как с шумами бороться? Ну, с контуром положения более-менее понятно – нужно ставить более точный датчик. Энкодер из этих опытов на 1000 меток – это датчик «курам на смех» в сфере высокоточного сервопривода. Там если ставят энкодер, то порядка сотни тысяч меток. А чаще ставят аналоговый датчик положения, который выдает синусно/косинусный сигнал. Применяя хорошее АЦП и оверсемплинг (измеряя гораздо чаще, чем это надо, а потом усредняя результат) можно получить еще на порядок большие точности, чем дает энкодер.

Что делать с шумом АЦП в контуре тока? Во-первых, искать источник шума. В данном приводе источник шума был найден – это DC/DC, делающий из входного силового питания приборное 5В и установленный на плате инвертора. Разводка платы не совсем удачная, и DC/DC «фонит» на все рядом проходящие дорожки платы. Сам же АЦП микроконтроллера гораздо менее шумный, чем шум от этого DC/DC. Во-вторых, можно применять тот же оверсемплинг, если производительность АЦП это позволяет. В-третьих, нужно правильно выбирать диапазон измерений. Я работал с двигателем на 5А от преобразователя на 60А. Соответственно, полный диапазон АЦП по измерению тока тоже близок к 60А. Если бы диапазон был 20А, то тот же шум на аналоговый канал после преобразования в амперы оказался бы в три раза меньше.

Но шум от АЦП – это ещё не все. Я не показал в видео один из главных шумов, который не слышно – шум от ШИМ. Частота ШИМ в этих опытах была установлена равной 20кГц – на границе слышимости. Но это не значит, что на вал ротора эти вибрации не передаются. Нужно измерить пульсацию тока в двигателе, вызванную данной частотой ШИМ, пересчитать её в момент, а затем уже можно оценить, «пройдет» она на вал или нет. На рисунке 15 показаны пульсации тока в фазе двигателя, измеренные внешним датчиком и осциллографом.

Рис. 15. Пульсации тока в фазе двигателя при частоте ШИМ 20кГц. Величина пульсаций 0.3А.

Пульсации тока в 0.3А довольно значительны. Вернее, были бы значительны, если бы мы этим приводом собрались позиционировать кремниевые подложки на фабрике Intel. Благо, конкретно таким типам двигателей это не светит и о проблеме можно забыть. Но что делать, если нужно сделать более серьезный привод? Для начала можно увеличить частоту ШИМ. Современные силовые полевые транзисторы могут обеспечить частоту переключений до 500кГц. Однако тут есть… три проблемы.

Первая проблема — с увеличением частоты ШИМ увеличивается влияние так называемого «мёртвого времени» (некоторые называет его бестоковой паузой, но это неправильно – ток там течёт). Это время, когда нижний транзистор инвертора уже выключился, а верхний еще не включился (и наоборот). Это время одно и то же для одного типа транзисторов, и в процентах к периоду ШИМ оно становится всё больше с повышением частоты ШИМ. Мёртвое время искажает выходное напряжение инвертора, добавляя регуляторам тока нелинейности в инверторе.

Вторая проблема – с увеличением частоты ШИМ все сложнее генерировать эту самую ШИМ микроконтроллером. Микроконтроллер делает ШИМ с помощью аппаратного таймера, который «тикает» на единицу с каждым тактом микроконтроллера. Уставкой сравнения с таймером программист выбирает, на какое время открыть ключ. Что выйдет в такой системе с микроконтроллером на 100МГц и частотой ШИМ 500кГц? Делим одно на другое, получаем 200 квантов (дискрет) задания уставки. 200 уставок задания напряжения для ШИМ – это негодно «от слова совсем». Для сервопривода нужно минимум на два порядка больше. Для этого некоторые производители микроконтроллеров встраивают в свои изделия так называемый ШИМ высокого разрешения – позволяют отсчитать время открытия ключа с дискретностью по времени в несколько раз лучше, чем один такт микроконтроллера. В данном микроконтроллере такая возможность есть, однако включить ШИМ высокого разрешения мешает третья проблема.

Третья проблема – датчики токов. В используемом инверторе они шунтового типа и стоят последовательно с нижними ключами инвертора. А это значит, что измерить ток в фазе можно только в тот момент времени, когда открыт нижний ключ. А это значит, что запуск АЦП нужно синхронизировать с работой ШИМ и производить измерение строго в тот момент, когда приоткрывается нижний ключ. Проблема в том, что переходные процессы в аналоговых цепях не успевают закончиться, если частота ШИМ очень высока – ток начинает измеряться с ошибкой. В общем, всё сложно…

Есть принципиально другой путь – некоторые производители сервоприводов вообще отказываются от ШИМ и делают аппаратный контур тока либо на ПЛИС, либо вообще на операционных усилителях, работающих в линейном режиме и рассеивающих на себе всю лишнюю энергию, которую призван экономить ШИМ. Но это уже совсем-совсем другая история.

Выводы

Требования к сервоприводам очень разные – кому-то хватает шагового режима управления для простого медленного ЧПУ станка (цена вопроса драйвер+двигатель пара тысяч рублей), кому-то нужно такое качество поддержания положения, что даже шум контура тока становится проблемой. Данная статья «по верхам» рассказывает о некоторых аспектах работы системы подчиненного регулирования и качества работы контура положения, чтобы познакомить читателя с чем-то, кроме всем известных «шаговиков». Качество работы сервопривода, показанного в данных опытах, на самом деле, очень посредственное, главным образом из-за низкого разрешения датчика положения ротора. При использовании датчика с хорошим разрешением качество регулирования заметно возрастает.

Реклама

Данные опыты были проведены на отладочном комплекте VectorCARD K1921BK01T от ООО «НПФ Вектор», построенного на базе отечественного motorcontrol микроконтроллера K1921BK01T ОАО «НИИЭТ» (ARM Cortex-M4F, 100МГц). В отладочный комплект входит всё оборудование, показанное в видео статьи, включая программное обеспечение микроконтроллера в исходных кодах с этой самой трехконтурной системой подчиненного регулирования, а также ПО для наблюдения осциллограмм любых переменных системы управления.

Сравнение сервоприводов и шаговых двигателей

СервоприводРисунок 1 — Сервопривод

1. Физика процесса

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э.Д.С. равная:

где В — магнитная индукция в месте, где находится проводник,
l — активная длина проводника (та его часть, которая находится в магнитном поле),
v — скорость перемещения проводника в магнитном поле.

Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии.

Физика процессаРисунок 2 — Физика процесса

Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем. Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

2. Асинхронные двигатели

Наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части — конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент.

Вид асинхронной машины с короткозамкнутым ротором в разрезеРисунок 3 — Вид асинхронной машины с короткозамкнутым ротором в разрезе

На рисунке приведен вид асинхронной машины с короткозамкнутым ротором в разрезе:

2 — сердечник статора,

3 — обмотка статора,

4 — сердечник ротора с короткозамкнутой обмоткой,

3. Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f — частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

4. Шаговые двигатели

Шаговые двигатели — это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

5. Двигатели с постоянными магнитами

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48—24 шага на оборот (угол шага 7,5—15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

6. Гибридные двигатели

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6…0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8…0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

где Nph — число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

7. Сервопривод

График зависимости момента от скорости вращения двигателяРисунок 6 — График зависимости момента от скорости вращения двигателя

Сервопривод — общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод – это комплекс технических средств. Состав сервопривода: привод – например, электромотор, датчик обратной связи – например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты \ сервоусилитель \ инвертор \ servodrive). Мощность двигателей: 0,05…15 кВт. Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» – ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет. Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи.

Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт. Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении. Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин.

Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

  • Высокая надежность
  • Относительно низкая цена
  • Высокие динамические характеристики
  • Отсутствие эффекта потери шагов
  • Высокая перегрузочная способность
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность
  • Возможность эффекта потери шагов
  • Высокая цена, следствие использования сложной системы управления
  • Низкая ремонтопригодность
  • Требуется более бережное отношение к двигателю

* — Динамическая точность — максимальное отклонение реальной траектории перемещения инструмента от запрограммированной

8. Вывод

Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

Печенька КИП-Сервис© КИП-Сервис, 2023

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *