Как подключить датчик влажности к ардуино
Перейти к содержимому

Как подключить датчик влажности к ардуино

  • автор:

Датчик влажности и температуры DHT11

Составной датчик DHT11 включает в себя сразу два полезных измерительных прибора — термометр и гигрометр. Первый, очевидно, измеряет температуру, а второй — относительную влажность воздуха. Такие датчики применяются в системах климат-контроля внутри жилых и промышленных помещений, в теплицах, а также в погодных станциях.

Внутри корпуса DHT11 размещается резистивный элемент, чувствительный к изменению относительной влажности, термистор типа NTC, а также микросхема для передачи показаний этих двух датчиков по цифровому протоколу 1-wire.

Для удобства использования, мы в RobotClass сделали модуль в форм-факторе 23×23мм, на котором датчик DHT11 уже имеет необходимый для правильной работы резистор подтяжки и штыревой трёхконтактный разъём.

Датчик влажности и температуры DHT11 от RobotClass

Характеристики датчика

  • напряжение питания и I/O: от 3,3 до 5,5 В;
  • тип датчика влажности: резистивный;
  • диапазон измерения влажности: от 20% до 90%;
  • погрешность при измерении влажности: 5%;
  • тип датчика температуры: NTC термистор;
  • диапазон измерения температуры: от 0°C до 50°C;
  • погрешность при измерении температуры: 2%;
  • частота опроса: не более 1 Гц (1 раз в сек.);
  • время отклика при измерении влажности: 10 с.

Кроме DHT-11, существует множество аналогичных датчиков, которые отличаются точностью, энергопотреблением, интерфейсом. Например, у датчика DHT22 диапазон измерений влажности составляет от 0 до 100%, а температуры от -40 до 125°C.

Список необходимых компонентов

Для выполнения простого примера с датчиком RobotClass DHT11, кроме самого модуля датчика, потребуется отладочная плата Arduino Uno или её аналог, а также немного проводов вилка-розетка. Если вам не хватает что-то из этого, можно добавить эти компоненты в корзину прямо здесь и затем оформить заказ в нашем интернет-магазине.

Подключение датчика DHT11 к Ардуино

У датчика DHT11 есть четыре вывода, один из которых (№3) не используется.

dht11

Как видно на фото, выводы нумеруются слева на право, если смотреть на корпус датчика со стороны решетки и ногами вниз. Подключаем выводы к Ардуино Уно по следующей схеме:

Датчик DHT11 1 2 4
Ардуино Уно +5V 2 GND

Принципиальная схема

Подключение DHT11 к Ардуино Уно

Внешний вид макета

Подключение датчика DHT11 к Ардуино

Важно отметить, что второй вывод датчика мы подключаем не только ко второй линии GPIO на Ардуино, но еще и к плюсу питания через резистор подтяжки 4,7 кОм. Таким образом, мы, что называется, «подтягиваем» линию данных датчика к плюсу. Это необходимо для правильного функционирования DHT11.

Подключение модуля RobotClass DHT11 к Ардуино

В случае использования модуля от RobotClass, подтягивающий резистор не понадобится. Схема будет выглядеть следующим образом.

Принципиальная схема

Подключение датчика DHT11 к Ардуино

Внешний вид макета

Подключение датчика DHT11 к Ардуино

Программа для работы с DHT11

Теперь, когда датчик подключен, приступим к программированию контроллера. Первое, что нам следует сделать — установить в Arduino IDE дополнительную библиотеку. Существует множество библиотек для работы с DHT, но мы выберем вариант с портала Adafruit. Ссылка на библиотеку имеется в конце урока.

Устанавливаем библиотеку и составляем тестовую программу:

В верхней части программы имеется три строки с директивой define, две из которых закомментированы (перед ними стоят два слеша). В зависимости от типа датчика мы можем раскомментировать нужную строку. Сейчас выбран датчик DHT11.

Загружаем программу в Ардуино Уно, открываем монитор последовательного порта (Tools/Serial Monitor) и наблюдаем результаты измерений!

IMG_20141120_225500

Задания

  1. Автоматическая теплица. Требуется собрать автоматический регулятор влажности, состоящий из контроллера Ардуино Уно, датчика влажности DHT11 и реле. Программа регулятора должна каждые 3 секунды проверять значение влажности и температуры. В случае, если во время очередной проверки влажность опускается ниже 50% при температуре не ниже +20 градусов, с помощью реле включается вентилятор. Для простоты, к реле можно подключить обычный светодиод.

В заключении

Хотя датчик влажности DHT11 и является самым популярным, он не отличается выдающимися характеристиками. К примеру, его более продвинутый собрат DHT22 имеет больший диапазон измерений влажности и температуры, а также большую точность. А датчик AM2320 так же точен, как и DHT22, но имеет более удобный в некоторых задачах интерфейс I2C.

Однако, сам по себе резистивный элемент имеет ряд недостатков. Поскольку сопротивление материала зависит ещё и от температуры, возникает необходимость измерять её достаточно точно. Кроме того, сопротивление в зависимости от влажности меняется очень слабо, так что для качественного измерения потребуется точный малошумный АЦП.

Есть и датчики, основанные на других принципах. В частности, ёмкостный AHT20, выполненный по MEMS технологии. Но и у них тоже достаточно своих недостатков. Ёмкостные элементы имеют склонность к старению, загрязнению и дрейфу калибровочных значений.

Кроме того, все датчики требуют регулярной калибровки, что тоже сопряжено с различными проблемами.

Как вы уже понял, точное измерение относительной влажности — сложный процесс, подверженный искажениям из-за множества факторов. Благо, что в большинстве DIY-задач такой точности не требуется.

Полезные материалы

Скачать архив с библиотекой для работы с DHT11 можно по следующей ссылке:

Также библиотеку можно установить через менеджер библиотек в Arduino IDE. В поисковой строке менеджера необходимо ввести «DHT sensor library by Adafruit«.

Датчик влажности и температуры DHT11 : 5 комментариев

Вопрос есть. У вас тоже точность измерений и скорость изменения показаний не очень? В квартире 21 градус, 34 влажность, ок. Но потом я вышел на улицу с температурой градусов 7-8 и влажностью 95 %, за секунд 30 показания опустились по температуре до 16 градусов, а влажность поднялась всего до 36 %.

Датчик DHT11 не славится точностью, это правда. Чуть получше дела обстоят у датчика DHT22. Есть и еще более точные модели.

На скрине показывает влажность 13% при том, что пределы измерения датчика 20-95. Явно что-то не так.

Как работают датчики температуры и влажности DHT11 и DHT22, и их взаимодействие с Arduino

Датчики температуры и влажности DHT11 и DHT22/AM2302 от AOSONG довольно просты в использовании, недорогие и отлично подходят для любителей! Эти датчики предварительно откалиброваны и не требуют дополнительных компонентов, поэтому вы можете сразу начать измерение температуры и относительной влажности.

Как работают датчики температуры и влажности DHT11 и DHT22, и их взаимодействие с Arduino Рисунок 1 – Как работают датчики температуры и влажности DHT11 и DHT22, и их взаимодействие с Arduino

Одна из важнейших функций, которую они предоставляют, заключается в том, что температура и влажность измеряются с точностью до десятых долей; то есть до одного десятичного знака. Единственным недостатком этого датчика является то, что вы можете получать с него новые данные с периодичностью только раз в одну или две секунды. Но, учитывая его производительность и цену, вы не можете жаловаться.

DHT11 против DHT22/AM2302

У нас есть две версии серии датчиков DHTxx. Они выглядят немного похоже и имеют одинаковую распиновку, но имеют разные характеристики. Вот подробности.

DHT22 является более дорогой версией, которая, очевидно, имеет лучшие характеристики. Диапазон измерения температуры составляет от -40°C до +80°C с точностью ±0,5 градуса, а диапазон температур DHT11 составляет от 0°C до 50°C с точностью ±2 градуса. Также датчик DHT22 имеет более широкий диапазон измерения влажности, от 0 до 100% с точностью 2-5%, в то время как диапазон измерения влажности DHT11 составляет от 20 до 80% с точностью 5%.

Сравнение спецификаций DHT11 и DHT22/AM2302

DHT11 DHT22
DHT11 DHT22
Рабочее напряжение от 3 до 5 В от 3 до 5 В
Максимальный рабочий ток 2,5 мА макс 2,5 мА макс
Диапазон измерения влажности 20-80% / 5% 0-100% / 2-5%
Диапазон измерения температуры 0-50°C / ± 2°C от -40 до 80°C / ± 0,5°C
Частота выборки 1 Гц (чтение каждую секунду) 0,5 Гц (чтение каждые 2 секунды)
Размер корпуса 15,5 мм х 12 мм х 5,5 мм 15,1 мм х 25 мм х 7,7 мм
Преимущество Ультра низкая стоимость Более точный

Хотя DHT22/AM2302 более точен и работает в большем диапазоне температур и влажности; есть три вещи, в которых DHT11 сильно превосходит DHT22. Он более дешевый, меньше по размеру и имеет более высокую частоту выборки. Частота выборки DHT11 составляет 1 Гц, то есть одно чтение каждую секунду, в то время как частота выборки DHT22 составляет 0,5 Гц, то есть одно чтение каждые две секунды.

Рабочее напряжение обоих датчиков составляет от 3 до 5 вольт, в то время как максимальный ток, используемый во время преобразования (при запросе данных), составляет 2,5 мА. И самое приятное, что датчики DHT11 и DHT22/AM2302 являются «взаимозаменяемыми», то есть, если вы создаете свой проект с одним датчиком, вы можете просто отключить его и использовать другой датчик. Ваш код, возможно, придется немного изменить, но, по крайней мере, схема не изменится!

Для получения более подробной информации обратитесь к техническим описаниям датчиков DHT11 и DHT22/AM2302.

Обзор аппаратного обеспечения

Теперь давайте перейдем к более интересным вещам. Давайте разберем оба датчика DHT11 и DHT22/AM2302 и посмотрим, что внутри.

Корпус состоит из двух частей, поэтому для его вскрытия достаточно просто достать острый нож и разделить корпус на части. Внутри корпуса на стороне датчиков находятся датчик влажности и датчик температуры NTC (термистор).

Рисунок 2 Внутренности датчиков температуры и влажности DHT11 DHT22/AM2302 Рисунок 2 – Внутренности датчиков температуры и влажности DHT11 DHT22/AM2302

Чувствительный к влажности компонент, который используется, разумеется, для измерения влажности, имеет два электрода с влагоудерживающей подложкой (обычно соль или проводящий пластиковый полимер), зажатой между ними. По мере поглощения водяного пара подложка высвобождает ионы, что, в свою очередь, увеличивает проводимость между электродами. Изменение сопротивления между двумя электродами пропорционально относительной влажности. Более высокая относительная влажность уменьшает сопротивление между электродами, в то время как более низкая относительная влажность увеличивает это сопротивление.

Рисунок 3 Внутренняя структура датчика влажности в DHT11 и DHT22 Рисунок 3 – Внутренняя структура датчика влажности в DHT11 и DHT22

Кроме того, в этих датчиках для измерения температуры имеется датчик температуры NTC (термистор). Термистор – это терморезистор – резистор, который меняет свое сопротивление в зависимости от температуры. Технически все резисторы являются термисторами – их сопротивление слегка изменяется в зависимости от температуры, но обычно это изменение очень мало и его трудно измерить.

Термисторы сделаны так, чтобы их сопротивление резко изменялось при изменении температуры, и изменение на один градус может составлять 100 Ом или более! Термин «NTC» означает «Negative Temperature Coefficient» (отрицательный температурный коэффициент), что означает, что с ростом температуры сопротивление уменьшается.

Рисунок 4 График зависимости сопротивления NTC термистора от температуры Рисунок 4 – График зависимости сопротивления NTC термистора от температуры

С другой стороны имеется небольшая печатная плата с 8-разрядной микросхемой в корпусе SOIC-14. Эта микросхема измеряет и обрабатывает аналоговый сигнал с сохраненными калибровочными коэффициентами, выполняет аналого-цифровое преобразование и выдает цифровой сигнал с данными о температуре и влажности.

Распиновка DHT11 и DHT22/AM2302

Датчики DHT11 и DHT22/AM2302 довольно легко подключаются. У них есть четыре вывода:

  • Вывод VCC обеспечивает питание датчика. Хотя допускается напряжение питания в диапазоне от 3,3 до 5,5 В, рекомендуется питание 5 В. В случае источника питания 5 В, вы можете держать датчик на расстоянии до 20 метров от источника питания. Однако при напряжении питания 3,3 В длина кабеля не должна превышать 1 метра. В противном случае падение напряжения в линии приведет к ошибкам измерения.
  • Вывод Data используется для связи между датчиком и микроконтроллером.
  • NC не подключен
  • GND должен быть подключен к земле Arduino.

Подключение DHT11 и DHT22/AM2302 к Arduino UNO

Теперь, когда у нас есть полное понимание того, как работает датчик DHT, мы можем начать подключать его к нашей плате Arduino!

К счастью, подключение датчиков DHT11, DHT22/AM2302 к Arduino довольно тривиально. У них довольно длинные выводы с шагом 0,1 дюйма (2,54 м), поэтому вы можете легко вставить их в любую макетную плату. Подайте на датчик питание 5 В и подключите землю. Наконец, подключите вывод данных к цифровому выводу 2 на Arduino.

Помните, как обсуждалось ранее, между VCC и линией данных нам нужно установить подтягивающий резистор 10 кОм, чтобы поддерживать высокий логический уровень на линии данных для правильной связи между датчиком и микроконтроллером. Если у вас есть готовый модуль датчика, вам не нужно добавлять какие-либо внешние подтягивающие резисторы. Модуль поставляется со встроенным подтягивающим резистором.

Рисунок 6 Подключение DHT11 к Arduino UNO Рисунок 6 – Подключение DHT11 к Arduino UNO Рисунок 7 Подключение DHT22/AM2302 к Arduino UNO Рисунок 7 – Подключение DHT22/AM2302 к Arduino UNO

Теперь вы готовы загрузить в Arduino код и заставить ее работать.

Код Arduino. Вывод значений на монитор последовательного порта

Как обсуждалось ранее, датчики DHT11 и DHT22/AM2302 имеют собственный однопроводный протокол, используемый для передачи данных. Этот протокол требует точной синхронизации. К счастью, нам не нужно беспокоиться об этом, потому что мы собираемся использовать библиотеку DHT, которая позаботится почти обо всем.

Сначала скачайте библиотеку, посетив репозиторий на GitHub, или просто нажмите эту кнопку, чтобы скачать архив:

Чтобы установить библиотеку, откройте Arduino IDE, перейдите в «Скетч» → «Подключить библиотеку» → «Добавить .ZIP библиотеку» и выберите только что загруженный zip-архив DHTlib.

После установки библиотеки вы можете скопировать следующий скетч в IDE Arduino. Данный скетч выводит значения температуры и относительной влажности в монитор последовательного порта. Попробуйте скетч в работе; а затем мы рассмотрим его подробнее.

Скетч начинается с включения библиотеки DHT. Затем нам нужно определить номер вывода Arduino, к которому подключен вывод данных нашего датчика, и создать объект DHT . Так мы сможем получить доступ к специальным функциям, связанным с библиотекой.

В функции setup() нам нужно инициировать интерфейс последовательной связи, так как для вывода результатов мы будем использовать монитор последовательного порта.

В функции loop() мы будем использовать функцию read22() , которая считывает данные с DHT22/AM2302. В качестве параметра она принимает номер вывода данных датчика. Если вы работаете с DHT11, вам нужно использовать функцию read11() . Вы можете сделать это, раскомментировав вторую строку.

После расчета значений влажности и температуры мы можем получить к ним доступ:

Объект DHT возвращает значение температуры в градусах Цельсия (°C). Его можно преобразовать в градусы Фаренгейта (°F) по простой формуле:

В конце мы выводим значения температуры и влажности в монитор последовательного порта.

Рисунок 8 Вывод в мониторе последовательного порта показаний датчика DHT11 или DHT22/AM2302 Рисунок 8 – Вывод в мониторе последовательного порта показаний датчика DHT11 или DHT22/AM2302

Код Arduino. Использование DHT11 и DHT22/AM2302 с LCD дисплеем

Иногда может возникнуть идея, контролировать температуру и влажность в инкубаторе. Тогда для отображения условий в инкубаторе вам, вероятно, понадобится символьный LCD дисплей 16×2 вместо монитора последовательного порта. Итак, в этом примере вместе с датчиком DHT11 или DHT22/AM2302 мы подключим к Arduino LCD дисплей.

Если вы не знакомы с LCD дисплеями на 16×2 символов, взгляните на статью «Взаимодействие Arduino с символьным LCD дисплеем».

Далее нам нужно подключиться к LCD дисплею, как показано ниже.

Рисунок 9 Подключение к Arduino символьного LCD дисплея 16x2 и DHT11 Рисунок 9 – Подключение к Arduino символьного LCD дисплея 16×2 и DHT11 Рисунок 10 Подключение к Arduino символьного LCD дисплея 16x2 и DHT22 Рисунок 10 – Подключение к Arduino символьного LCD дисплея 16×2 и DHT22

Следующий скетч будет выводить значения температуры и относительной влажности на символьном LCD дисплее 16×2. Он использует тот же код, за исключением того, что мы печатаем значения на LCD дисплее.

Рисунок 11 Показания температуры и влажности на LCD дисплее Рисунок 11 – Показания температуры и влажности на LCD дисплее

Как подключить датчик температуры и влажности DHT11 к Arduino

Датчик температуры и влажности DHT11 – популярный и дешёвый датчик, который можно использовать в довольно широком диапазоне температур и относительной влажности. Давайте посмотрим, как подключить его к Arduino и как считывать с него данные.

    или иная совместимая плата; ;
  • соединительные провода (вот, например, хороший набор); ; (не обязательно);
  • персональный компьютер со средой разработки Arduino IDE.

1 Технические характеристики датчика температуры и влажности DHT11

Итак, датчик DHT11 имеет следующие характеристики:

  • диапазон измеряемой относительной влажности – 20..90% с погрешностью до 5%,
  • диапазон измеряемых температур – 0..50°C с погрешностью до 2°C;
  • время реакции на изменения влажности – до 15 секунд, температуры – до 30 секунд;
  • минимальный период опроса – 1 секунда.

Как видно, датчик DHT11 не отличается особой точностью, да и диапазон температур не охватывает отрицательные значения, что вряд ли подойдёт для наружных измерений в холодное время года при нашем климате. Однако малая стоимость, малый размер и простота работы с ним частично перекрывают эти недостатки. На рисунке приведён внешний вид датчика и его размеры в миллиметрах.

2 Схема подключения датчика температуры и влажности DHT11

Рассмотрим схему подключения датчика температуры и влажности DHT11 к микроконтроллеру, в частности, к Arduino.

Схема подключения датчика температуры и влажности DHT11 Схема подключения датчика температуры и влажности DHT11

Давайте посмотрим, что показано на рисунке.

5,5 вольт постоянного тока; если используется питание

Соберём рассмотренную схему. Я также по традиции включу в цепь логический анализатор, чтобы можно было изучить временную диаграмму информационного обмена с датчиком.

Сенсор температуры и влажности DHT11 подключён к Arduino UNOСенсор температуры и влажности DHT11 подключён к Arduino UNO Сенсор температуры и влажности DHT11 подключён к Arduino UNO

Сенсор DHT11 часто продаётся в виде готовой сборки с необходимой обвязкой – подтягивающими резистором и фильтрующим конденсатором (как на предыдущей фотографии). Для экспериментов с Arduino я рекомендую покупать именно такой.

3 Считывание данных с сенсора DHT11 при помощи Arduino

Давайте пойдём таким путём: скачаем библиотеку для датчика DHT11 (также приложил её в конце статьи, т.к. у обновлённой библиотеки изменились вызываемые функции), установим её стандартным способом (распаковав в директорию \libraries\ среды разработки для Arduino).

Напишем вот такой простенький скетч. Он будет выводить в последовательный порт компьютера каждые 2 секунды сообщения об относительной влажности и температуре, считанные с датчика DHT11.

Загрузим этот скетч в Arduino. Подключимся к Arduino с помощью монитора COM-порта и увидим следующее:

Данные о температуре и влажности, полученные с датчика DHT11 Данные о температуре и влажности, полученные с датчика DHT11

Видно, что данные и о влажности, и о температуре считываются и выводятся в терминалку.

4 Временная диаграмма информационного обмена датчика температуры и влажности DHT11 с микроконтроллером

С помощью временной диаграммы, полученной с логического анализатора, разберёмся, как осуществляется информационный обмен.

Для связи с микроконтроллером датчик температуры и влажности DHT11 использует однопроводный последовательный пакетный интерфейс. Один информационный пакет длительностью около 4 мс содержит: 1 бит запроса от микроконтроллера, 1 бит ответа датчика и 40 битов данных от датчика (16 битов информации о влажности, 16 битов информации о температуре и 8 проверочных битов). Давайте подробнее рассмотрим временную диаграмму информационного обмена Arduino с датчиком DHT11.

Временная диаграмма информационного обмена датчика температуры и влажности DHT11 с микроконтроллеромВременная диаграмма информационного обмена датчика температуры и влажности DHT11 с микроконтроллером Временная диаграмма информационного обмена сенсора DHT11 с микроконтроллером

Из рисунка видно, что есть два типа импульсов: короткие и длинные. Короткие в данном протоколе обмена обозначают нули, длинные импульсы – единицы.

Итак, первые два импульса – это запрос Arduino к DHT11 и, соответственно, ответ датчика. Далее идут 16 бит влажности. Причём они разделены на байты, старший и младший, старший слева. То есть на нашем рисунке данные о влажности такие: 0001000000000000 = 00000000_00010000 = 0x10 = 16% относительной влажности.

Данные о температуре, аналогично: 0001011100000000 = 00000000_00010111 = 0x17 = 23 градуса Цельсия.

Контрольная сумма – это всего-навсего арифметическое суммирование 4-х полученных байтов данных:
00000000 +
00010000 +
00000000 +
00010111 =
00100111 в двоичной системе или 0 + 16 + 0 + 23 = 39 в десятичной.

5 Работа с датчиком DHT11 без библиотеки

Теперь мы знаем достаточно для того чтобы написать собственную программу для работы с сенсором температуры и влажности DHT11 без использования сторонних библиотек. Напишем скетч, который будет опрашивать раз в секунду датчик и выводить в последовательный порт компьютера принятый пакет и данные о температуре, влажности, а также проверочный байт. На 13-ую ножку Arduino выведем контрольный сигнал и, подключившись в ней логическим анализатором, проверим, что мы верно считываем информацию от датчика.

Скетч для работы с DHT11 и Arduino без сторонних библиотек (разворачивается)

Датчик DHT11 подключение к Ардуино

Как подключить датчик температуры и влажности DHT11 к Arduino, проанализируем конструкцию и назначение датчика. Первый пример программы отправит данные с модуля dht11 на монитор последовательного порта с включением светодиодов. Во втором примере будем выводить данные на дисплее LCD 1602 I2C. Для работы с датчиком температуры и влажности Arduino необходимо будет установить библиотеку DHT.h.

Необходимые компоненты:

  • Arduino Uno / Arduino Nano / Arduino Mega
  • датчик температуры Ардуино DHT11
  • светодиоды и резисторы
  • дисплей LCD 1602 I2C
  • макетная плата
  • коннекторы
  • библиотека DHT.h и LiquidCrystal_I2C.h

Датчик температуры DHT11 и DHT22 Arduino установлен на модуле и имеет трех контактный разъем — это цифровой датчик, состоящий из термистора и емкостного датчика влажности. Помимо своей низкой стоимости, сенсор имеет приемлемые характеристики: питание от 3,5 до 5 В, измерение температуры от 0 до 50 градусов Цельсия с точностью 2 градуса, а измерение влажности воздуха от 20 до 95 % с точностью 5 %.

DHT11 Arduino распиновка, характеристики

DHT11 Arduino распиновка, характеристики

Датчик DHT11 характеристики

  • Напряжение питания: 3

Термистор (терморезистор) — сопротивление элемента изменяется в зависимости от температуры, т.е. повышение температуры приводит к уменьшению сопротивления. По сути, термистор — это термометр с переменным сопротивлением, изготовленный из смешанных оксидов переходных металлов. Он относится к измерительной технике и может использоваться для автоматического измерения температуры в различных средах.

Емкостный датчик влажности представляет собой конденсатор переменной емкости, содержащий токопроводящую медную фольгу, покрытую текстолитом. Конденсатор заключен в водонепроницаемую оболочку, сверху которой находится слой влагопоглотителя. Когда частицы воды касаются этого слоя, его диэлектрическая проницаемость изменяется, что приводит к изменению емкости конденсатора в сенсоре.

Как подключить датчик температуры и влажности к Ардуино

Как подключить датчик температуры и влажности к Ардуино

В первом примере мы рассмотрим, как измерить температуру воздуха а с помощью Ардуино и DHT 11 с включением светодиодов. Код для работы с модулем не сложен и требует определенной работы. В этом случае проще всего использовать библиотеки, предложенные на сайте Arduino или другими пользователями. Эти библиотеки можно найти, например, на GitHub, который является платформой для обмена ссылками.

Скетч для датчика температуры и влажности DHT11

Подключение к Ардуино DHT11 и дисплея LCD 1602

Подключение к Ардуино DHT11 и дисплея LCD 1602

Для подключения датчика вре11 к микроконтроллеру Arduino можно использовать любой цифровой вывод общего назначения, указав его в программе. Команда Serial.print() отправляет информацию с датчика на монитор порта. В следующем примере температура и влажность воздуха будет выводиться на жидкокристаллический дисплей LCD1602 i2c. Схема подключения показана на картинке выше, а скетч используется следующий:

Скетч для датчика DHT11 Ардуино и дисплея LCD 1602

Заключение. В этом обзоре мы рассмотрели, как подключить DHT11 к Arduino. Мы представили два примера программы для передачи информации с цифрового датчика на монитор порта Arduino IDE и на жк дисплей 1602. Существует множество проектов метеостанций на плате Ардуино с датчиком DHT11, которые вы можете сделать самостоятельно, внимательно изучив информацию на нашем замечательном сайте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *