Для чего нужен возбудитель генератора
Перейти к содержимому

Для чего нужен возбудитель генератора

  • автор:

От чего зависит мощность генератора на автомобиле. Как проверить возбуждение на генераторе. Основное про эффект возбуждения

Многим автомобилистам интересно, как возбудить генератор, не используя АКБ. Это бывает нужно тем автомобилистам, которые часто отправляются на дальние расстояния, а машина без подзарядки продержится за счет аккумулятора не более 2 часов. Давайте выяснять, как это сделать.

Основное про эффект возбуждения

Как известно, вольтаж, формируемый геном на различных оборотах двигателя, регулируется посредством обмоток возбуждения. Ток поддерживается на постоянном вольтаже – 13,8-14,2 V.

Генераторы требуют постоянного тока для возбуждения своего магнитного поля. Существует два типа вращающихся возбудителей: кисть и бесщеточный. Статическое возбуждение для полей генератора обеспечивается в нескольких формах, включая полевое напряжение от аккумуляторных батарей и напряжение от системы твердотельных компонентов.

Передача тока осуществляется через вращающиеся кольца скольжения, которые находятся в контакте с щетками. Каждое кольцо коллектора представляет собой кованую сталь из закаленной стали, которая смонтирована на валу возбудителя. На каждом возбудителе используются два коллекторных кольца, каждое кольцо полностью изолировано от вала и друг друга. Внутреннее кольцо обычно проводное для отрицательной полярности, внешнее кольцо для положительной полярности.

Чтобы обеспечивать автомобильную систему (многочисленные потребители) током, предусмотрен регулятор или РН. Он бывает на отечественных автомобилях и некоторых иномарках, как правило, встроен внутрь генератора. В обиходе такой регулятор называется шоколадкой, таблеткой и т.д.

Ген связан с плюсовым зажимом АКБ через вывод «30». Его также называют плюсом, «В» или «ВАТ». Что касается отрицательного вывода, то он обозначается, как «31» или минус. Также в обиходе встречаются другие его обозначения: «D», «В-» и т.д. Клемма таблетки, используемая для подачи питания от автомобильной сети при включенном зажигании – вывод «15» или «S». Наконец, вывод, рассчитанный для подавания тока на поверочную лампу зарядки, обозначается, как «61» или «D+».

Возбудитель вращающегося выпрямителя является одним из примеров возбуждения безщеточного поля. Во вращающихся выпрямительных возбудителях щеточки и кольца скольжения заменяются вращающимся твердотельным выпрямительным узлом. Арматура возбудителя, узел вращения генератора и выпрямительный узел установлены на общем валу. Выпрямительный узел вращается, но изолирован от вала генератора, а также от каждой обмотки.

Что такое СВ и АРВ

Статические возбудители не содержат движущихся частей. На генераторах с двигателем начальное возбуждение может быть получено из аккумуляторных батарей, используемых для запуска двигателя или от управляющего напряжения на распределительном устройстве. В зависимости от размера основного синхронного генератора может быть несколько элементов возбуждения.

Если прекращается подзарядка АКБ, то это в большинстве случаев свидетельствует о порче шоколадки. Однако здесь не стоит отчаиваться, ведь достаточно будет подать напряжение на обмотки, т.е, возбудить генератор, чтобы доехать до магазина или ближайшего СТО.

Для «самовозбуждающихся» систем обычно используются один вращающийся элемент. Это означает, что текущая пульсация влияет на возможную пульсацию напряжения на выходе. Нам нужно посмотреть на соответствующие обмотки с точки зрения их демпфирующих эффектов на текущую пульсацию. Узел вращающегося выпрямителя отсутствует, поскольку он по существу является силовой электроникой. Основное синхронное поле ротора имеет относительно большой импеданс, действуя как довольно хороший заслон для всех предшествующих искажений формы волны.

Для высокоскоростных конструкций возбудители будут иметь больше полюсов, чем фактический генератор, что приводит к высокочастотным искажениям, которые могут эффективно демпфироваться. Для низкоскоростных конструкций возбудители имеют тенденцию иметь более низкие значения полюсов по отношению к основному ротору, что приводит к низкочастотному искажению, которое также может быть эффективно демпфировано.

Итак, чтобы доехать до нужного места, не подвергая АКБ глубокому разряду, надо снять шоколадку и возбудить ген.

Схема генераторов

Возникает вопрос, как подключить генератор? Для того чтобы суметь возбудить ген, без использования АКБ, рекомендуется тщательно изучить схему и принцип функционирования генов различных модификаций.

В конце концов, самый большой источник искажений в форме сигнала напряжения генератора в машине с выраженным полюсом обусловлен не напряженностью поля отдельных обмоток полюсов ротора, а физическим интерполярным зазором. Цель статьи — помочь сделать людей более самодостаточными, стоимость доставки генератора в магазин, чтобы сделать простой ремонт, может быть дорогостоящим, и если это 200-мильная поездка в город, это может быть дорого его ремонтировать и обратно.

Возможно, место для начала объясняет, что многие генераторы очень похожи друг на друга. Синхронные генераторы составляют около 99% генераторов, когда-либо проданных, и поэтому многие из генераторов больших ящиков хранятся почти одинаково электрически. Читатель имеет больший и хочет подключить его к переключателю передачи, он отправил рисунок Коулмана, чтобы мы его использовали! При такой небольшой нагрузке вы, возможно, уже перегрузили генератор! Зачем? потому что ваши нагрузки могут работать на одной половине обмотки статора генератора и уже перегружены.

Также важно понимать, зачем нужен ген, что он делает конкретно. Иначе говоря, ген – это электромашина, служащая для преобразования механической энергии в электроток. Благодаря гену происходит обратная зарядка батареи и обеспечение всех электрических потребителей, находящихся в рабочем положении, током.

Ген расположен в передней части двигателя, а приводится в движение от кривошипного вала. На автомобилях-гибридах ген осуществляет работу стартера. Примечательно, что такая же схема наблюдается и в некоторых «полноценных» автомобилях, оснащенных конструкцией стоп-старт.

Основное про эффект возбуждения

Факт в том, что некоторые генераторы не совсем несут свою рекламируемую мощность, поэтому вам нужно знать, что она будет носить, и контролировать напряжение — это один из способов сделать это по дешевке. С типичным генератором аппаратного хранилища мы ожидаем чрезмерного падения напряжения при перегрузке генератора. Итак, давайте посмотрим на рисунок синхронного генератора и посмотрим на типичные части.

Прежде чем обсуждать статор, обратите внимание на обмотку поля, в большинстве случаев поле является вращающейся частью генератора и прикреплено к валу. Обычно это не что иное, как выпрямитель с полным волновым мостиком. Почти во всех этих наборах больших наборов для хранения ящиков, радиомощный выпрямитель на 30 ампер с полным волновым мостом является более чем достаточным, если вы замените его, если у вас плохо.

Становится ясно, что автомобильные гены могут иметь две схемы, два конструктивных вида. Их отличие в разнице компоновки вентилятора, выпрямительного блока и приводного шкива. Также генераторы с разной схемой отличаются геометрическими размерами.

Общие параметры обоих типов генераторов остаются неизменными. Любой ген должен иметь в своем составе ротор или индуктор, статор и другие части.

Большинство проблем с генераторами больших ящиков хранятся в кистях, или есть плохой выпрямитель, и их легко проверить. В этом случае батареи представляют собой обмотки статора, и если мы будем последовательно переключаться между батареями, мы будем измерять от терминала к терминалу.

В этой конфигурации, какая бы ни была нагрузка, она будет разделяться поровну как обмотками статора. Вы можете лучше понять чертеж на следующем рисунке, когда контакты закрыты, открыт, и когда переключатель закрыт, контакты открыты. В качестве последнего шага вы проконсультируете свои электрические коды. Если вы проверяете землю с помощью зажима на измерителе амперметра, и вы обнаружите ток, несущий землю, вероятно, у вас возникнет проблема с подключением. вы хотите, чтобы земля свободно переносила ток на землю и, надеюсь, подальше от вас, используя землю как нейтральную, означает, что она уже работает, и может быть слишком усталой или слишком занятой, чтобы справляться с запросом на чрезвычайную ситуацию.

Рассмотрим схему автогенератора отечественной «классики». Такой ген ставился практически на все модели старых отечественных машин.

Теперь рассмотрим другую схему, более современную. В частности, она используется на «восьмерке» и других автомоделях от ВАЗ.

Подсказка о модификациях, многие проблемы создаются при плохих соединениях, у бытовых генераторов есть разные соединения, некоторые используют качественные лопастные разъемы, а если вы используете их, то силиконовый цемент или подобный материал может гарантировать, что лопастное соединение не вибрирует, Любое соединение, которое может быть спаяно, — это тот, который не вызовет у вас проблемы позже, но вам нужно знать, как сделать чистое механическое соединение на стыке перед тем, как припаять, и вам нужно знать, что ядро ​​канифоли — это правильное вещество, никогда не используйте припой для кислотного сердечника.

А это схема, как соединяется ген и, собственно, как он функционирует.

Основной функцией ротора гена является создание магнитполя. Для этого на валу имеется обмотка или ВО (возбудитель). ВО расположен на клювах или выступах полюсных половинок. На валу также предусмотрена контактная группа, состоящая из 2-х медных колец. Через них идет напряжение на ВО. Кольца припаиваются к выводам ВО.

У коммерческих и военных генераторов часто имеется тонна винтовых клемм, но панели, на которых эти соединения сделаны, обычно изолированы от вибрации, и они правильно используют более высокие марки многожильных проводов, которые намного лучше выдерживают месяцы или годы вибрации.

Не путайте многожильный провод, который вы найдете коммерческим электрикам, использующим для зданий, с материалами, которые вам нужны в переносном генераторе, например, в большом магазине. Используемый провод должен быть рассчитан на температуру, а изоляция должна быть адекватной. несколько раз вы увидите добавленную добавленную изоляцию, такую ​​как вторичная оболочка в области вибрации, которая также может произойти, вы также увидите, что нейлоновые галстуки используются для удержания проводов от вращающихся частей или от горячих деталей.

Примечание. Довольно редко, но все же, могут встречаться не медные, а стальные или латунные кольца.

Кроме того, на роторном валу нашли место для крыльчаток вентилятора (кол-во их зависит от конструкции модели). В этом же месте зафиксирован бывает ВПД (шкив приводной).

Еще один узел ротора – подшипники.

Что касается статора, то он выполняет функцию создания переменного напряжения. В нем нашли место сердечник и обмотка. Металлический сердечник собран из пластин.

Если вы читаете это далеко, вы, скорее всего, очень редко! и для вас у меня есть вопрос. Когда вы достигаете только половины номинальной мощности, напряжение будет быстро уменьшаться, и вы, вероятно, увидите менее 100 вольт, если будете продолжать добавлять нагрузку. это плохая ситуация, и это типичный провал, который появляется прямо посреди простоя! Именно поэтому вы используете правильный провод и делаете наилучшие соединения возможными, поэтому вы покупаете подходящий качественный коммутатор и передаете более дешевый порт, вы хотите, чтобы это работало, когда вам это нужно!

В статоре бывает 36 пазов, служащих для укладывания обмотки. Всего получается устанавливать три обмотки, тем самым, обеспечивая 3-фазное соединение.

Интересно, что помещают обмотки в выемки двумя путями – волной либо петлей. А взаимосоединяются обмотки либо по схеме «звездочка», либо — «треугольник».

Вот фотография от Майка на его Колемане, обратите внимание, что эта вилка содержит две обмотки статора и землю, всегда разумно запускать почву между вашей головой, рамкой, электрическими коробками, всем, что вы можете трогать. Определение. Система, которая используется для обеспечения необходимого тока возбуждения на обмотке ротора синхронной машины, такая система называется системой возбуждения. Другими словами, система возбуждения определяется как система, которая используется для производства потока путем пропускания тока в обмотке возбуждения.

Выпрямительный блок или ВБ необходим для перестройки значений тока, производимого геном. Он преобразует синусоидальный ток в постоянный автомобильной бортовой сети.

ВБ – это просто пластины, траки, эффективно отводящие тепло. В них вмонтированы диоды. ВБ содержит 6 силовых диодов-полупроводников. На каждую фазу идет по два диода, естественно, один на плюс, а другой – на минусовой вывод гена.

Основным требованием системы возбуждения является надежность при всех условиях обслуживания, простота управления, простота обслуживания, стабильность и быстрый переходный отклик. Требуемое количество возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Чем больше возбуждение необходимо в системе, когда ток нагрузки большой, тем меньше скорость, а коэффициент мощности системы становится отстающим.

Система возбуждения представляет собой единицу, в которой каждый генератор переменного тока имеет свой возбудитель в виде генератора. Централизованная система возбуждения имеет два или более возбудителя, который питает шину. Централизованная система очень дешевая, но неисправность в системе отрицательно сказывается на генераторах на электростанции.

Щетки – это узел, обеспечивающий токопередачу на контактные кольца. Щеточный узел состоит из графитовых элементов, собственно самих щеток, пружин-прижимателей и держателя. В генах современного типа щеточный узел создает вместе с регулятором (шоколадкой) единый блок.

Таблетка – предназначена поддерживать ток гена в определенных значениях. Современные регуляторы бывают электронными (едиными) или гибридными. Если в ходу гибридное исполнение, то в схему внедряются радиокомпоненты и электроприборы, если интегральное (единое) – все элементы исполнены с помощью ТМТ (микроэлектроники).

Как происходит возбуждение в гене

Система возбуждения в основном разделена на три типа. Их типы подробно описаны ниже. Выход возбудителя регулируется автоматическим регулятором напряжения для управления выходным напряжением генератора. Когда полевой выключатель разомкнут, полевой разрядный резистор подключается через обмотку возбуждения, чтобы рассеивать накопленную энергию в обмотке возбуждения, которая является очень индуктивной.

Главный и пилотный возбудители могут приводиться в движение либо основным валом, либо отдельно приводимым в движение двигателем. Обычно предпочтительными являются возбудители с прямым возбуждением, поскольку они сохраняют единую систему работы, и возбуждение не возбуждается внешними возмущениями.

Генераторный привод функционирует за счет вращения ременной передачи. Тем самым, он обеспечивает индуктору вращение с той скоростью, которая необходима (она, как известно, должна превышать скорость вращения кривошипного вала в несколько раз).

Итак, на большинстве моделей генов ВО подключается через отдельную группу, состоящую из 2-х диодов. Последние еще называют выпрямителями, они препятствуют прохождению напряжения разряда АКБ при стоячем ДВС.

Величина напряжения основного возбудителя составляет около 400 В, а его мощность составляет около 5% от мощности генератора. Сложности в возбудителях турбогенератора довольно часты из-за их высокой скорости, и как таковые отдельные возбуждаемые двигателем возбудители предусмотрены в качестве резервного возбудителя.

Вращающаяся тиристорная система возбуждения

Основной возбудитель может быть либо самовозбужденным, либо раздельно возбужденным. Система возбуждения ротора показана на рисунке ниже. Вращающаяся часть закрыта пунктирной линией. Выходной сигнал возбудителя выпрямляется схемой выпрямителя с полным волновым тиристорным мотором и подается на обмотку возбуждения основного генератора.

Примечание. Если обмотки соединены по схеме «звездочка», то на нулевом выводе ставится 2 добавочных диода силового типа, что позволяет увеличить мощность гена аж на 15%. ВБ монтируется в схему гена посредством электропайки или механической фиксации.

Регулятор или таблетка в генераторе – штука важнейшая. Именно она в ответе за стабилизацию напряжения. А это, как известно, очень требуется при изменениях частоты вращения кривошипного вала и ДВС. Стабилизация шоколадкой производится на автомате, путем воздействия на ВО. Таким образом, таблетка управляет и частотой сигналов напряжения, и продолжительностью импульсов.

Интересный момент. Таблетка изменяет ток, идущий для зарядки АКБ за счет термокомпенсации напряжения. Другими словами, чем становится теплее вокруг, тем меньше тока идет к батарее.

Как возбудить ген

Итак, что же надо сделать, чтобы возбудить генератор? Как и говорилось выше, следует демонтировать таблетку с генератора, так как неисправность возникла именно в нем. Далее, соединить плюсовые выводы обоих устройств, а минусовой выход в шоколадке разрезать. В процессе сборки соединить его с массой щеток.

От клеммы «30» гена изолировать провод, подсоединить в выводную цепь «15» индикатор, мощностью не более 15 Вт. Это касается генов серии Г222. Если агрегаты других моделей, то возбуждать надо, подключая индикатор к выводу «В».

Самовозбуждение генератора можно представить себе и так.

На представленной выше схеме левыми крайними стрелками отмечены диоды. Они устанавливаются только в генераторы современных моделей, в старых агрегатах их не бывает. Точнее говоря, схема без представленных диодов считается классической, а с ними – модернизированной, современной.

На некоторых моделях генов якори подразумевают наличие щеток. Они тоже снимаются, высверливается таблетка. Один контакт напрямую идет к якорю через диоды на плюс, как видно на схеме, второй контакт – на минус (самая нижняя стрелка).

Соответственно, на схеме отмечено: плюс и минус.

Ток начнет подаваться не сразу, т.е, не с малых оборотов. Где-то, если смотреть по тахометру, напряжение начнет вырабатываться после 4000 об/мин. Другими словами, газуем до 4 тысяч оборотов, появляется ток. Если спускаемся до 1 тысячи оборотов в минуту или меньше, напряжение пропадает, нужно будет заново газануть. Примерно таков принцип генерации тока при самовозбуждении.

На некоторых автомоделях двигатель установлен малооборотистый. В этом случае придется делать что-то со шкивами, чтобы увеличить начальную скорость вращения. Для обычного двигателя все должно быть нормально.

Идем дальше. На выходе получается не 12 вольт, это следует знать изначально. Без регулятора ген будет выдавать все, что он сможет, вплоть до 20-30 вольт. К примеру, во время старта и до 36 вольт доходит. Это можно проверить по лампочке такого вольтажа, подключенной к выходам. Дальше уже опускается до 20 вольт.

Схему, безусловно, можно доработать. Например, врезать конденсатор в плюсовой провод, идущий на якорь. Делается это для того, чтобы при падении оборотов двигателя, не допустить спада напряжения. Хороший конденсатор можно поставить также на выходе, чтобы сгладить первый скачок напряжения и регулировать, сглаживать спады.

Реализуя данную схему, важно помнить о выдаче большого напряжения. Это не 12 вольт, можно легко спалить лампочки, ЭБУ и всю автомобильную электрику в принципе.

Предупреждение. В режиме самовозбуждения ген будет отдавать все, что сможет без каких-либо ограничений, что чревато перегревом и для него самого. Чуть больше нагрузки, и пиши панегирик генерирующему устройству. Поэтому данный способ применим только, как вынужденная мера, опять же, если вы остались на дороге и надо доехать до ближайшего СТО.

Как платить за БЕНЗИН В ДВА РАЗА МЕНЬШЕ

  • Цены на бензин растут с каждым днем, а аппетит автомобиля только увеличивается.
  • Вы бы рады сократить расходы, но разве можно в наше время обойтись без машины!?

Генератор – это не просто какой-нибудь узел. По сути, он является электрической машиной, преобразующей мехэнергию в ток. Генератор обеспечивает автомашину подзарядкой, без которой та сможет продержаться в движении не больше 1-2 часов за счет аккумулятора. Узнайте, как происходит возбуждение генератора в автомобиле.

Как происходит возбуждение в гене

Электроэнергия или электрическая сила в генераторе возникает тогда, когда сквозь магнитный поток внутри перемещается проводник. Ток возникает также и в том случае, когда перемещается магнит, а проводник остается неподвижным.

Без теоретических объяснений и выводов, можно представить себе возбуждение гена так:

  • На обмотку гена подается электричество с АКБ. Электрический ток первыми принимают щетки и медные кольца.
  • Реле отсечки – специальная штука, которая не дает аккумулятору разрядиться при остановке генератора. Когда водитель включает зажигание, то напряжение поступает на реле отсечки, оно притягивает внутренние элементы генератора, тем самым, замыкаются контакты. Получается, что реле в этом случае – эффективный переходник, соединяющий обмотку гена с аккумулятором.
  • На приборной панели в салоне автомобиля предусмотрена лампочка. Она дает понять водителю, когда начинается зарядка геном АКБ. Когда включается зажигание, она горит до тех пор, пока напряжение идет с аккумулятора и гаснет, когда процесс энергополучения идет обратно.

Что такое СВ и АРВ

Система возбуждения гена – это комплекс различных устройств, включающих: возбудитель, АРВ, СГП, УБФВ, устройство развозбуждения, а также дополнительные тесто-измерители.

АРВ – это не что иное, как регулятор, функционирующий полностью на автомате. СГП – средство, которое гасит магнитное поле. УБФВ – устройство, благодаря которому осуществляется быстрая форсировка возбуждения.

Сам возбудитель является источником питания (ИП) обмотки постоянным напряжением. В данном случае ИП может быть сам ген совместно с полупроводниками и выпрямительным блоком (диодным мостом).

АРВ применяются в синхронном гене. Здесь они выполняют функцию повышения физической стабильности генерирующего устройства. Принято классифицировать АРВ на устройства с пропорциональным шагом и сильным шагом. Одни способны изменять токоэнергию по несоответствию статорного напряжения, а вторые – реагируют в более широком смысле этого слова.

Когда ток снижается, к примеру, при замыкании, предусмотрена форсировка. Она подразумевает скорое увеличение возбуждения, что влияет на остановку спадов напряжения и сохраняет устойчивость.

Корректировка и ускорение значительно повышают надежность функционирования реле.

Когда происходит отключение генератора, что тоже может вызываться внутренними замыканиями, агрегат следует развозбудить. Для этого достаточно погасить магнитполе, что даст возможность уменьшить размеры повреждения статорной обмотки.

Погасить магнитполе – это, значит, быстрое уменьшить магнитпоток возбуждения гена до величины, близкой к 0. Одновременно с этим уменьшается ЭДС агрегата.

Гашение магнитполя осуществляется с помощью АГП – особых устройств-автоматов, действующих от реле. Именно они помогают активировать сопротивление.

В генерирующих устройствах, функционирующих по принципу тиристорвозбуждения, снижение магнитполя осуществляется методом переключения основных вентилей в инверторный порядок. Тем самым, сэкономленная в обмотке энергия, передастся возбудителю или диодному мосту.

Характеризуется СВ номинальным напряжением (НТ), но оно может быть разным.

  • 100 или 600 В, если речь идет о возбуждении на выводах обмотки.
  • 100 или 8000 А, если речь идет о НТ, находящимся непосредственно в обмотке, и соответствует нормальной, стандартной работе генератора.

Следует знать, что НТ возбудителя должен составлять доли процентов от НТ генератора. Как правило, считают значения в 0,2-0,6 процентов от номинальной мощности гена.

Что касается быстродействия возбудителя, то оно зависит от скорости нарастания силы тока на обмотке индуктора (ротора).

СВ (система возбуждения) обязана рассчитываться в зависимости от работы АРВ. Другими словами, без АРВ работа допускается, но только на время, нужное для ремонта или замены. В остальных случаях использование АРВ обязательно.

Примечание. Если СВ, все же, функционирует без АРВ, то нужно обеспечить дополнительную систему защиты. Это РДУ и другие средства, способные обеспечить развозбуждение и автогашение генераторного поля.

СВ обязана обеспечивать ток в продолжительном режиме, превышая НТ генератора не менее чем на 10 процентов.

СВ также бывает полупроводниковой. В этом случае она должна иметь РВС (режим внутреннего сохранения).

Важно, чтобы защитные устройства, обеспечивающие стабильность во время перенапряжений, были многократного действия.

Состав системы возбуждения Что обеспечивает система возбуждения
трансформатор выпрямительный начальное возбуждение
трансформатор последовательный вольтодобавочный холостой ход
тиристорный преобразователь (ТВ 8-2000/) 050- 1У4) включение в сеть методом точной синхронизации в нормальных режимах и самосинхронизации в аварийных режимах
система охлаждения преобразователя работу ГГ в энергосистеме с нагрузками от холостого хода до номинальной и перегрузками
агрегат начального возбуждения (АН В-2) недовозбуждение в пределах устойчивой работы генератора
автоматический регулятор возбуждения (АУ1Г типа АРВ-СД) форсировку возбуждения по току и напряжению
панель гашения поля эффективное гашение поля
релейные панели развозбуждение при нормальных остановках агрегата

Разновидности СВ

СВ принято делить на 2 группы. Они классифицируются в зависимости от способа возбуждения. Различают СВ независимого типа (СВНТ) и зависимого (СВЗТ).

К СВНТ относят все возбудители, которые сопряжены с генераторным валом. По сути, они способны вырабатывать напряжение в независимом режиме.

За группу СВЗТ принимают возбудители, схватывающие вольтаж прямиком с концов основного генератора. Ток поступает через трансформаторы особого типа.

Более выгодно смотрятся СВНТ, так как в них выработка тока не зависит от электроцепи.

Интересный момент. На генах со слабой мощностью в качестве возбудителя применяются отдельные, независимые генераторы, способные вырабатывать ток. Они соединяется с валом основного гена (синхронного).

Другие преимущества СВНТ:

  • Высокий процент быстродействия;
  • Высокая скорость нарастания тока;
  • Возможность замены тиристоров, вышедших из строя, без остановки генератора.

Однако СВНТ имеют и недостатки, связанные с самим устройством возбудителя. К примеру, если быстрота повышения возбуждения не слишком высока.

  • Слабыми в СВНТ выглядят контакты скользящего типа, так как напряжение к ним подводится через щетки.

Сегодня наиболее востребованы СВ с полупроводниковыми диодными мостами. Они построены по 3-фазной схеме, в них задействуется минимальное количество выстроенных по порядку тиристоров.

Что касается схем диодного моста, то они бывают 1-групповыми и 2-групповыми. Один выпрямитель внедрен в первом случае, два – во втором.

Токоподавателем в СВНТ является синхронный ген, нашедший место между индуктором и верхним кронштейном основного генератора.

СВЗТ менее надежна, чем первая система, так как работа возбудителя здесь полностью зависимая. Другими словами, возбудитель в этом случае будет работать только в том случае, если получит ток от сети. А в сети, как правило, часто возникают замыкания, нарушающие стабильное функционирование СВ. Получается лишняя нагрузка на СВЗТ, которая должна обеспечивать форсировку напряжения в обмотке.

Но СВЗТ в некоторых случаях имеют плюсы перед самостийными системами. Они выражаются простотой схемы. Недостатком же выступает, как и говорилось, непостоянство работы, что более всего заметно в высокомощных машинах.

По мнению экспертов, если подразумевается длительность ремонта, то лучше зарекомендуют себя СВЗТ.

Проверка возбуждения

Основными симптомами, которые доказывают неработоспособность СВ на генераторе, являются показатели внешних характеристик. Говоря иначе, если напряжение через выводы генератора не поступает, то агрегат должен самовозбуждаться по принципу. Если такого не происходит, налицо проблема.

Хорошо заметна работа генератора на дизельных агрегатах. Они получают меньшую, чем обычно дозу топлива, как только генератор развивает небольшую мощность. Таким образом, дизельная установка остается недогруженной.

Ясно, что при уменьшении подачи топлива в цилиндры, снизится и скорость движения. По ней (скорости) можно будет определить снижение напряжения генератора, следовательно, и его возбуждение.

Если в генераторе увеличивается произведение напряжения, то не должно увеличиваться магнитное насыщение СВ, иначе прочность изоляции электромашины не выдержит. Ограниченным в некоторых значениях можно назвать также генераторный ток, который в случае увеличения приведет к перегоранию обмотки якоря.

Что такое система возбуждения в генераторе переменного тока?

Генератор переменного тока

Раздел А: Генератор переменного тока

Понятие возбуждения и его особенности

Возбуждение – это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.

Описание процесса

Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.

Простой электромагнит и концентрация поля

Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North – северный) и S (South – южный).

Что такое система возбуждения в генераторе переменного тока?
Рис. 3.13(а). Простой электромагнит.

Из-за большого расстояния между полюсами магнитные силовые линии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).

Что такое система возбуждения в генераторе переменного тока?
Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.

И, наконец, выполним полюса магнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить “утечка” магнитного поля наружу. При вращении ротора эта “утечка” будет пересекать обмотки статора, и наводить в них э.д.с.

Питание ротора постоянным током: особенности процесса

Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.

Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).

Что такое система возбуждения в генераторе переменного тока?

Рис. 3.14. Зубчатый ротор генератора.

Возбуждение генератора: знакомство с определением

Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.

Обмотка возбуждения генератора: знакомство с определением

Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ). Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока.

Для чего служит обмотка возбуждения генератора

Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).

Катушка возбуждения генератора: знакомство с определением

Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:

  • Статор – он неподвижный.
  • Ротор – производит вращения вокруг статора.

Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.

Для чего нужен возбудитель генератора

Магнитное поле ротора, необходимое для создания ЭДС обмотки статора, создаётся постоянным током, протекающим по обмотке возбуждения. Для питания обмотки возбуждения предназначена система возбуждения, включающая непосредственно обмотку возбуждения, источник постоянного тока, регулирующие и коммутирующие устройства.

Требования к системе возбуждения:

1) надёжное питание постоянным током обмотки возбуждения в любых режимах, в т.ч. и при авариях, обеспечение номинальных напряжения возбуждения ��в ном и тока возбуждения ��в ном, при которых генератор выдаёт ��г ном; номинальная мощность возбуждения обычно составляет: ��в ном = (0,2 − 0,6)% ∙ ��г ном.

2) регулирование тока возбуждения ��в при изменении нагрузки генератора и при авариях в системе;

3) быстродействующая форсировка возбуждения при резком снижении напряжения на выводах статора генератора; форсировочную способность и быстродействие системы возбуждения в процессе форсировки напряжения при авариях в энергосистеме характеризуют:

4) быстрое гашение поля возбуждения, например, при отключении генератора от сети.

В зависимости от источника энергии, питающего обмотку возбуждения, применяются следующие типы систем возбуждения:

— электромашинная система возбуждения с возбудителем постоянного тока;

— высокочастотная система возбуждения (высокочастотный генератор и диодный выпрямитель);

— тиристорная система возбуждения независимая; (генератор переменного тока и тиристорный выпрямитель)

— тиристорная система возбуждения зависимая (напряжение со статора прогоняют через тиристорный выпрямитель);

— бесщёточная система возбуждения (генератор переменного тока и диодный выпрямитель).

1) Электромашинная система возбуждения с возбудителем постоянного тока (рис. 3.3).

Источник энергии – возбудитель (В) – генератор постоянного тока, установленный на валу главного генератора (Г) и соединений непосредственно с его обмоткой возбуждения (ОВГ). Обмотка возбуждения возбудителя (ОВВ) выполнена параллельно с ОВГ и питается от самого возбудителя (схема самовозбуждения возбудителя). В случае колебания напряжения в сети или изменении нагрузки, при внешних коротких замыканиях регулирование возбуждения осуществляется через автоматический регулятор возбуждения (АРВ) путём изменения постоянного тока в обмотке возбуждения возбудителя (ОВВ). Например, при просадке напряжения на выводах Г действие АРВ увеличивает ток в ОВВ, что приводит к увеличению напряжения возбуждения и тока в ОВГ, вследствие чего увеличивается ЭДС и напряжение на трёхфазной обмотке статора.

Схема содержит небольшое количество оборудования, проста, экономична, надёжна, так как электрически не связана с электрической сетью. Но из-за наличия контактных колец (КК) и щёток надёжность её снижается. Недостатком является и то, что схема не может быть использована для мощных генераторов. Электрические соединение В и ОВГ осуществляется с помощью контактных колец и щёток. По условиям надёжной коммутации токов предельная мощность возбудителя постоянного тока при частоте 3000 об/мин составляет до 500 кВт, что соответствует мощности генератора порядка 100-160 МВт. Это можно пояснить на примере: приняв ��в ном = 500 кВт и ��в ном = 0,5%��г ном, получим ��г ном = 500кВт/0,005 = 100 МВт.

Параметры электромашинной системы возбуждения: ��в = 2 1/с, ��ф = 2.

2) Высокочастотная система возбуждения или электромашинная система возбуждения с генератором переменного тока (рис. 3.4). (На лекции вообще не разбирали, но сюда впишу, потому что она упоминала её).

Возбудитель (В) – генератор переменного тока повышенной частоты 500 Гц и диодный выпрямитель (ДВ). Применение высокочастотного генератора позволяет уменьшить пульсации выпрямленного тока, снизить габаритные размеры возбудителя, повысить надёжность системы возбуждения. Дело в том, что на частоте 500 Гц становится возможным выполнить возбудитель индукторного типа, у которого и обмотка возбуждения и трёхфазная обмотка статора находятся в пазах неподвижного статора. Поэтому В не имеет контактных колец со щётками, что повышает надёжность его работы.

Ротор В имеет форму 10 пар полюсов. При его вращении в обмотках переменного тока индуцируется ЭДС частотой f=500 Гц (при p=10 n=3000 об/мин). Далее переменный ток выпрямляется ДВ и питает ОВГ. Возбудитель располагается на одном валу с генератором. Система возбуждения не связана с основной сетью, что также повышает её надёжность.

Возбудитель имеет три ОВВ, расположенные вместе с трёхфазной обмоткой на неподвижном статоре:

ОВВ1 – обеспечивает основное возбуждение В по схеме самовозбуждения при повреждениях во внешней сети, включается последовательно с ОВГ;

ОВВ2 – обеспечивает дополнительное возбуждение от АРВ при колебаниях напряжения и изменениях нагрузки в сети (для поддержания напряжения в генераторе в нормальном режиме);

ОВВ3 – обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжения на 5% и более.

Подвозбудитель (ПВ) – высокочастотная машина 400 Гц с постоянными магнитами, обеспечивает возбуждение возбудителя.

Параметры системы возбуждения: ��в = (2 ÷ 4) 1/с, ��ф = 2. По быстродействию эквивалентна электромашинной системе возбуждения с генератором постоянного тока, поэтому применена лишь на некоторых турбогенераторах мощностью до 300 МВт.

Тиристорная система возбуждения

Название системы возбуждения происходит от тиристоров, используемых в качестве управляемых выпрямителей. Различают два варианта тиристорного возбуждения:

— тиристорная система независимого возбуждения (с питанием от вспомогательного генератора переменного тока),

— тиристорная система самовозбуждения (с питанием от главного генератора).

3) В тиристорной системе независимого возбуждения (рис. 3.5) возбудителем (В) является генератор переменного тока промышленной частоты, расположенный на одном валу с возбуждаемым генератором, и тиристорный выпрямитель (ТВ). Регулирование возбуждения осуществляется от АРВ с помощью управляемых вентилей — тиристоров. В ТВ есть рабочая группа тиристоров, которая обеспечивает основное возбуждение в нормальном режиме и форсировочная группа для форсировки возбуждения и гашения поля генератора в аварийном режиме. Возбуждение возбудителя обеспечивает генератор постоянного тока — подвозбудитель (ПВ), но возбудитель может работать и по схеме самовозбуждения.

Схема имеет высокое быстродействие ��в ≤ 50 1/с и высокую кратность форсировки ��ф ≤ 4. Чтобы иметь такую высокую кратность форсировки, нужно иметь напряжение возбудителя на заданную кратность форсировки. При полном открытии тиристоров это напряжение сразу прикладывается в ОВГ. В нормальном режиме тиристоры открыты не полностью и к ОВГ прикладывается ��в ном.

Система возбуждения электрически не связана с основной сетью – это определяет её надёжность, но при этом имеется ненадёжный щёточный элемент. Также к недостаткам можно отнести дороговизну и сложность схемы из-за наличия возбудителя переменного тока (по сравнению со системой самовозбуждения).

Применяется для генераторов мощностью 200, 300, 500, 800 МВт.

4) В тиристорной системе самовозбуждения источником возбуждения является цепь статора главного генератора. Питание ОВГ осуществляется от выводов статора Г через понижающие трансформаторы и группы управляемых вентилей – тиристоров (рис. 3.6).

Основные элементы схемы:

— выпрямительный трёхфазный трансформатор (ВТ), подключенный к выводам обмотки статора генератора,

— последовательный трансформатор (ПТ), первичная обмотка включена последовательно в цепь статора со стороны нулевых выводов генератора,

— рабочая группа вентилей (ВР), обеспечивает основное возбуждение в нормальном режиме,

— форсировочная группа вентилей (ВФ), обеспечивает возбуждение при форсировке и гашение поля в аварийных режимах.

Тиристоры группы ВР получают питание от ВТ, который используется для подачи переменного тока в сеть меньшего напряжения, ��2 ВТ

��Г . Мощность тиристоров группы ВР рассчитывают так, чтобы она была достаточна для возбуждения генератора на холостом ходу и для регулирования возбуждения в нормальном режиме, которое осуществляется с помощью АРВ. В номинальном режиме тиристоры обеспечивают (70-80)% от ��в ном. Остальное возбуждение обеспечивают с помощью группы ВФ.

У схемы есть недостаток — зависимость работы возбудителя от режима внешней сети. При к.з. вблизи генератора напряжение на его выводах ��Г падает, а вслед за ним уменьшается значение ��2 ВТ. Это нарушает работу системы возбуждения, которая должна обеспечивать форсировку тока возбуждения в ОВ. Но при к.з вблизи генератора увеличивается ��Г, а ��2 ПТ

��Г. Поэтому используется группа ВФ, при форсировке эта группа полностью открывается и даёт весь ток форсировки. Такое сочетание ПТ и ВТ повышает надёжность схемы. При гашении поля группа ВФ переводится в инверторный режим.

Схема проста, широко применяется, экономичнее независимой СВ, также имеет высокую кратность форсировки и быстродействие, которое ограничено лишь инерционностью системы управления тиристорами. Но схема не лишена недостатков: первоначальный пуск генератора осуществляется от дополнительного источника (а дальше перевод на самовозбуждение), работа системы возбуждения зависит от режима работы внешней сети.

Параметры системы возбуждения: ��в ≤ 30 1/с, ��ф ≤ 4 (но в пособии написано > 4).

Применятся для генераторов мощностью до 800 МВт.

5) Бесщёточная система возбуждения.

Возбудитель – синхронный генератор повышенной частоты, расположенный на валу главного генератора и выполненный по типу обратимой машины: обмотка возбуждения расположена на статоре, а обмотка переменного тока на роторе. Ротор возбудителя с диодным выпрямителем ДВ жёстко соединён с ротором генератора. Таким образом, ток от вращающейся обмотки переменного тока В подводится к вращающемуся ДВ, и выпрямленный ток подаётся непосредственно к ОВГ без контактных колец и щёток.

Регулирование тока возбуждения осуществляется от АРВ путём воздействия на тиристоры в цепи обмотки возбуждения возбудителя.

Система надёжна, но не очень компактна.

Достоинством является отсутствие контактных колец и щёток, а недостатком – необходимость останавливать генератор для переключения на резервное возбуждение и медленное гашение поля генератора.

Как происходит возбуждение генератора?

Электрический ток возникает в замкнутой рамке при пересечении ее вращающимся магнитным полем. Таким образом, для работы генератора необходимо, чтобы в нем вращалось магнитное поле. Собственное, вращающееся магнитное поле создается ротором. … Обмотка ротора правильно называется «обмоткой возбуждения».

Для чего нужно возбуждения генератора?

Возбуждение генератора. Система возбуждения генератора (электромагнитное возбуждение) создаёт МДС, которая наводит в магнитной системе машины магнитное поле, обеспечивающее процесс образования электроэнергии.

Как возбудить генератор?

Как только ротор подмагнитился, генератор начинает вырабатывать напряжение и появляется ток в обмотках, этот ток идет через дополнительные диоды в обмотку возбуждения и намагничивание ротора возрастает, так генератор, практически сразу, возбуждается, получив первоначальный толчок маленьким током через лампочку.

Какое напряжение необходимо для возбуждения генератора?

Напряжение возбуждения должно быть около половины напряжения аккумулятора, т. е. около 7В — норма.

Что возбуждает Обмотка возбуждения?

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток. … Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя, преобразователя и др. (рис. 1, а).

Для чего служит обмотка возбуждения генератора переменного тока?

Обмотка ротора правильно называется «обмоткой возбуждения». Она создает магнитное поле при повороте ключа зажигания. Далее после запуска двигателя ротор начинает вращаться. Ток вырабатывается в трех отдельных обмотках статора.

Для чего нужен генератор переменного тока?

Генера́тор переме́нного то́ка («альтерна́тор») — электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

Как понять что генератор выходит из строя?

Неисправности генератора проявляются по-разному, однако в большинстве случаев они не приходят внезапно; у водителя есть время, чтобы заметить грядущую поломку и минимизировать неприятности.

Как проверить возбуждение на генераторе

Генератор – это не просто какой-нибудь узел. По сути, он является электрической машиной, преобразующей мехэнергию в ток. Генератор обеспечивает автомашину подзарядкой, без которой та сможет продержаться в движении не больше 1-2 часов за счет аккумулятора. Узнайте, как происходит возбуждение генератора в автомобиле.

Как происходит возбуждение в гене

Электроэнергия или электрическая сила в генераторе возникает тогда, когда сквозь магнитный поток внутри перемещается проводник. Ток возникает также и в том случае, когда перемещается магнит, а проводник остается неподвижным.

Без теоретических объяснений и выводов, можно представить себе возбуждение гена так:

  • На обмотку гена подается электричество с АКБ. Электрический ток первыми принимают щетки и медные кольца.
  • Реле отсечки – специальная штука, которая не дает аккумулятору разрядиться при остановке генератора. Когда водитель включает зажигание, то напряжение поступает на реле отсечки, оно притягивает внутренние элементы генератора, тем самым, замыкаются контакты. Получается, что реле в этом случае – эффективный переходник, соединяющий обмотку гена с аккумулятором.
  • На приборной панели в салоне автомобиля предусмотрена лампочка. Она дает понять водителю, когда начинается зарядка геном АКБ. Когда включается зажигание, она горит до тех пор, пока напряжение идет с аккумулятора и гаснет, когда процесс энергополучения идет обратно.

Что такое СВ и АРВ

Система возбуждения гена – это комплекс различных устройств, включающих: возбудитель, АРВ, СГП, УБФВ, устройство развозбуждения, а также дополнительные тесто-измерители.

Система возбуждения

АРВ – это не что иное, как регулятор, функционирующий полностью на автомате. СГП – средство, которое гасит магнитное поле. УБФВ – устройство, благодаря которому осуществляется быстрая форсировка возбуждения.

Сам возбудитель является источником питания (ИП) обмотки постоянным напряжением. В данном случае ИП может быть сам ген совместно с полупроводниками и выпрямительным блоком (диодным мостом).

АРВ применяются в синхронном гене. Здесь они выполняют функцию повышения физической стабильности генерирующего устройства. Принято классифицировать АРВ на устройства с пропорциональным шагом и сильным шагом. Одни способны изменять токоэнергию по несоответствию статорного напряжения, а вторые – реагируют в более широком смысле этого слова.

Когда ток снижается, к примеру, при замыкании, предусмотрена форсировка. Она подразумевает скорое увеличение возбуждения, что влияет на остановку спадов напряжения и сохраняет устойчивость.

Корректировка и ускорение значительно повышают надежность функционирования реле.

Когда происходит отключение генератора, что тоже может вызываться внутренними замыканиями, агрегат следует развозбудить. Для этого достаточно погасить магнитполе, что даст возможность уменьшить размеры повреждения статорной обмотки.

Погасить магнитполе – это, значит, быстрое уменьшить магнитпоток возбуждения гена до величины, близкой к 0. Одновременно с этим уменьшается ЭДС агрегата.

Как погасить магнитное поле

Гашение магнитполя осуществляется с помощью АГП – особых устройств-автоматов, действующих от реле. Именно они помогают активировать сопротивление.

В генерирующих устройствах, функционирующих по принципу тиристорвозбуждения, снижение магнитполя осуществляется методом переключения основных вентилей в инверторный порядок. Тем самым, сэкономленная в обмотке энергия, передастся возбудителю или диодному мосту.

Характеризуется СВ номинальным напряжением (НТ), но оно может быть разным.

  • 100 или 600 В, если речь идет о возбуждении на выводах обмотки.
  • 100 или 8000 А, если речь идет о НТ, находящимся непосредственно в обмотке, и соответствует нормальной, стандартной работе генератора.

Следует знать, что НТ возбудителя должен составлять доли процентов от НТ генератора. Как правило, считают значения в 0,2-0,6 процентов от номинальной мощности гена.

Что касается быстродействия возбудителя, то оно зависит от скорости нарастания силы тока на обмотке индуктора (ротора).

СВ (система возбуждения) обязана рассчитываться в зависимости от работы АРВ. Другими словами, без АРВ работа допускается, но только на время, нужное для ремонта или замены. В остальных случаях использование АРВ обязательно.

Примечание. Если СВ, все же, функционирует без АРВ, то нужно обеспечить дополнительную систему защиты. Это РДУ и другие средства, способные обеспечить развозбуждение и автогашение генераторного поля.

СВ обязана обеспечивать ток в продолжительном режиме, превышая НТ генератора не менее чем на 10 процентов.

Бесконтактная система возбуждения

СВ также бывает полупроводниковой. В этом случае она должна иметь РВС (режим внутреннего сохранения).

Важно, чтобы защитные устройства, обеспечивающие стабильность во время перенапряжений, были многократного действия.

Состав системы возбуждения Что обеспечивает система возбуждения
трансформатор выпрямительный начальное возбуждение
трансформатор последовательный вольтодобавочный холостой ход
тиристорный преобразователь (ТВ 8-2000/) 050- 1У4) включение в сеть методом точной синхронизации в нормальных режимах и самосинхронизации в аварийных режимах
система охлаждения преобразователя работу ГГ в энергосистеме с нагрузками от холостого хода до номинальной и перегрузками
агрегат начального возбуждения (АН В-2) недовозбуждение в пределах устойчивой работы генератора
автоматический регулятор возбуждения (АУ1Г типа АРВ-СД) форсировку возбуждения по току и напряжению
панель гашения поля эффективное гашение поля
релейные панели развозбуждение при нормальных остановках агрегата

Разновидности СВ

СВ принято делить на 2 группы. Они классифицируются в зависимости от способа возбуждения. Различают СВ независимого типа (СВНТ) и зависимого (СВЗТ).

К СВНТ относят все возбудители, которые сопряжены с генераторным валом. По сути, они способны вырабатывать напряжение в независимом режиме.

За группу СВЗТ принимают возбудители, схватывающие вольтаж прямиком с концов основного генератора. Ток поступает через трансформаторы особого типа.

Тиристорная система возбуждения

Более выгодно смотрятся СВНТ, так как в них выработка тока не зависит от электроцепи.

Интересный момент. На генах со слабой мощностью в качестве возбудителя применяются отдельные, независимые генераторы, способные вырабатывать ток. Они соединяется с валом основного гена (синхронного).

Другие преимущества СВНТ:

  • Высокий процент быстродействия;
  • Высокая скорость нарастания тока;
  • Возможность замены тиристоров, вышедших из строя, без остановки генератора.

Однако СВНТ имеют и недостатки, связанные с самим устройством возбудителя. К примеру, если быстрота повышения возбуждения не слишком высока.

  • Слабыми в СВНТ выглядят контакты скользящего типа, так как напряжение к ним подводится через щетки.

Сегодня наиболее востребованы СВ с полупроводниковыми диодными мостами. Они построены по 3-фазной схеме, в них задействуется минимальное количество выстроенных по порядку тиристоров.

Что касается схем диодного моста, то они бывают 1-групповыми и 2-групповыми. Один выпрямитель внедрен в первом случае, два – во втором.

Токоподавателем в СВНТ является синхронный ген, нашедший место между индуктором и верхним кронштейном основного генератора.

Устройство синхронного генератора

СВЗТ менее надежна, чем первая система, так как работа возбудителя здесь полностью зависимая. Другими словами, возбудитель в этом случае будет работать только в том случае, если получит ток от сети. А в сети, как правило, часто возникают замыкания, нарушающие стабильное функционирование СВ. Получается лишняя нагрузка на СВЗТ, которая должна обеспечивать форсировку напряжения в обмотке.

Но СВЗТ в некоторых случаях имеют плюсы перед самостийными системами. Они выражаются простотой схемы. Недостатком же выступает, как и говорилось, непостоянство работы, что более всего заметно в высокомощных машинах.

По мнению экспертов, если подразумевается длительность ремонта, то лучше зарекомендуют себя СВЗТ.

Проверка возбуждения

Основными симптомами, которые доказывают неработоспособность СВ на генераторе, являются показатели внешних характеристик. Говоря иначе, если напряжение через выводы генератора не поступает, то агрегат должен самовозбуждаться по принципу. Если такого не происходит, налицо проблема.

Хорошо заметна работа генератора на дизельных агрегатах. Они получают меньшую, чем обычно дозу топлива, как только генератор развивает небольшую мощность. Таким образом, дизельная установка остается недогруженной.

Проверка системы возбуждения

Ясно, что при уменьшении подачи топлива в цилиндры, снизится и скорость движения. По ней (скорости) можно будет определить снижение напряжения генератора, следовательно, и его возбуждение.

Если в генераторе увеличивается произведение напряжения, то не должно увеличиваться магнитное насыщение СВ, иначе прочность изоляции электромашины не выдержит. Ограниченным в некоторых значениях можно назвать также генераторный ток, который в случае увеличения приведет к перегоранию обмотки якоря.

Электрооборудование ТЭС — Возбуждение генераторов

У турбогенераторов система возбуждения является неотъемлемой частью, и от надежности ее работы в большой степени зависит надежная и устойчивая работа всего турбогенератора. Обмотка возбуждения укладывается в пазы ротора генератора, и к ней с помощью контактных колец и щеток подводится постоянный ток.
Мощность источника возбуждения составляет обычно 0,3— 1 % мощности турбогенератора, а напряжение возбуждения 115—575 В. Чем больше мощность турбогенератора, тем выше напряжение и тем меньше относительная мощность возбудителя.
Системы возбуждения турбогенераторов можно разделить на два типа: независимое (прямое) возбуждение и зависимое (косвенное) возбуждение (или так называемое самовозбуждение).
К первому типу относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом турбогенератора (рис. 2-7). Ко второму типу относятся системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы (рис. 2-8,а) и отдельно установленные электромашинные возбудители, вращаемые двигателями переменного тока, питающимися от шин собственных нужд станции (рис. 2-8,б).
Электромашинные возбудители постоянного тока (рис. 2-7,а) применяются обычно на турбогенераторах мощностью до 100—150 МВт, так как при большей мощности их и при частоте вращения 3000 об/мин эту систему возбуждения трудно выполнить из-за тяжелых условий работы коллектора и щеточного аппарата (ухудшение условий коммутации). Поэтому на турбогенераторах большой мощности (165—500 МВт) применяется высокочастотное или ионное возбуждение, а также редукторное соединение возбудителя с генератором. Последний вид возбуждения применен на турбогенераторах ТВМ-300.
Принцип работы высокочастотного возбуждения (рис. 2-7,б) заключается в том, что на одном валу с генератором вращается высокочастотный генератор трехфазного тока 500 Гц, который через полупроводниковые выпрямители В подает выпрямленный ток на кольца ротора турбогенератора. При этой системе возбуждения исключается влияние изменения режимов работы внешней сети на возбуждение генератора, что повышает его устойчивость при к. з. в энергосистеме. Этот тип возбуждения применен на турбогенераторе ТВВ.


Рис. 2-7. Принципиальные схемы независимого возбуждения генераторов.
а — электромашинное; б — высокочастотное; СГ — синхронный генератор; ВГ — возбудитель постоянного тока; ВЧГ — высокочастотный генератор; ПВ — подвозбудитель; В — выпрямитель.
Рис. 2-8. Принципиальные схемы зависимого возбуждения генераторов.
а — ионное; б — электромашинное; ВТ — вспомогательный трансформатор; АД — асинхронный двигатель. Остальные обозначения см. на рис. 2-7.

Системы возбуждения с управляемыми ртутными выпрямителями называют обычно системами «ионного возбуждения». Раньше данная система применялась только на гидрогенератоpax, а в настоящее время она нашла применение на мощных турбогенераторах, причем на ТГВ мощностью 200 и 300 МВт она выполнена по схеме самовозбуждения (рис. 2-8, а) с питанием ртутных выпрямителей от специального трансформатора ВТ, подключенного к шинам генераторного напряжения, а на ТГВ-500 управляемые ртутные выпрямители питаются от генератора переменного тока (турбовозбудителя) типа СТВ-12, соединенного непосредственно с валом турбогенератора (схема независимого ионного возбуждения).
В последнее время благодаря развитию полупроводниковой техники вместо ртутных выпрямителей применяют управляемые полупроводниковые диоды — тиристоры, что повышает надежность системы возбуждения, увеличивает срок службы и упрощает эксплуатацию.

Во всех рассмотренных выше системах возбуждения постоянный ток к обмотке возбуждения подводится с помощью контактных колец и щеток. Такая контактная система недостаточно надежна, особенно при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше). В связи с этим перспективной является система бесщеточного возбуждения, не обладающая указанными недостатками.
Такая система возбуждения будет применена на ТВВ-1200, устанавливаемом на Костромской ГРЭС. В этой системе возбуждения нет подвижных контактных соединений и в качестве возбудителя используется вспомогательный генератор особой конструкции: его обмотка возбуждения расположена на неподвижном статоре, а обмотка трехфазного переменного тока — на вращающемся роторе. Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю, а выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.
На случай повреждения системы возбуждения турбогенераторов предусматривается установка резервных возбудителей: по одному на станцию при единичной мощности генераторов до 100 МВт включительно и один на четыре генератора при единичной мощности 160 МВт и выше [23]. В качестве резервного возбудителя устанавливают генераторы постоянного тока, приводимые во вращение асинхронными двигателями, подключенными к шинам с. н. станции (рис. 2-8,б).

Автоматическое регулирование возбуждения (АРВ) служит для поддержания напряжения у генераторов и на шинах станции при изменениях нагрузки и быстрого повышения возбуждения генераторов при к. з. Необходимо отметить, что быстрое увеличение возбуждения генератора при к. з. в сети помогает сохранить устойчивость параллельной работы, ускорить восстановление напряжения у потребителей после отключения к. з.
Простейшим автоматическим устройством, предназначенным для быстрого увеличения возбуждения синхронных генераторов в аварийном режиме, является релейная форсировка возбуждения. Принцип действия ее состоит в том, что при резком снижении напряжения на зажимах генератора (при к. з.) реле минимального напряжения PH замыкает свои контакты и приводит в действие промежуточный контактор КП, который при включении закорачивает (шунтирует) сопротивление шунтового реостата ШР в цепи возбудителя. В результате ток возбуждения быстро возрастает до некоторого максимального значения, следовательно, и возбуждение генератора увеличивается до предельного значения (рис. 2-9).
Согласно Правилам технической эксплуатации (ПТЭ) все генераторы независимо от их мощности и напряжения должны иметь устройство релейной форсировки возбуждения, а генераторы мощностью 3 МВт и выше должны также иметь и автоматические регуляторы возбуждения (АРВ) для поддержания напряжения в нормальном режиме. Наиболее распространенными являются устройства компаундирования в сочетании с корректором напряжения.
Устройство компаундирования основано на принципе подпитки обмотки возбуждения возбудителя дополнительным током, пропорциональным току статора генератора. Оно состоит из измерительного трансформатора тока ТТ, вспомогательного трансформатора ТВ, выпрямителя В и установочного реостата УР, служащего для настройки компаундирующего устройства.

Рис. 2-9. Схема устройства компаундирования с электромагнитным корректором напряжения.

Однако это устройство не обеспечивает стабильности напряжения генератора при колебании его на шинах станции. Для этой цели устройство компаундирования дополняется корректором напряжения, который питается через установочный автотрансформатор УАТ от трансформатора напряжения TH. На выходе корректора создается выпрямленный ток Iкор, который поступает в добавочную обмотку возбуждения возбудителя ОВВ-2 в том или другом направлении, усиливая или уменьшая основной ток возбуждения возбудителя.

Для чего катушка возбуждения в генераторе постоянного тока

Возбуждение – это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.

Описание процесса

Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.

Простой электромагнит и концентрация поля

Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North – северный) и S (South – южный).
Рис. 3.13(а). Простой электромагнит.
Из-за большого расстояния между полюсами магнитные силовые линии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).
Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.
И, наконец, выполним полюса магнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить “утечка” магнитного поля наружу. При вращении ротора эта “утечка” будет пересекать обмотки статора, и наводить в них э.д.с.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Питание ротора постоянным током: особенности процесса

Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.

Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).

Рис. 3.14. Зубчатый ротор генератора.

Возбуждение генератора: знакомство с определением

Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.

Обмотка возбуждения генератора: знакомство с определением

Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ). Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока.

Для чего служит обмотка возбуждения генератора

Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).

Катушка возбуждения генератора: знакомство с определением

Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:

  • Статор – он неподвижный.
  • Ротор – производит вращения вокруг статора.

Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.

ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока широко востребованы в бытовой аппаратуре, для питания которой используется постоянное напряжение.

Существуют сложности с их запуском, которые возникают из-за того, что работа электрических машин основана на взаимодействии подвижного ротора с вращающимся электромагнитным (э/м) полем статора.

В случае постоянного напряжения питания формирование вращающегося магнитного поля невозможно без применения вспомогательных узлов и устройств, выбор которых определяет существующее разнообразие модификаций двигателей такого типа.

Разновидности двигателей постоянного тока.

Электрические машины этого типа различаются по способу получения вращающегося магнитного поля, зависящего от конструкции вспомогательного узла. В соответствие с этим все двигатели делятся на

  • коллекторные;
  • бесколлекторные;
  • устройства с внешним возбуждением.

В первом случае для подачи питания на ламели ротора используются специальные графитовые щетки. Менять полярность подаваемого напряжения, создавая аналог вращающегося магнитного поля, удается за счет разорванной конструкции токоподающего узла (слева на рисунке).

Виды двигателей постоянного тока

В бесколлекторном двигателе вращающееся э/м поле формируется специальным коммутирующим узлом. Функцию последнего выполняют электронные схемы на полупроводниковых элементах, имеющие различное исполнение. Благодаря этому удается получить бесконтактное взаимодействие полей, без щеток и коллектора.

Типичный представитель такого электродвигателя – мотор-колесо, известное большинству любителей езды на малогабаритных транспортных средствах. Еще один распространенный способ запуска двигателя – включение в схему специальных обмоток возбуждения.

Обмотка — возбуждение — генератор — постоянный ток

Обмотка возбуждения генератора постоянного тока питается через выпрямительный мост от магнитного усилителя. Магнитный усилитель двухтактный, однофазный, соединенный для питания нагрузки по мостовой схеме с внутренней обратной связью, имеет две обмотки управления: независимую и отрицательной обратной связи по напряжению генератора. [1]

Обмотка возбуждения генератора постоянного тока питается через выпрямительный мост от магнитного усилителя. Магнитный усилитель двухтактный, однофазный, соединенный для питания нагрузки по мостовой схеме с внутренней обратной связью, имеет две обмотки управления: независимую и обмотку отрицательной обратной связи по напряжению генератора. [2]

При осмотре обмотки возбуждения генератора постоянного тока особое внимание обращают на крепление полюсов к корпусу, а также на крепление катушек на полюсах, токопроводов и выводных концов. Контролируют, чтобы катушки обмотки возбуждения были намотаны ровной плотно, без пропусков, пересечений и схлестывания проводов. Вводные концы катушек закрепляют ленточным бандажом. [3]

Источником питания обмотки возбуждения генератора постоянного тока с параллельным возбуждением является сам генератор. При этом обмотка возбуждения рассчитывается так, чтобы при нормальной частоте вращения якоря и нормальном токе нагрузки ток возбуждения / создавал необходимый для нормальной работы машины магнитный поток. Процесс самовозбуждения генератора происходит следующим образом. При разомкнутой обмотке возбуждения и вращении якоря в обмотке якоря создается ЭДС Д ст, обусловленная остаточным магнитным потоком. С / вом, Напряжение на зажимах генератора UEocr будет оставаться до тех пор, пока не будет подано питание в цепь обмотки возбуждения. [4]

Электродвигатель с смешанным возбуждением

Двигатель с параллельным возбуждением значительно хуже справится с началом вращения, но зато, он не боится разноса. Компромиссное решение состоит в том, что для стартерного электродвигателя применяют смешанную схему возбуждения – основная обмотка последовательная и вспомогательная параллельная. Параллельная обмотка тоже помогает крутить электродвигатель, он она еще и не дает стартеру уйти в разнос.

В этой схеме ток от аккумулятора разветвляется, часть тока идет через левую обмотку возбуждения и последовательно идет через щетки в якорь. Другая часть тока идет через правую, параллельную обмотку возбуждения, сразу на минус.

Большая часть поздних схем стартеров с электромагнитным возбуждением сделаны именно по такой схеме.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.

Альтернатор постоянного тока

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.

Принцип действия генератора

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.

Устройство машины постоянного тока

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Классификация

Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

  • смешанным;
  • параллельным;
  • последовательным.

Схема генератора постоянного тока представлена на картинке 5.

С параллельным возбуждением

Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения реализует третий подход к регулированию и интересен тем, что ОВ и М питаются от разных источников, схема его представлена ниже.

Обмотки простейшего электромотора параллельного независимого возбуждения

Для моторов в данном конструктивном исполнении Iв устанавливается неизменным, а меняется только напряжение, приложенное к М. Это сопровождается изменением числа оборотов на холостом ходу, но жесткость характеристики изменений не претерпевает.

Принцип работы такого агрегата за счет независимого функционирования двух источников оказывается более сложным. Однако, его применение дает такие важные для практики преимущества как

  • плавное экономичное управление скоростью функционирования с большой глубиной,
  • пуск мотора при пониженном напряжении без реостата.

В случае, если пуск происходит на нормальном напряжении, реостат ограничивает величину Iв.

Исследование показывает, что максимальное количество оборотов ограничено только сопротивлением М, а минимальное условиями отвода выделяемого тепла в процессе работы.

Характеристики в части энергопотребления и скорости срабатывания управляющей системы улучшаются в случае последовательного включения с М различных тиристорных регуляторов. Для установки числа оборотов вала и их стабилизации в процессе приведения в движение различных механизмов находят применение различные способы. Их общим характерным признаком является включение тиристорного регулятора в цепь частотной отрицательной обратной связи. Пуск такого агрегата требует реализации специальных процедур.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *