Что является источником колебания волн
Перейти к содержимому

Что является источником колебания волн

  • автор:

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​ \( x \) ​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​ \( A \) ​ – амплитуда колебаний; ​ \( \omega t+\varphi_0 \) ​ – фаза колебаний; ​ \( \omega \) ​ – циклическая частота; ​ \( \varphi_0 \) ​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​ \( v \) ​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​ \( a \) ​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​ \( F \) ​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​ \( W_k \) ​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​ \( A\, (X_) \) ​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​ \( \varphi \) ​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
​ \( \varphi_0 \) ​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​ \( T \) ​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​ \( \nu \) ​, единицы времени – с -1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​ \( \omega \) ​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​ \( h \) ​, определяется по формуле:

где ​ \( l \) ​ – длина нити, ​ \( \alpha \) ​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

​ \( v_0 \) ​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​ \( \lambda \) ​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​ \( \nu \) ​ < 16 Гц);
  • звуковой диапазон (16 Гц < \( \nu \) < 20 000 Гц);
  • ультразвук ( \( \nu \) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Механические волны: источник, свойства, формулы

Представить, что такое механические волны, можно, бросив в воду камень. Круги, возникающие на ней и являющиеся чередующимися впадинами и гребнями, — это пример механических волн. В чем их сущность? Механические волны – это процесс распространения колебаний в упругих средах.

Волны на поверхностях жидкостей

Такие механические волны существуют благодаря воздействию на частицы жидкости сил межмолекулярного взаимодействия и тяжести. Люди уже давно изучают это явление. Наиболее примечательными являются океанские и морские волны. По мере увеличения скорости ветра они изменяются, а их высота растет. Также усложняется и форма самих волн. В океане они могут достигать устрашающих масштабов. Одним из самых наглядных примеров силы являются цунами, сметающие все на своем пути.

Энергия морских и океанских волн

Механические волны

Упругие волны

В механике изучают не только колебания на поверхности жидкости, но и так называемые упругие волны. Это возмущения, которые распространяются в разных средах под действием в них сил упругости. Такое возмущение представляет собой любое отклонение частичек данной среды от положения равновесия. Наглядным примером упругих волн является длинная веревка или резиновая трубка, прикрепленная одним из концов к чему-нибудь. Если ее туго натянуть, а затем боковым резким движением создать на втором (незакрепленном) ее конце возмущение, то можно увидеть, как оно по всей длине веревки «пробежит» до опоры и отразится назад.

Источник механических волн

Свойства механических волон

Начальное возмущение приводит к возникновению в среде волны. Оно вызывается действием какого-то инородного тела, которое в физике называется источником волны. Им может быть рука человека, качнувшего веревку, или камешек, брошенный в воду. В том случае, когда действие источника имеет кратковременный характер, в среде часто возникает одиночная волна. Когда же «возмутитель» совершает длительные колебательные движения, волны начинают возникать одна за другой.

Условия возникновения механических волн

Такого рода колебания образуются не всегда. Необходимым условием для их появления является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Со временем все частички среды вовлекаются в одно колебательное движение. Распространение таких колебаний и является волной.

Механические волны в упругой среде

В упругой волне существуют 2 вида движения одновременно: колебания частиц и распространение возмущения. Продольной называется механическая волна, частицы которой колеблются вдоль направления ее распространения. Поперечной называется волна, частицы среды которой колеблются поперек направления ее распространения.

Свойства механических волн

Механические волны это

Особенности волн на поверхности жидкостей

Волны на поверхности жидкости не продольные и не поперечные. Они имеют более сложный, так называемый продольно-поперечный характер. В этом случае частицы жидкости двигаются по окружности или по вытянутым эллипсам. Круговые движения частичек на поверхности жидкости, и особенно при больших колебаниях, сопровождаются их медленным, но непрерывным перемещением по направлению распространения волны. Именно эти свойства механических волн в воде обуславливают появление на берегу различных даров моря.

Частота механических волн

Механические волны (формулы)

Сразу может быть непонятно, каким образом происходит этот процесс. С механическими волнами связывают перенос энергии колебательного движения от его источника к периферии среды. В ходе чего возникают так называемые периодические деформации, переносимые волной из одной точки в другую. При этом сами частички среды вместе с волной не перемещаются. Они колеблются рядом со своим положением равновесия. Именно поэтому распространение механической волны не сопровождается перенесением вещества из одного места в другое. У механических волн различная частота. Поэтому их поделили на диапазоны и создали специальную шкалу. Частота измеряется в герцах (Гц).

Основные формулы

Источник механических волн

где ρ — плотность среды, G – модуль упругости.

При расчете не стоит путать скорость механической волны в среде со скоростью движения частичек среды, которые вовлечены в волновой процесс. Так, к примеру, звуковая волна в воздухе распространяется со средней скоростью колебания его молекул в 10 м/с, в то время как скорость звуковой волны в нормальных условиях составляет 330 м/с.

Механические и электромагнитные волны

• Сферический – вызывается колебаниями в газообразной или жидкой среде. Амплитуда волны при этом убывает при удалении от источника обратно пропорционально квадрату расстояния.

• Плоский – представляет собой плоскость, которая перпендикулярна направлению распространения волны. Он возникает, например, в закрытом поршневом цилиндре, когда тот совершает колебательные движения. Плоская волна характеризуется практически неизменной амплитудой. Ее незначительное уменьшение при удалении от источника возмущения связано со степенью вязкости газообразной или жидкой среды.

Длина волны

Под длиной волны понимают расстояние, на которое будет перемещен ее фронт за время, которое равняется периоду колебания частичек среды:

где Т – период колебания, υ — скорость волны, ω — циклическая частота, ν — частота колебания точек среды.

Поскольку скорость распространения механической волны находится в полной зависимости от свойств среды, то ее длина λ во время перехода из одной среды в иную изменяется. При этом частота колебания ν всегда остается прежней. Механические и электромагнитные волны схожи тем, что при их распространении осуществляется передача энергии, но не происходит перенос вещества.

Что является источником колебания волн

Физика

Электродинамика

Магнитное поле

Механические колебания

Электромагнитные колебания

Механические волны

Электромагнитные волны

Оптика

Геометрическая оптика

Задачи на сферическое зеркало

Линза

Волновая оптика

Основы теории относительности

Основы квантовой физики

Излучения и спектры

Световые кванты

Атомная физика

Ядерная физика

Физика элементарных частиц

Открытие позитрона. Античастицы

Современная физическая картина мира

Современная физическая картина мира

Строение Вселенной

Строение Вселенной

Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд

Что нужно знать о механических волнах в физике — основные свойства

Механическая волна — это процесс распространения колебаний в упругой среде (твердой, жидкой, газообразной).

Для того чтобы возникала волна, необходимо наличие колеблющегося тела — источника волны. Источник волны осуществляет колебательное движение, тем самым деформируя ближайшие к нему слои среды (сжимает, растягивает, смещает).

В результате возникает сила упругости, которая действует на соседние слои среды и заставляет их совершать вынужденные колебания. Эти слои деформируют следующие слои и так далее, пока все слои не будут вовлечены в колебательное движения. Таким образом возникает механическая волна.

Необходимым условием возникновения волн является наличие у среды упругих свойств.

Виды механических волн

Виды волн по отношению к направлению колебаний частиц среды:

  1. Продольные — это волны, в которых частицы среды колеблются вдоль направления распространения волны.
  2. Поперечные — это волны, в которых частицы среды колеблются перпендикулярно направления распространения волны.

В жидкой и газообразной средах возникают только продольные волны.

В твердой среде возникают как продольные волны, так и поперечные.

Типы волн в зависимости от физической среды:

  1. Электромагнитные.
  2. Упругие.
  3. Волны в плазме.
  4. Гравитационные.
  5. Объемные.
  6. Волны на поверхности жидкости.

Это лишь некоторые примеры. В действительности существует множество классификаций волн.

Характеристики механических волн

Основные определения, обозначения, единицы измерения:

  1. Длина волны — это расстояние между двумя ближайшими точками, которые колеблются в одинаковых фазах. Обозначается λ, измеряется в метрах(м).
  2. Период — это время, за которое совершается одно полное колебание. Обозначается T, измеряется в секундах (с).
  3. Амплитуда — это максимальное смещение колеблющейся точки от равновесного положения. Обозначается A, измеряется в метрах (м).
  4. Скорость — это скорость, с которой распространяется волна. Обозначается V, измеряется в метрах, деленных на секунду (м/с).
  5. Частота — это количество полных колебаний за единицу времени. Обозначается v, измеряется в герцах (Гц).

Условия появления и существования волны

Условия появления и существования:

  1. Колебательное движение передается не мгновенно, а с опозданием. Поэтому скорость распространения волны конечна.
  2. Источник механических волн — это колеблющееся тело. При распространении волны колебания частиц среды — вынужденные, поэтому частота колебаний каждой части среды такая же, как и частота колебаний источника волны.
  3. Механические волны не распространяются в вакууме.
  4. Волновое движение не сопровождается переносом вещества.
  5. При распространении волны происходит перенос энергии.
  6. Важнейшее свойство волны — перенос энергии без переноса вещества.

Связь основных характеристик волны( формулы)

Все параметры волны связаны между собой и выражаются через следующие уравнения:

T=t/N или T=1/v, где

t — время распространения,

N — количество колебаний,

V=λ/T или V=λv, где

V — скорость волны.

Примеры решения задач

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ=4 м?

Какова длина звуковой волны ноты ля, если частота колебаний равна 440 Гц, а скорость звука в воздухе 340 м/с?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *