Что значит идеальный вольтметр
Перейти к содержимому

Что значит идеальный вольтметр

  • автор:

Большая Энциклопедия Нефти и Газа

Идеальный вольтметр , не оказывающий возмущающего вотдейгтгшя на измеряемую цепь, должен обладать бесконечно большим сопротивлением или, скажем иначе, собственное потребление мощности ( от измеряемого объекта) вольтметром должно быть нулевым.  [4]

Можете ли вы сказать, почему идеальный вольтметр должен иметь бесконечное сопротивление, а идеальный амперметр нулевое сопротивление.  [5]

Ламповый вольтметр удовлетворяет всем требованиям, предъявляемым к идеальному вольтметру . Он измеряет напряжения, совершенно не потребляя тока. При этом становятся ненужными: декадные реостаты, измерительные мостики, нормальные элементы, капиллярный электрометр. Наряду с этим измерение, происходящее при действительном отсутствии тока ( в противоположность всем другим методам, при которых потребляется некоторое количество тока до окончательной компенсации), дает широкие возможности для усовершенствования электродов. Например, можно спокойно поворачивать краны электродов, если они не смазаны жиром, не вредя измерению. При помощи лампового вольтметра можно безупречно измерить даже рн воды для определения электропроводности — В случаях, когда можно опасаться отравления платинового электрода, ламповый вольтметр часто дает хорошие результаты, благодаря быстроте работы ( секунды), в то время как при старых методах никакие измерения здесь не были возможны.  [6]

Требуется определить, как изменятся ( увеличатся или уменьшатся) показания всех идеальных вольтметров в цепи, показанной на рис. 77, если, например, уменьшить сопротивление R2 переменного резистора.  [8]

Теперь начнем регулировать величины источников тока до тех: пор, пока напряжения, отмечаемые идеальными вольтметрами , не станут равными нулю. Легко заметить, что это должны быть токи, возникающие на соответствующих зажимах при одновременном коротком замыкании последних. Токи источников, подключен-ных к зажимам, должны скомпенсировать влияние источников, находящихся внутри ящика, в части их влияния на условия на зажимах.  [9]

Поэтому вольтметр должен иметь большое сопротивление по сравнению с сопротивлением участка цепи, к которому он подключается. Идеальным вольтметром является такой, у которого сопротивление стремится к бесконечности.  [10]

Составление неопределенной матрицы полезно, потому что упрощает получение уравнения полного передающего сопротивления от любой пары узлов цепи к любой другой паре узлов этой же цепи. Предположим, что источник тока присоединен между двумя узлами т и k, так что ток I, входит в г-й узел и выходит из fe-ro узла. Предположим также, что идеальный вольтметр ( имеющий бесконечно большое входное сопротивление) присоединен между узлами j и m и таким образом измеряет разность потенциалов между этими узлами.  [11]

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. методическая разработка по химии (8 класс)


Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета
Вольтметр

(вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается
параллельно
нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Содержание

  • 1 Классификация и принцип действия 1.1 Классификация
  • 1.2 Аналоговые электромеханические вольтметры
  • 1.3 Аналоговые электронные вольтметры общего назначения
  • 1.4 Цифровые электронные вольтметры общего назначения
  • 1.5 Диодно-компенсационные вольтметры переменного тока
  • 1.6 Импульсные вольтметры
  • 1.7 Фазочувствительные вольтметры
  • 1.8 Селективные вольтметры
    2.1 Видовые наименования
    5.1 Другие средства измерения напряжений и ЭДС
    6.1 Литература

Ссылки

  • [metrob.ru/HTML/Stati/SI/vmetr.html Поверка и калибровка широкополосных вольтметров переменного напряжения]
  • Войнаровский П. Д.
    Электрические измерительные аппараты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • [www.youtube.com/watch?feature=plpp&v=1O6Rlv_Mhtc Вольтметр. Измерение напряжения (учебный видеоролик)]
  • Вольтметр // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на: электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
  • электронные — аналоговые и цифровые
    постоянного тока;
    щитовые;

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения. ПРИМЕРЫ:
    М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
    ПРИМЕРЫ:
    Ц215, Ц1611, Ц4204, Ц4281
    ПРИМЕРЫ:
    Т16, Т218

Аналоговые электронные вольтметры общего назначения

Вы поможете проекту, исправив и дополнив его.

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Дополнительные сведения: Мультиметр#Цифровые мультиметры

Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ:
    В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Вы поможете проекту, исправив и дополнив его.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ:
    В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановоль

вольтметры Вольтметр для чего

Основные технические характеристики вольтметров

Для оценки технических характеристик измерительных приборов принято пользоваться такими показателями:

  1. Внутреннее сопротивление. В идеале этот показатель должен быть максимально высоким. В этом случае минимизируется влияние прибора на цепь, в которую он подключается. Другими словами, чем больше внутреннее сопротивление вольтметра, тем точнее измерение;
  2. Диапазон измеряемых напряжений. Большинство вольтметров являются универсальными и измеряют напряжение в диапазоне от десятков милливольт до 1000 вольт. Этих пределов вполне достаточно для большинства измерений. Однако специалисты широко используют специальные приборы, которые позволяют измерять очень маленькие значения напряжений с высокой точностью – милли и даже микровольтметры (с точностью до тысячных и миллионных частей вольта) и киловольтметры, измеряющие высокие напряжения порядка тысяч вольт. Работа с этими приборами требует наличия некоторых специальных знаний, навыков и допуска к эксплуатации электроустановок с напряжением свыше 1000 В, чтобы не вывести из строя приборы (милли- и микровольтметры) или не допустить электротравмирования и гибели обслуживающего персонала (при работе с киловольтметрами);
  3. Точность измерения (погрешность). Этот параметр характеризует возможные отличия показаний прибора от реального напряжения в цепи;
  4. Диапазон частот измеряемого переменного напряжения.

Наименования и обозначения

Видовые наименования

  • Нановольтметр
    — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр
    — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр
    — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр
    — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр
    — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия Д
    xx — электродинамические вольтметры
  • М
    xx — магнитоэлектрические вольтметры
  • С
    xx — электростатические вольтметры
  • Т
    xx — термоэлектрические вольтметры
  • Ф
    xx,
    Щ
    xx — электронные вольтметры
  • Ц
    xx — вольтметры выпрямительного типа
  • Э
    xx — электромагнитные вольтметры
    В2-
    xx — вольтметры постоянного тока

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения: Потенциометр — точные измерения компенсационным методом
  • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
  • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
  • Электрометр — прибор, служащий для измерения электрического потенциала
    Измерители отношений напряжений
    Электронные преобразователи напряжений
    Нормальный элемент — однозначная мера

Прочие ссылки

  • Вольт
  • Амперметр
  • Омметр
  • Мультиметр
  • Измерительный прибор
  • Радиоизмерительные приборы
  • Электроизмерительные приборы
  • Список параметров напряжения и силы электрического тока

Принцип работы цифрового прибора

Цифровой амперметр постоянного тока позволяет измерить и определить постоянный ток – как отрицательной, так и положительной полярности. На направление тока указывает точка, размещенная в крайнем правом разряде. Удобство применения данного устройства состоит в отсутствии необходимости подключения шунта. Амперметр цифровой постоянного тока может монтировать в источники питания, стойки приборов, стенды, зарядные устройства и прочее. Такой прибор советуют использовать, чтобы контролировать работу двигателей, DС-DС преобразователей, источников питания и инверторов.

Будет интересно➡ Как подключить амперметр к цепи переменного или постоянного тока

Амперметр постоянного тока цифровой включается спустя три минуты после подключения питания. В случае установки в зарядное устройство рекомендуется предварительно к выводам питания амперметра подключить конденсатор 470 mF 25 v. Индикатор не отображает незначащие нули. Учитывая обширный выбор диапазонов, амперметр с успехом функционирует в одном из двадцати вариантов режима работы. При этом каждый режим предполагает применение одного из трех шунтов: на мкА, мА или Амперы.

Предел измерения колеблется в диапазоне 1мкА – 1000А. Для работы следует выбрать один из 60 предложенных пределов измерений.

Как уже было отмечено, каждый режим работает на основе подходящего шунта. Следует помнить, что номинальное напряжение любого шунта не должно превышать 75мВ. В качестве примера можно рассмотреть режим 2, который работает только с шунтами 5мкА, 5мА или 5А. Для программирования режимов применяется пять джамперов.

Перед включением модуля рекомендуется запрограммировать режим его работы. После включения модуль выдаст сведения относительно выбранного режима работы. Если, допустим, выбран режим измерения токов в пределах 25А, то включенный модуль будет мигать несколько раз «25.0», что указывает на режим работы «5». В таком случае необходимо использование одного из шунтов: 25А, 25мкА или 25мА. При выборе недопустимого режима будет мигать значок «Err», указывающий на ошибку.

Как работает цифровой амперметр

Следует помнить, что измерять можно только в одной полярности, если же ток измеряется в обратной полярности, то это будет отображаться, как «000». Для питания модуля предназначен встроенный литиевый аккумулятор CR2032, рассчитанный на двадцать дней бесперебойной работы. К тому же, источником питания может послужить внешняя батарея и любой другой источник с постоянным током 3В. Особенности подключения состоят в том, что внешний источник питания 3В следует подключить плюсом к контакту «3V», а минусом – к «0V».

Еще одним обязательным условием является наличие гальванической развязки для внешнего источника питания от источника, который измеряет ток. Важно не забыть встроенный литиевый элемент при использовании внешнего источника питания. Чтобы сэкономить батарею, измеряя ток в автомобиле, можно воспользоваться реле, которое отключает питание модуля во время выключения зажигания. Сделанные самостоятельно шунты или резисторы можно использовать для малых токов. При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку.

Лабораторная работа «Определение неизвестного сопротивления с помощью вольтметра»

Амперметр, как впрочем и вольтметр, оказывает определенное влияние на тестируемую цепь, к которой он подключается в процессе измерения. Когда мы с вами рассматривали воздействие вольтметра на измеряемую цепь , то пришли к выводу, что никакого влияния на тестируемую цепь не оказывает только идеальный вольтметр. Это утверждение справедливо и для идеального амперметра. Отличие идеального амперметра от идеального вольтметра состоит в том, что первый имеет нулевое внутреннее сопротивление, которое не позволяет ему «забирать» напряжение у тестируемой схемы, а второй, наоборот, имеет бесконечное сопротивление, которое не позволяет ему «забирать» ток у схемы при проведении измерения.

Ниже представлен яркий пример влияния амперметра (не идеального, которого в принципе не существует) на тестируемую цепь:

Пока амперметр не подключен к схеме, ток через резистор величиной 3 Ома составляет 666,7 миллиампер, а ток через резистор величиной 1,5 Ом составляет 1,333 ампер. Если к одной из ветвей данной схемы подключить амперметр с внутренним сопротивлением 0,5 Ом, то он серьезно повлияет на измеряемый ток соответствующей ветви:

При подключении амперметра к левой ветви схемы, ее эквивалентное последовательное сопротивление будет равно 3,5 Ома (R 1 +R внутр), а это значит, что прибор вам покажет 571,43 мА вместо 666,7 мА. Подключение амперметра к правой ветви схемы еще больше повлияет на измеряемый ток:

Теперь, из-за увеличения эквивалентного сопротивления правой ветви схемы, вызванного подключением амперметра, ток в ней составит 1 А вместо 1,333 А.

Использование стандартного амперметра, который подключается последовательно измеряемой цепи, не всегда практично, так как его входное сопротивление невозможно изменить. Более практичным для измерения силы тока будет использование шунтирующего резистора и вольтметра, потому что в этом случае мы можем варьировать сопротивлением шунта, и выбирать его настолько низким, насколько это необходимо. Если сопротивление шунта будет больше чем нужно, то оно может отрицательно воздействовать на измеряемую цепь, добавляя чрезмерное сопротивление потоку электронов.

Одним из способов уменьшения влияния амперметра на тестируемую цепь состоит в том, чтобы сделать провод этой цепи частью измерительного прибора. Любой находящийся под напряжением провод производит магнитное поле, напряженность которого находится в прямой зависимости от силы тока. На базе инструмента, измеряющего напряженность магнитного поля, можно сделать «бесконтактный» амперметр. Такой прибор позволяет измерять силу проходящего через проводник тока, не вступая в физический контакт с тестируемой цепью.

Амперметры такой конструкции называются «токовые клещи

«, поскольку у них есть специальные зажимы, при помощи которых можно зафиксировать прибор на проводе схемы. Токовые клещи позволяют быстро и безопасно произвести замер силы тока, особенно на мощных промышленных сетях энергоснабжения. Такие приборы исключают ошибку при измерении, поскольку не создают доплнительного сопротивления в тестируемой цепи.

Таким образом, механизмы зажимов токовых клещей подобны механизмам электромагнитных индикаторов, с той лишь разницей, что у них нет внутренней катушки для создания магнитного поля. Более современные конструкции токовых клещей снабжаются датчиками Холла, которые позволяют точно определить напряженность магнитного поля. Некоторые приборы в своей конструкции содержат схему усилителя, которая создает небольшое напряжение, пропорциональное току в проводе между зажимами. Это напряжение подается на вольтметр, что облегчает считывание значений пользователем. Таким образом, токовые клещи могут быть аксессуаром к вольтметру, позволяющим измерять силу тока в цепи.

На фотографии ниже показан менее точный тип амперметра чем токовые клещи — электромагнитный, стрелочный индикатор:

Принцип действия этого амперметра совпадает с принципом действия токовых клещей: магнитное поле, окружающее проводник с током, отклоняет стрелку индикатора, которая показывет текущее значение тока на шкале. Обратите внимание, что на данном индикаторе есть два масштаба измерений: +/- 75 ампер и +/- 400 ампер.

Вольтметр, что это такое? В первую очередь это прибор, который служит в качестве измерительного устройства величины напряжения до 1000В в сетях постоянного и переменного тока, промышленной частоты и используется в информационно-измерительных системах. Идеальный вольтметр обладает чрезвычайно высоким, бесконечным сопротивлением, за счет большого сопротивления прибора достигается наиболее высокая точность и широкие сферы использования.

Прибор предназначен для обеспечения математической и логической обработки измерений.

Виды вольтметров

Существует два вида вольтметров:

  1. Портативные или переносные вольтметры
    , предназначенные для проверки (тестирования) напряжения в сети. Как правило, такой прибор включается в конструкцию тестера, различаются цифровые или стрелочные приборы, кроме измерения напряжения они выполняют функцию по измерению токов нагрузки, сопротивления цепи, температуры и т. д. Если цифровые приборы отличаются точностью показаний то типы вольтметров
    ,
    относящиеся к аналоговым (стрелочным) приборам, способны реагировать на малейшие отклонения параметров, не определяемых цифровым прибором.
  2. Стационарные приборы
    устанавливаются на приборных панелях в электрораспределительных щитах для контроля работы оборудования, эти приборы принадлежат к электромагнитному типу.

В чем измеряется вольтметр?

Вольтметр предназначен для измерения напряжения тока в электрической цепи. Название его происходит от традиционного для измерительных приборов слова «метр» и от единицы измерения напряжения — «Вольт». Достаточно включить такой прибор в сеть, и он начнет показывать значение напряжения.

Какие растения можно посадить осенью? Какие растения можно посадить под деревьями? Какие растения можно посадить под елью? Какие растения можно посадить под зиму? Какие растения можно посадить рядом с картошкой? Какие растения можно посадить рядом с огурцами? Какие растения можно посадить рядом с виноградом? Какие растения можно посадить рядом со смородиной? Какие растения можно посадить рядом со Спиреей? Какие растения можно посадить в Флорариум?

Технические характеристики вольтметра

Нормальная работа вольтметра возможна при температуре воздуха не превышающая 25 – 30 о С с относительной влажностью воздуха до 80% при атмосферном давлении 630 – 800мм рт. ст. Частота питающей сети 50 Гц и с напряжением 220В (частотой до 400 Гц). На измерение большое влияние оказывает форма кривой переменного напряжения питающей сети – синусоида с коэффициентом гармоник не более 5%.

Возможности прибора оцениваются при помощи следующих показателей:

  1. Сопротивление прибора.
  2. Диапазон измеряемых величин напряжения.
  3. Класс точности измерений.
  4. Предельные границы частот напряжения переменной цепи.

Рассмотрим несколько вольтметров разных производителей

1. В3-57 — микровольтметр
Измерительное устройство модели В3-57 — вольтметр-преобразователь среднеквадратич. показаний. Разработан для замеров среднеквадратич. значения напряжений произвольной формы и их линейного преобразован. в напряжение постоян. тока. Шкала прибора промаркирована в среднеквадратич. значениях напряжения и децибелах (от 0 дБ и до 0,775 В). Используется при контроле и наладке разнообразных радиотелетехнических устройств и средств связи, вычислении частотных характеристик широкополосных аппаратов, обследованиях шумовых устойчивых сигналов и т. д.

— Пределы замеров напряжений 10 мкВ — 300 В с граничными зонами: 0,03-0,1-0,3-1-3-10-30-100-300мВ 1-3-10-30-100-300В

— Границы частот 5 Гц — 5 МГц

— Допустимая погрешность, %: ±1 (30-300 мВ), ±1,5 (1-10 мВ), ±2,5 (0,1-0,3 мВ и 1-300 В), ±4 (0,03 мВ)

— Входное сопротивл.5 МОм ±20%

— Входная емкость: 27пФ (0,03-300 мВ) и 12 пФ (1-300 В)

— Напряжение на выходе линейного преобразоват. 1 В

— Сопротивление на выходе линейного преобразоват. 1 кОм ±10%

— Предельный коэфф. амплитуды сигнала 6*(Uk/Ux)

Принцип действия прибора

В основу работы вольтметра заложен метод аналогово-цифрового преобразования с двухтактным интегрированием. Рассмотрим работу прибора на примере В7-35. Преобразователи установленные в конструкции, измеряя величины напряжения постоянного и переменного тока, силу тока, сопротивление, преобразуют в нормализованное напряжение и при использовании АЦП преобразуют в цифровой код.

Функциональная схема цифрового вольтметра работает на использовании 4 преобразователей это:

  1. Масштабирующий преобразователь.
  2. Низкочастотный прибор, преобразующий напряжение переменного тока в постоянный ток.
  3. Преобразователь силы постоянного и переменного тока в напряжение.
  4. Преобразователь сопротивления в напряжение.

Вольтметр переменного тока

Широкополосные электронные вольтметры, используемые в сетях переменного тока, имеют свои конструктивные особенности и свойственную только им градуировку. Степень воздействия на измеряемую цепь при исследовании зависит от входных параметров комплексное, это: входное активное сопротивление (Rв), при этом сопротивление должно быть наиболее высоким, емкость на входе (Cв), она должна быть как можно меньше и индуктивность (Lпр), она вместе с емкостью создает последовательный колебательный контур, отличающийся своей резонансной частотой.

Как работает вольтметр?

Существует два типа вольтметров: аналоговые, показывающие значение путем наклона стрелки механического прибора, и все чаще используемые в настоящее время цифровые, оснащенные сложными электронными схемами.

Аналоговые вольтметры обычно представляют собой амперметры с последовательно соединенным резистором RV с очень большим значением электрического сопротивления. То есть, по сути, они измеряют ток IV, протекающий через него, а шкала показывает значение, которое является результатом расчета: UV = IV * RV .

Цифровые приборы, как правило, имеют обратную конструкцию (то есть они являются именно вольтметрами, а не амперметрами). Это связано с тем, что изготовить цифровой измеритель напряжения относительно просто. Если мы подключим его параллельно резистору с малым сопротивлением, то получим амперметр. Значение индикатора может быть рассчитано по уравнению: UV = IV * RV .

Существует, однако, тип аналогового вольтметра, принцип действия которого не основан на принципе работы амперметра. Это электростатический вольтметр. На практике это конденсатор с одной неподвижной обкладкой и другой подвижной. Электрическое взаимодействие обкладок вызывает перемещение указателя, прикрепленного к движущейся части. С помощью такого вольтметра можно можно измерять даже очень высокие электрические напряжения, а значение его внутреннего сопротивление почти бесконечно.

Виды вольтметров

Возьмем для пример . Чтобы разобраться, как работает этот прибор, проведем их классификацию.

По принципу действия вольтметров они делятся на электромеханические (рис.1) и электронные (рис.2) приборы. Первые из них могут иметь магнитоэлектрическую или электромагнитную измерительную систему. Второй тип вольтметров представлен аналоговыми и цифровыми устройствами.

По назначению приборы могут делиться на такие вольтметры:

  • для переменного тока;
  • для постоянного тока;
  • импульсные;
  • мультифункциональные.

По способу использования вольтметры производятся в виде переносных или встроенных устройств.

Рис.1 — Электромеханический вольтметр

Рис.2 — Электронный вольтметр

Принцип работы вольтметров

Электромеханические приборы

Вольтметры этого вида имеют в своем составе измерительную систему, которая включает в свою конструкцию подвижную рамку с прикрепленной к ней стрелкой-указателем и измерительной катушкой. Исполнение этой рамки напоминает применяемое в амперметре. Отличием, как работает амперметр и вольтметр является то, что амперметр подключается к специальному шунту, а измерительная цепь вольтметра подсоединяется непосредственно к месту замера напряжения.

При подключении прибора к электрической цепи через катушку измерительной системы проходит ток, генерирующий магнитное поле, взаимодействующее с магнитным полем постоянного магнита. В зависимости от величины напряжения, стрелка будет отклоняться на больший или меньший угол, указывая величину напряжения на измерительной шкале прибора.

Электронные устройства

Чтобы понять, как работает цифровой , важно рассмотреть какие функциональные элементы входят в его состав. К ним относятся: система преобразования переменного тока в постоянный, масштабируемый преобразователь, модуль преобразования силы постоянного/переменного тока в напряжение, устройство преобразования электросопротивления в напряжение.

В основу работы таких приборов положен принцип аналогово-цифрового преобразования токового сигнала с двухтактным интегрированием. В процессе работы вольтметра по такой схеме происходит преобразование входного переменного (постоянного) напряжения в постоянное с последующим его усилением и подачей на модуль, который обеспечивает визуализацию измерительных данных. В аналоговом приборе в качестве системы визуализации используется стрелка со шкалой, а в цифровом – система преобразования сигналов в цифровые коды, которые выводятся на ЖК-дисплее в виде величины напряжения.

Рис.3 — Принцип работы вольтметра

Как подключать вольтметр

Для измерения величины напряжения важно правильно подключать вольтметр. Нужно следить, чтобы он подключался к сегменту электрической цепи или источнику напряжения параллельно. В таком случае высокое сопротивление системы вольтметра не будет оказывать влияние на показания прибора. Сила тока, которая протекает через вольтметр, должна быть минимальной.

Рис.4 — Схема подключения вольтметра

Ключевые технические характеристики вольтметров

Чтобы правильно подобрать вольтметр для измерения напряжения, нужно знать его основные характеристики. К основным относятся следующие.

Величина внутреннего напряжения. Этот показатель должен быть как можно выше. Чем большим будет сопротивление вольтметра, тем меньшее влияние он будет оказывать на показания измерений, и тем большая точность измерений будет достигнута.

Измерительный диапазон. В зависимости от его величины прибор можно будет использовать для контроля тех или иных значений напряжения. Бывают исполнения вольтметров, которые рассчитаны только на работу с небольшими напряжениями – мили, или микровольтметры либо для работы с большим напряжением – кило-, мегавольтметры.

Точность измерений. Этот показатель указывает на возможные отклонения измеряемой величины от действительного значения.

Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов. Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром. По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_»а»` и его подключают к участку цепи с сопротивлением `R_»ц»` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_»ц»+R_»а»=R_»ц»(1+(R_»а»)/(R_»ц»))`.

Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б). Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением `R_»в»` параллельно лампочке с сопротивлением `R_»л»` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14) `R=R_»л» (R»в»)/(R_»л»+R_»в»)`.

Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки. Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б). Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в раз.

Что значит идеальный вольтметр

Студент построил электрическую схему, которая состоит из идеальной батареи, вольтметра с сопротивлением R В , амперметра с сопротивлением R A и резистора R. Она соединила все элементы в цепи, как показано на рис.(1). Вольтметр показал значение 1 В, а амперметр — 1 А. Затем другой студент переключился между вольтметром и амперметром (рис. 2). В результате вольтметр показал 2В, а амперметр — 0,5А. Какое сопротивление резистора?

Решение.

Сначала давайте посмотрим на принципиальную схему на рис. (1). Амперметр показал ток 1А, а его сопротивление — R A . По закону Ома напряжение на амперметре равно 1 * R A .
Закон Кирхгофа о напряжении гласит, что для последовательного тракта с замкнутым контуром алгебраическая сумма всех напряжений вокруг любого замкнутого контура в цепи равна нулю. Батарея идеальная, разность потенциалов между ее выводами равна ε. Вольтметр показал значение 1В, так что

Теперь мы можем взглянуть на принципиальную схему на рис. (2). Вольтметр показал 2В.По закону Ома напряжение на амперметре равно 0,5 * R A . Затем

Левая часть уравнения (1) и левая часть уравнения (2) равны друг другу. Таким образом, мы можем просто приравнять правые части двух уравнений друг к другу, а затем решить полученное уравнение.

Мы можем найти ε, подставив значение R A в уравнение (1)

Теперь мы можем использовать закон Кирхгофа, который гласит, что полный ток, входящий в переход цепи, в точности равен полному току, выходящему из того же перехода.

Сначала посмотрим на принципиальную схему на рис. (1). Ток на переходе измеряется амперметром и составляет 1А. Из соединения выходят два тока. Согласно закону Ома, ток одной ветви равен 1 / R, а другой — 1 / R В .Таким образом,

1 = 1 / R + 1 / R В (3)

Теперь мы можем взглянуть на принципиальную схему на рис. (2). По закону Ома ток на переходе равен 2 / R В . Общее напряжение или разность потенциалов батареи составляет 3 В, а вольтметр показал значение 2 В. Итак, напряжение на амперметре или резисторе равно 1В. Из соединения выходят два тока. Ток одной ветви равен 1 / R, а другой измеряется амперметром и равен 0,5 А. Таким образом,

2 / R V = 1 / R + 0.5 (4)

Мы можем решить систему уравнений (3) и (4).

Перепишем уравнение (3) как

Кроме того, мы перепишем уравнение (4) как

Левая часть уравнения (5) и левая часть уравнения (6) равны друг другу. Таким образом, мы можем просто приравнять правые части двух уравнений друг к другу, а затем решить полученное уравнение.

Подставляем значение R V в уравнение (3) и решаем относительно

Важно отметить, что амперметр и вольтметр в этой задаче очень плохие. У них обоих есть сопротивление, которого им не должно быть. Вольтметр должен иметь очень большое сопротивление, а амперметр — очень маленькое сопротивление.

Для схемы, показанной на рисунке ниже, найдите следующее: Показание [идеального] амперметра …

Вопрос первый: на рисунке ниже, какие показания на амперметре в каждом случае …

Вопрос первый: на рисунке ниже, каково показание амперметра в каждом случае .5 .6 (A) Если вы подключили цепь к настройке 3A на амперметре, то показание будет (B) Если вы подключили цепи к настройке 1A на амперметре, тогда показание будет (C) Если вы подключили цепь к настройке 300 mA на амперметре, то показание будет иметь значение 2: (A) Является ли эквивалентное сопротивление ,…

На рисунке показана схема, в которой идеальный амперметр имеет показание 1,80 x …

На рисунке показана схема, в которой идеальный амперметр имеет показание 1,80 x 10-3 А, а идеальный вольтметр — 9,20 В. Что следующие? (Предположим, R1 = 1,35-0.) R ww R (a) неизвестное сопротивление, R2 511 X Ваш ответ отличается от десяти, ko (b) ЭДС батареи V (c) разность потенциалов на R, резистор V Нужна помощь? Прочтите это мастерски

ФИЗИКА II: 4) Для схемы, показанной ниже, найдите: а) эквивалентное сопротивление; б) ток через аккумулятор ;…

ФИЗИКА II: 4) Для схемы, показанной ниже, найдите: а) эквивалентное сопротивление; б) ток через аккумулятор; в) разность потенциалов на резисторе 10 Ом. 9 п / А we 100C 5) Два резистора с сопротивлением 12,0 2 и 6,0 подключены параллельно. Затем к этой параллельной комбинации последовательно подключают резистор 8,0-12. Идеальная батарея 12,0 В затем подключается через последовательно-параллельную комбинацию. А) Нарисуйте схему этой схемы. Б) Найдите …

4) Учитывая схему ниже.Напряжение 5 вольт и каждое резистор 10 Ом ….

4) Учитывая схему ниже. Напряжение 5 вольт и каждое резистор 10 Ом. Ток, протекающий по цепи (когда измеряется идеальным амперметром) составляет 1 ампер. а) Покажите, что ток в цепи равен 1 А. Затем предположим, что вы установили цифровой мультиметр (в режим амперметра), который имеет сопротивление одного Ом в точке А. Пересчитайте эквивалент сопротивление цепи. б) Какой ток сейчас течет по цепи. Это ток…

. В следующей схеме показание идеального амперметра равно I. Найдите ЭДС ячейки V через I и t. 4р 4 …

. В следующей схеме показание идеального амперметра равно I. Найдите ЭДС ячейки V через I и t. 4r 4r 4r A) V- (2-22) In C) V 4,5 Ir B) (2 + 2/2) Ir D) V = 31r . В следующей схеме показание идеального амперметра равно I. Найдите ЭДС ячейки V через I и t. 4r 4r 4r A) V- (2-22) In C) V 4,5 Ir B) (2 + 2/2) Ir D) V = 31r

Для схемы, показанной на рисунке ниже, найдите сквозной ток и разность потенциалов…

Для схемы, показанной на рисунке ниже, найдите сквозной ток и разность потенциалов на каждом резисторе. Поместите результаты в таблицу для удобства чтения. (Предположим, что R1 = 27 Ом, R2 = 2 Ом и V = 2 В.)

Рассмотрим схему, показанную ниже. Все три батареи идеальны. Вольтметр и амперметр тоже …

Рассмотрим схему, показанную ниже. Все три батареи идеальны. Вольтметр и амперметр тоже идеальны. 7,00 В 弓 = 12.0V v) R 5.00 R2 6.00 Ω = 8.00 V A. Какое внутреннее сопротивление батарей? Б. Какое внутреннее сопротивление вольтметра? C. какое внутреннее сопротивление у амперметра? D. Основываясь на ваших ответах на вопросы A-C, нарисуйте более простую эквивалентную схему (в пространстве вверху справа от исходной схемы) …

3. Схема показана ниже. Если предположить, что амперметр и вольтметр идеальны, значит …

3. Схема показана ниже.Предположение, что амперметр и вольтметр идеальны, означает, что они не влияют на ток в цепи, поэтому идеальный вольтметр имеет очень высокое сопротивление, а идеальный амперметр имеет незначительное сопротивление. Вольтметр www 9.0 В 24 (а) Какие показания амперметра и вольтметра при разомкнутом переключателе (0,15 А и 3,6 В) (б) Какие показания амперметра и вольтметра при замкнутом переключателе? (0,38 А и 9,0 В) ) (д) …

Батарея 6,0 В подключена к двум резисторам 7,70 кОм в серии.Амперметр …

Батарея 6,0 В подключена к двум резисторам 7,70 кОм в серии. Амперметр внутреннего сопротивления 0,570 Ом измеряет ток и одновременно вольтметр с внутренним сопротивлением 15,2 кОм измеряет напряжение на одном из 7,70 кОм резисторы в цепи. Что показывает амперметр? Что показывает вольтметр?

Saneeta lehen 2) В схеме, показанной на рисунке, два резистора номиналом 300 Ом подключены …

Saneeta lehen 2) В схеме, показанной на рисунке, два 300-резистора соединены последовательно с идеальной батареей. К одному из резисторов подключен вольтметр, который показывает напряжение на резисторе 3,23 В. Найдите напряжение аккумулятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *