Rt1 на схеме что это
Перейти к содержимому

Rt1 на схеме что это

  • автор:

Энциклопедия электроники

Терморезистор (термометр сопротивления, thermistor) – элемент, сопротивление которого меняется в зависимости от температуры.

Условно графическое обозначение (УГО)

Внешний вид терморезисторов определяется согласно ГОСТ 2.728-74 «ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы». Размеры прямоугольника такие же как и у постоянного резистора.

Общее условно графическое обозначение (УГО) терморезистор

Классификация

По характеру изменения сопротивления при изменении температуры терморезисторы делятся на две группы:

  • Термистор (Thermistor NTC), терморезистор с отрицательным ТКС – сопротивление уменьшается при нагреве;
  • Позистор (Thermistor PTC), терморезистор с положительным ТКС – сопротивление увеличивается при нагреве.

По способу подогрева терморезисторы делятся на две группы:

  • прямого подогрева – сопротивление которого изменяется при прохождении непосредственно через ЧЭ;
  • косвенного подогрева – сопротивление изменяется при прохождении тока через специальный подогреватель, расположенный в непосредственной близости от ЧЭ.

Принципиальное отличие терморезистора косвенного подогрева от прямого – гальваническая изоляция цепи нагрева от измерительной цепи.

Конструкция и принцип действия

Принцип действия терморезисторов основан на изменении сопротивления в зависимости от температуры.

Для создания темрорезисторов применяются полупроводниковые материалы с высокой зависимостью сопротивления от температуры.

Термисторы в основном выполняют из смеси окислов переходных металлов, способных изменять в соединениях свою валентность. Для термисторов применяются оксиды металлов:

  • оксид кобальта (Co3O4)
  • оксид никеля (NiO);
  • оксид магния (MgO);
  • диоксид титана (TiO2),
  • оксид марганца (Mn3O4);
  • оксид меди (CuO);
  • оксид ванадия (V2O5);
  • оксид железа (Fe2O3).

Например, советские терморезисторы ММТ-1, ММТ-4 созданы на основе окислов CuO – Mn3O4.

Для позисторов применяются оксиды бария и стронция. Например, советсвие позисторы СТ6 созданы на основе титаната бария (BaTiO3).

Электрические свойства терморезисторов определяются множеством параметров: соотношение исходных материалов, структура материала, расположение и валентность катионов в кристаллической решетке и других. Производство терморезисторов происходит в следующей последовательности:

  • смесь окислов металлов смешивают и прессуют для придания формы (диска, цилиндра и т.д.);
  • заготовки подвергают обжигу в печи (время нахождения в печи – несколько часов при температуре около 1400 °C);
  • прикрепляют контактные выводы к заготовкам;
  • термочувствительный элемент терморезисторов покрывают лаком или помещают в герметичную оболочку.

У терморезисторов зависимость выходного сопротивления от температуры нелинейная. Реальный график зависимости сопротивления от температуры показан на рисунке.

График зависимости сопротивления от температуры NTC резистора

Для применения терморезисторов производители приводят таблицу значений «отношение сопротивлений – температура». Под отношением сопротивлений принимается отношение текущего сопротивления к номинальному (при температуре 25 °С), так как номенклатура номинальных сопротивлений большая и не стандартизирована.

Для термисторов производители так же приводят коэффициенты для уравнения Стейнхарта — Харта (Steinhart-Hart):

1/T=A+B×ln⁡(R/Rt)+C×ln^2⁡(R/Rt)+D×ln^3⁡(R/Rt), где:

В формуле используется четыре коэффициента A, B, C, D. Обычно в расчетах коэффициент C равен нулю и производители указывают только три коэффициента.

Практически можно пользоваться упрощенной формулой:

Вольт амперная характеристика (ВАХ) термистора и позистора показана на рисунке. Вид ВАХ зависит от многих параметров, таких как: материал резистора, конструкции, габаритов, температуры и т.д. Нелинейность ВАХ объясняется нагревом терморезистора за счет проходящего через него тока.

Вольт-амперная характеристика позистора (PTC) и термистора (NTC)

Основные параметры терморезисторов

Номинальное сопротивление – сопротивление терморезистора при температуре 25 °C (редко при 20 °C). В отличие от постоянных резисторов номинальное значения не берется из стандартизованного ряда.

Точность (tolerance) – допустимое отклонение он номинального сопротивления при температуре 25 °C.Допустимое отклонение современных терморезисторов составляет ±1%…±20 % (типовые значения ±10 % и ±20 %).

Максимальная мощность рассеяния – максимальная мощность, которую может непрерывно рассеивать терморезистор без изменения эксплуатационных характеристик. Единица измерения — Вт.

Коэффициент рассеяния (Dissipation factor) – мощность, рассеиваемая на терморезисторе, при которой температура элемента повышается на 1 °C по отношению к температуре окружающей среды. Единица измерения — мВт/К.

Постоянная времени τ (Thermal time constant) – время, за которое собственная температура терморезистора изменится на 63,2% от разницы между начальной и конечной температурой при скачкообразном измерении температуры (например, при переносе терморезистора в помещение с другой температурой). Единица измерения с.

Коэффициенты A, B, C, D – коэффициенты зависимости сопротивления от температуры (более подробно про зависимость указано ранее).

Маркировка терморезисторов

Стандартов на маркировку терморезисторов не существует. Каждый производитель самостоятельно определяет каким образом маркировать терморезисторы.

Серии терморезисторов

Отечественной промышленностью выпускались следующие серии терморезисторов прямого подогрева.

  • СТ1 – термисторы медно-марганцевые (ранее — ММТ);
  • СТ2 – термисторы кобальто-марганцевые (ранее — КМТ);
  • СТ3 – термисторы медно-кобальто-марганцевые;
  • СТ4 – термисторы никель-кобальто-марганцевые;
  • СТ5 – позисторы на основе титана бария, легированного германием;
  • СТ6 – позисторы на основе титаната бария (BaTiO3);
  • СТ8 – термисторы на основе полутораокиси ванадия и ряда поликрсталлических твердых растворов в системах V2O3-Me2O3 (Me=Ti; Al, Cr);
  • СТ9 – термисторы на основе двуокиси ванадия VO2;
  • СТ10 – Позисторы на основе системы (Ba, Sr)TiO3;
  • СТ11 – Позисторы на основе системы (Ba, Sr)(Ti, Sn)O3 легированной цернем.

Типоразмеры терморезисторов

Терморезисторы выпускаются различного исполнения:

  • цилиндрические и дисковые с выводами для установки в отверстия платы;
  • поверхностного монтажа на плату(типоразмера SMD, MILF);
  • резьбового крепления;
  • дисковые.

Применение терморезисторов

Назначение терморезисторов в схемах можно условно поделить на два типа: измерение температуры и использование в качестве нелинейного элемента.

Благодаря малым размерам и низкой стоимости терморезисторы применяются повсеместно в сложных устройствах для контроля температуры: мобильные телефоны, компьютерная техника и т.д.

Широкое применение позисторы нашли в промышленности для защиты асинхронных электродвигателей от перегрева обмоток. В аварийных режимах работы (недостаточное охлаждение, заклинивание ротора и прочие) обмотка может сильно нагреваться, в результате чего происходит разрушение изоляционного слоя обмотки с последующим замыканием обмотки.

Для защиты от перегорания в каждую обмотку укладывают позистор. Позисторы соединяют последовательно между собой.

Для измерения температуры и отключения электродвигателя применяют специализированные приборы термисторные реле. Принцип действия этих реле основан на постоянном измерении сопротивления позисторов. При превышении заданного порога контакты реле переключаются и отключают электродвигатель. На рисунке показано подключение электродвигателя: силовые выводы U, V, W; вывод термосопротивления: T1, T2.

Позисторы (PTC резисторы) в обмотках асинхронного электродвигателя

Большое распространение термисторы нашли во входной цепи импульсных блоков питания. При включении блока питания в сеть начинается заряд конденсаторов. В этот момент может протекать значительный ток на входе. Для ограничения тока во входную цепь устанавливают термистор TR1. При прохождении тока термистор постепенно нагревается, его сопротивление падает и соответственно снижается потеря напряжения на нем.

Для мощных устройств (например, 2 кВт) параллельно термистору устанавливают контакт реле. После запуска на катушку реле поступает питание и его контакты шунтируют термистор для снижения потерь при работе устройства.

Термистор (NTC резистор) во входной цепи Термистор (NTC резистор) во входной цепи мощного устройства

Позисторы применяются в телевизорах с электронно-лучевой трубкой (ЭЛТ). Со временем кинескоп начинает намагничиваться, из-за этого на экране кинескопа появляются цветные пятна. Для размагничивания кинескопа сзади него проложена петля размагничивания. Петля включается в цепь питания телевизора после позистора. По мере нагрева позистора его сопротивление увеличивается и ток по петле уменьшается до приемлемых значений. Для поддержания позистора в нагретом состоянии применяют сдвоенные позисторы в одном корпусе. Позистор, включенный последовательно с петлей снижает ток после размагничивания, позистор включенный параллельно петле поддерживает нагрев, когда телевизор работает. Стоит отметить особенность данной схемы: размагничивание происходит только в момент включения телевизора кнопкой на телевизоре. Если все время выключатель телевизор с пульта, то размагничивание происходить не будет.

Позистор (PTC резистор) в цепи размагничивания кинескопа

Позисторы применяются в цепи запуска бытовых компрессоров холодильников. В момент пуска необходимо подать питание на рабочую и пусковую обмотку. После запуска компрессора питание с пусковой обмотки нужно снять. Для этого пусковую обмотку подключают через позистор к рабочей. После подачи питания ток проходит к рабочей и пусковой обмотке, по мере работы компрессора позистор нагревается и его сопротивление повышается, снижая ток через пусковую обмотку. Для таких схем применяются дисковые позисторы, которые имеют большой максимальный ток.

Терморезисторы

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

Обозначение терморезистора на принципиальной схеме

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°C (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезистор ММТ-4В

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Плата зарядного устройства ИКАР-506

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Терморезистор для контроля температуры ключевых транзисторов

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

NTC-термистор JNR10S080L на плате зарядного устройства

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Терморезистор на радиаторе автоусилителя Supra SBD-A4240

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Измерительный терморезистор на печатной плате литиевого аккумулятора

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.

Обозначение NTC-термистора на схеме
Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

NTC-термистор

Для NTC-термисторов, как правило, указывается его сопротивление при 25°C (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Схема включения NTC-термистора для ограничения пускового тока

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Сгоревший термистор

Сгоревший NTC-термистор 5D-11

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC – Positive Temperature Coefficient, "Положительный Коэффициент Сопротивления").

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Условное обозначение позистора на схеме

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Двухвыводной позистор

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Внутренности двухвыводного позистора

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор – это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Позисторы трёхвыводные

Далее на фото трёхвыводный позистор СТ-15-3.

Позистор CT-15-3

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3

3,6 кОм, а у другой всего лишь 18

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора – это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Все про терморезисторы, назначение, виды, устройство, принцип действия

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Конструкция

Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).

В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.


Рис. 2. Конструкция простого термистора

В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.

Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.

Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.

С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.


Рисунок 3. Конструкция термистора в стеклянной колбе

Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.

Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.


Рис. 4. Конструкция плоского терморезистора

Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).


Рис. 5. Терморезисторы для микроэлектроники

В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:

  • халькогениды;
  • оксиды металлов;
  • галогениды и другие.

Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.

Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Маркировка

Существует два способа маркировки – буквенно-цифровая и цветовая, в виде колец и полосок. Единых требований для буквенной маркировки не существует – разные производители применяют свои варианты обозначений. Например, на дисковом термисторе могут стоять символы «15D-30», что расшифровывается так: номинальное сопротивление 15 Ом, диаметр изделия 30 мм. Здесь значение диаметра прямо связано с рассеиваемой мощностью – чем больше диаметр, тем больше рассеиваемая мощность термистора.

Заметим, что у другого производителя эти же параметры могут маркироваться совсем другим способом. Поэтому лучше пользоваться технической документацией изготовителя изделия.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

    Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Обозначение на схемах

На принципиальной схеме значки терморезисторов почти такие же, как и символы обычных резисторов, но с косой линией, перечеркивающей прямоугольник. (см. рис. 9). Для различения типа терморезистора внизу этой косой линии проставляют букву t со значком градуса и знаком «+» или «–», в зависимости от типа изделия. Например, +tº или –tº.

Обозначение на схемах

Рис. 9. Обозначение на схемах

Иногда проставляется номинал терморезистора и его температурный диапазон.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

    КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 1020С). 1 Кельвин = минус 272,150С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

Режим работы терморезисторов

В зависимости от конструкторских замыслов, термисторы могут работать в системах с разными температурными режимами. Однако для каждой модели существует своя номинальная шкала температур.

По этому признаку их можно классифицировать следующим образом:

  • терморезисторы низкотемпературного класса (до 170 К);
  • изделия среднетемпературного класса (применяются в диапазоне температур 170 – 510 К);
  • модели высокотемпературного класса (в пределах от 570 К и выше).

В отдельный класс выделены терморезисторы, способные работать при нагревах от 900 до 1300 К. Эти модели используют в качестве датчиков температуры различных нагревательных элементов.

Все термисторы выдерживают существенные токовые нагрузки. Правда, при работе в жестких термоцикличных режимах, их термоэлектрические характеристики, могут изменяться. Со временем изменения коснутся номинального сопротивления и коэффициента сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Технические параметры

Большое разнообразие моделей термосопротивлений продиктовано потребностями современной электронной промышленности. Технические параметры изделий полупроводникового типа позволяют полностью удовлетворить спрос производителей радиоэлектронных и электротехнических устройств.

К основным параметрам относятся:

  • номинальное сопротивление терморезистора, измеренное при температуре 25 ºC;
  • мощность рассеяния (то есть максимальный ток, при котором обеспечиваются стабильность параметров терморезистора);
  • диапазон рабочих температур, для которых предназначен терморезистор;
  • ТКС.

Полупроводниковые термисторы обладают высокой чувствительностью в сочетании с отрицательными значениями ТКС. Они просты в изготовлении, имеют крохотные размеры, легко встраиваются в микросхемы. Все эти свойства делают термисторы незаменимыми в микроэлектронике.

Полупроводниковые термисторы подключаются через мостовую схему. Такое подключение позволяет в автоматическом режиме регулировать требуемые параметры электрических цепей. Иногда для этих целей приходится применять довольно сложные схемы автоматики.

Параметры металлических терморезисторов больше подходят для электротехнических устройств, в частности, они используются в качестве датчиков температуры. Их можно увидеть в водонагревательных установках, или в термометрах сопротивления. Такие типы датчиков (рис. 7) очень надежны в работе, имеют довольно широкий диапазон измерения.


Рис. 7. Датчик температуры

Датчики этого типа подключаются по простой схеме. Если требуется провести калибровку или выставить температуру, это обычно делается вручную, с помощью потенциометра. Простая схема подключения датчика температуры показана на рис. 8. Изменяя потенциометром напряжение можно влиять на величину ТКС. Визуально контролировать температуру можно с помощью амперметра, шкала которого проградуирована в градусах.

Рис. 8. Простая схема подключения терморезистора

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Что такое терморезистор?

Обычный резистор обладает относительно стабильным сопротивлением. Разумеется, электрическое сопротивление обычного резистора может меняться при значительном его нагревании (в пределах допусков). Но в штатном режиме показания этих устройств стабильны, чего, собственно, добиваются разработчики.

При изготовлении терморезисторов умышленно подбирают такие материалы, сопротивление которых зависит от температуры. То есть, терморезистор – это полупроводниковый прибор, обладающий зависимостью его сопротивления от температуры. Можно сказать, что путем нагревания или охлаждения таких полупроводниковых устройств можно управлять их сопротивлениями.


Рис. 1. Терморезистор и его изображение на схемах

Температурные зависимости полупроводниковых резисторов широко применяются на практике, о чем речь пойдёт ниже. Заметим только, что термисторы являются, по сути, переменными резисторами, сопротивление которых изменяется не механическим способом, а зависит от степени нагрева и температурных характеристик применяемых полупроводниковых материалов. Причем не важно, прямым или косвенным нагревом произошло изменение температурных показателей.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Применение

В основном терморезисторы используют для защиты оборудования и различных устройств от перегрева и от возможных перегрузок. Реже зависимостью сопротивления стабилизируют работу нагревательного элемента.

Примеры использования:

  • защита электромоторов от перегрева;
  • тепловая защита обмоток трансформаторов;
  • в системах размагничивания кинескопов и старых моделей мониторов;
  • в электронных схемах современных автомобилей.

В большинстве схем используется способность термисторов преобразовывать внутреннюю энергию в электрический сигнал, который считывается автоматикой.

В нагревательных приборах терморезистор довольно часто используется в качестве самовосстанавливающегося предохранителя. Его сопротивление возрастает при достижении критической температуры и в результате этого электрическая цепь размыкается.

После остывания прибор восстанавливает работоспособность. Сферы применения можно перечислять очень долго, но и эти примеры показывают, насколько востребованными оказались термисторы и термисторы.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Разновидности

Все терморезисторы классифицируют по типу нагрева: прямой и косвенный. Для прямого подогрева используется ток цепи, в которую включен терморезистор. Косвенный подогрев создают сторонние участки схемы или тепловые элементы.

Пример терморезистора прямого подогрева показан на рис. 6.

Терморезисторы прямого подогрева

Рис. 6. Терморезисторы прямого подогрева

Также, в зависимости от того – повышается или понижается сопротивление при нагревании резистивного элемента, различают термисторы двух видов:с отрицательным ТКС и терморезисторы с положительным коэффициентом сопротивления.

NTC.

Полупроводниковые модели (термисторы) обладают отрицательным коэффициентом температурного сопротивления. Это значит, что они уменьшают номинальное сопротивление (показания при 25 ºC), в результате нагрева. Температурный коэффициент показывает, на сколько процентов уменьшается сопротивление резистивного элемента при повышении температуры нагрева на 1 ºC.

Термисторы NTC с отрицательным коэффициентом обычно применяются в диапазоне рабочих температур от 25 ºC до 200 ºC. Для температур свыше 600 ºC применяют термопары.

PTC.

Терморезисторы типа PTC обладают положительными температурными коэффициентами. Эти PTC-термисторы часто именуют позисторами, чтобы подчеркнуть положительность температурного коэффициента. Под этим термином мы понимаем терморезистор, сопротивление которого возрастает с ростом температуры.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, TH1 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

5.1. Устройство защиты ламп накаливания на терморезисторе [18]
Для ограничения первоначального тока иногда достаточно включить последовательно с лампой накаливания постоянный резистор. В этом случае правильный выбор сопротивления резистора зависит от мощности ламп накаливания и от тока, потребляемого лампой. В технической литературе имеются сведения о результатах измерений бросков тока через лампу в ее холодном и разогретом состояниях при включении последовательно с лампой ограничительного резистора. Результаты измерений показывают, что броски тока через нить лампы накаливания составляют 140% от номинального тока, протекающего через нить в разогретом состоянии и при условии, если сопротивление последовательно включенного ограничительного резистора составляет 70—75% от номинального сопротивления лампы накаливания в рабочем состоянии. А из этого следует вывод, что ток предварительного прогрева нити лампы также составляет 70—75% от номинального тока.

К основным преимуществам схемы [18] следует отнести то, что она исключает даже небольшие броски тока через нить лампы накаливания при включении. Обеспечивается это благодаря установленному в устройстве защиты терморезистору R3. В начальный момент включения в сеть терморезистор R3 имеет максимальное сопротивление, ограничивающее протекающий через этот резистор ток. При постепенном нагревании терморезистора R3 его сопротивление плавно уменьшается, в результате чего ток через лампу накаливания и резистор R2 также плавно нарастает. Схема устройства рассчитана таким образом, что при достижении на лампе накаливания напряжения 180— 200 В на резисторе R2 падает напряжение, что приводит к срабатыванию электромагнитного реле К1. При этом контакты реле KL1 и К1.2 замыкаются.
Обратите внимание на то, что в цепи ламп накаливания последовательно включен еще один резистор — R4, который также ограничивает броски тока и защищает схему от перегрузок. При замыкании контактов реле KL1 происходит подключение управляющего электрода тиристора VS1 к его аноду, а это в свою очередь приводит к открыванию тиристора, который в конечном счете шунтирует терморезистор R3, выключая его из работы. Контакты реле К1.2 шунтируют резисторR4, что приводит к увеличению напряжения на лампах накаливания Н2 и НЗ, и их нити начинают светиться более интенсивно.
Подключается устройство к сети переменного тока напряжением 220 В частотой 50 Гц с помощью электрического соединителя X1 типа «вилка». Включение и выключение нагрузки обеспечивается переключателем S1. На входе устройства установлен плавкий предохранитель F1, защищающий входные цепи устройства от перегрузок и коротких замыканий при неправильном монтаже. Включение устройства в сеть переменного тока контролируется индикаторной лампой HI тлеющего разряда, которая разгорается сразу же после включения. Кроме этого, на входе устройства собран фильтр, защищающий от высокочастотных помех, которые проникают в сеть питания устройства.
При изготовлении устройства защиты ламп накаливания Н2 и НЗ использованы следующие комплектующие: тиристор VS1 типа КУ202К; выпрямительные диоды VD1-4 типа КДЮ5Б; индикаторная лампочка H1 типа ТН-0,2-1; лампы накаливания Н2, НЗ типа 60Вт-220-240В; конденсаторы С1-2 типа МБМ-П-400В-0,1 мкФ, СЗ — K50-3-10B-20 мкФ; резисторы R1 типа ВСа-2-220 кОм, R2 ВСа-2-10 Ом, R3 — ММТ-9, R4 — проволочный самодельный с сопротивлением 200 Ом или типа C5-35-3BT-200 Ом; электромагнитное реле К1 типа РЭС-42 (паспорт РС4.569.151); электрический.соединитель X1 типа «вилка» с электрическим кабелем; переключатель S1 типа П1Т-1-1.
При сборке и ремонте устройства могут быть применены другие комплектующие. Резисторы типа ВСа можно заменить на резисторы типов МЛТ, МТ, С1-4, УЛИ; конденсаторы типа МБМ — на К40У-9, МБГО, К42У-2, конденсатор типа К50-3 — на К50-6, К50-12, К50-16; электромагнитное реле типа РЭС-42 — на реле типов РЭС-9 (паспорт РС4.524.200), РВМ-2С-110, РПС-20 (паспорт РС4.521.757); тиристор типа КУ202К — на КУ202Л, КУ202М, КУ201К, КУ201Л; терморезистор любой серии.
Для регулировки и налаживания устройства защиты ламп накаливания потребуется ИП и автотрансформатор, позволяющий увеличить напряжение питания переменного тока до 260 В. Напряжение подается на вход устройства X1, и измеряют его в точках А и Б, выставив автотрансформатором напряжение на лампах накаливания равным 200 В. Вместо постоянного резистора R2 устанавливают проволочный переменный резистор типа ППЗ-ЗВт-20 Ом. Плавно увеличивая сопротивление резистора R2 отмечают момент срабатывания реле K1. Перед проведением этой регулировки терморезистор R3 шунтируется короткозамкнутой перемычкой.
После проверки напряжения на лампах накаливания при временно замкнутых резисторах R2 и R3 снимают перемычки, устанавливают на место резистор R2 с соответствующим сопротивлением, проверяют время задержки срабатывания электромагнитного реле, которое должно быть в пределах 1,5—2 с. Если время срабатывания реле значительно больше, то сопротивление резистора R2 необходимо увеличить на несколько Ом.
Надо отметить, что это устройство имеет существенный недостаток: включение и выключение его может производиться только после того, как терморезистор R3 полностью остыл после нагревания и подготовлен к новому циклу включения. Время охлаждения терморезистора равно 100—120 с. Если терморезистор еще не охладился, то устройство сработает с задержкой только за счет включенного в схему резистора R4.

5.2. Простые терморегуляторы в блоках питания
Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.
По этим критериям наиболее удачной оказалась схема В.Портунова. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис. [19]. Датчиком температуры служат диоды VD1— VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.

Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой . Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания [20]. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) "измерять" температуру на ощупь можно, только выключив компьютер.
Простую и надежную схему предложил И. Лаврушов. Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.
Автор первой схемы [22] Иван Шор. При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.

Подобная схема, но на двух включенных параллельно КТ503 (вместо одного КТ815) на рис.5. При указанных номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Более сложная схема регулятора частоты вращения вентилятора охлаждения с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.

5.3. Электронный термометр [25] с точностью не менее 0,1 °С.
Его легко собрать самому по схеме, приведенной ниже. По сравнению с ртутным термометром электрический намного безопаснее, кроме того, если применить неинерционный терморезистор типа СТЗ-19, время измерения составляет всего 3 с.

Основу схемы составляет мост постоянного тока R4, R5, R6, R8. Изменение величины сопротивления терморезистора приводит к разбалансу моста. Напряжение разбаланса сравнивается с опорным напряжением, снимаемым с делителя-потенциометра R2. Ток, протекающий через R3, РА1, прямо пропорционален разбалансу моста, а значит и измеряемой температуре. Транзисторы VТ1 и VТ2 используются в качестве низковольтных стабилитронов. Их можно заменить на КТ3102 с любым буквенным индексом. Настройку прибора начинают с измерения сопротивления терморезистора при фиксированной температуре 20°С. После измерения R8 из двух резисторов R6 + R7 необходимо с высокой точностью подобреть такой же номинал сопротивления. После этого потенциометры R2 и R3 устанавливаются 1з среднее положение. Для калибровки термометра можно воспользоваться следующей методикой. В качестве источника образцовой температуры используется емкость с подогретой водой (лучше выбирать температуру ближе к верхнему пределу измерения), температуру которой контролируют образцовым термометром.
После включения питания выполняем следующие операции:
а) переводим переключатель S2 в положение "КАЛИБРОВКА" и резистором R8 устанавливаем стрелку на нулевую отметку шкалы;
б) помещаем терморезистор в емкость с водой, температура которой должна быть в пределах измеряемого диапазона;
в) устанавливаем переключатель в положение "ИЗМЕРЕНИЕ" и резистором R3 устанавливаем стрелку прибора на значение шкалы, которое будет равно измеряемой величине в соответствии с показаниями образцового термометра.
Операции а), б), в) повторяют несколько раз, после чего настройку можно считать законченной.

5.4. Приставка к мультиметру для измерения температуры

Простая приставка, содержащая шесть резисторов [26], позволяет использовать цифровой вольтметр (или мультиметр) для измерения температуры с разрешающей способностью 0,1°С и тепловой инерцией в 10. 15 с. При таком быстродействии его можно применять и для измерения температуры тела. В измерительный прибор вносить изменений не требуется, а изготовление приставки доступно и начинающим радиолюбителям.
В качестве датчика применен полупроводниковый терморезистор СТЗ-19 с номинальным сопротивлением 10 кОм при t = 20°С. Вместе с дополнительным резистором R3 он образует одну половину измерительного моста. Вторая половина моста -делитель напряжения из резисторов R4 и R5. последним при калибровке устанавливают начальное значение выходного напряжения. Мультиметр используется в режиме измерения постоянного напряжения на пределах 200 или 2000 мВ. Соответствующим выбором сопротивления резистора R2 изменяют чувствительность измерительного моста.
Непосредственно перед измерением температуры переменным резистором R1 устанавливают напряжение питания измерительной цепи равным тому, при котором производилась первоначальная калибровка. Включают приставку для отсчета измеряемой температуры кнопочным выключателем SB1, а перевод из режима измерения в режим установки напряжения -переключателем SB2.
Расчет включаемого последовательно с терморезистором дополнительного резистора R3 производят по формуле R3 = Rtm(B — 2Тм)/(В + 2Тм), где RTm — сопротивление терморезистора в середине температурного диапазона; В — постоянная терморезистора; Тм -абсолютная температура в середине измерительног диапазона Т = t° + 273.
Такая величина R3 обеспечивает минимальное отклонение характеристики от линейной.
Постоянная терморезистора определяется по измерению сопротивлений RT1 и RT2 терморезистора при двух значениях температуры Т1 и Т2 и последующим вычислением по формуле B = ln(RT1/RT2)/(1/T-1/T2).
Напротив, при известных параметрах терморезистора с отрицательным ТКС его сопротивление для некоторой температуры Т можно определить по формуле Rt = R-r2oe(B/T"B^J3) , где Rt2o -сопротивление терморезистора при температуре 20°С.
Калибровку приставки производят в двух точках: Тк- = Тм+0,707(Т2-Т.)/2 и ТК2=Тм-0,707(12-10/2, где Тм = (Тт + Т2)/2, Ti и Т2 — начало и конец температурного диапазона.
В процессе первоначальной калибровки со свежим элементом питания сопротивление переменного резистора R1 устанавливают максимальным, чтобы по мере потери емкости и снижения напряжения элемента можно было сохранять напряжение на мосте неизменным (приставка потребляет ток около 8 мА). Регулированием подстроечных резисторов R2, R5 добиваются соответствия в трех знаках показаний цифрового индикатора мультиметра значениям температуры терморезистора Т«1 и Т«2, контролируемой точным термометром. При его отсутствии воспользуйтесь, например, медицинским термометром для контроля температуры в пределах его шкалы и стабильной температурой таяния льда — 0°С.
В качестве мультиметра автором использован М-830 фирмы Mastech. Резисторы R2, R5 лучше применить многооборотные (СП5-1В, СП5-14). a R1 — однооборотный, например ППБ: резисторы R3 и R4 — МЛТ-0,125. Для включения питания и переключения режима приставки можно взять кнопочные переключатели П2К без фиксации.
В изготовленной приставке были установлены границы диапазона измеряемой температуры — Т1 = 15°С: Т2 = 45°С. В случае измерений в диапазоне положительных и отрицательных значений температуры по шкале Цельсия индикация знака получается автоматически.

5.5. Термореле
Схема термореле показана на [27]. Теплочувствительный элемент этого автомата — полупроводниковый терморезистор, сопротивление которого при понижении температуры резко увеличивается. Так при комнатной температуре (20 С) его сопротивление составляет 51 кОм, а при 5-7 С уже почти 100 кОм, то есть возрастает почти в два раза. Именно это его свойство и используется в автоматическом регуляторе температуры.

При нормальной температуре сопротивление терморезистора R1 относительно мало, и на базу транзистора VT1 подается постоянное смещение, которое удерживает его в открытом состоянии. С уменьшением температуры сопротивление терморезистора увеличивается, ток базы уменьшается, и транзистор начинает закрываться. Тогда триггер Шмидта, собранный на транзисторах VT2 и VT3, "опрокидывается" (VT2 открывается, а VT3 закрывается) и подает смещение в цепь базы транзистора Т4, в эмиттерную цепь которого включено электромагнитное реле. Транзистор VT4 открывается и включает реле К1. Подстроечным резистором R3 можно выбрать пороги срабатывания триггера и, следовательно, температуру, которую устройство будет автоматически поддерживать. Диод VD2, включенный в обратном направлении, шунтирует обмотку реле и предохраняет транзистор от пробоя при включении реле, когда в его обмотке возникает ЭДС самоиндукции. Одновременно со срабатыванием реле начинает светиться светодиод HL1, который используется в качестве индикатора работы всего устройства. Стабилитрон VD1 и резистор R9 образуют простейший параметрический стабилизатор напряжения для питания электронной схемы устройства, а конденсаторы С1 и С2 фильтруют выпрямленное диодным мостиком VD3-VD6 переменное напряжение.
Все детали для сборки устройства вы можете легко купить в магазине радиотоваров. Резисторы типа МЛТ, транзистор VT1 -МП41; VT2, VT3 и VT4 — МП26. Вместо них можно использовать любые p-n-p транзисторы, рассчитанные на напряжение не ниже 20 В. Реле K1 — типа РЭС-10 или аналогичное, срабатывающее при токе 10-15 мА с переключающими или размыкающими контактами. Если нужного вам реле подобрать не удастся, не отчаивайтесь. Заменив транзистор VT4 на более мощный, например ГТ402 или ГТ403, вы можете включить в его коллекторную цепь практически любое реле, применяющееся в транзисторной аппаратуре. Светодиод HL1 — любого типа, трансформатор T1 — ТВК-110.
Все детали, за исключением терморезистора R1, монтируются на печатной плате, которая находится в комнате вместе с электронным выключателем [28]. Когда при понижении температуры реле срабатывает и замыкает контакты К 1.1, на управляющем электроде симистора VS1 появляется напряжение, которое его отпирает. Цепь замыкается.
Теперь о налаживании электронной схемы. Прежде чем подключать контакты реле 4 к тиристору VS1, терморегулятор необходимо испытать и настроить. Сделать это можно так.
Возьмите терморезистор, припаяйте к нему длинный провод в двухслойной изоляции и поместите в тонкую стеклянную трубочку, заклеив с обоих концов эпоксидной смолой для герметичности. Затем включите питание электронного регулятора, опустите трубочку с терморезистором в стакан со льдом и, вращая движок подстроечного резистора, добейтесь срабатывания реле.

5.6. Схема терморегулятора [29] для стабилизации температуры нагревателя (500 Вт)

Терморегулятор, схема которого изображена ниже, предназначен для поддержания постоянной температуры воздуха в помещении, воды в сосудах, в термостатах, а также растворов в цветной фотографии. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т2), электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в цепь подачи напряжения на базу транзистора Т1 порогового устройства.
Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового устройства закрыт, а Т2 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты, и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а Т2 — закроется. Это приведет к открыванию транзистора ТЗ. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет достаточно для открывания его. Напряжение сети через тиристор и диоды Д6 — Д9 поступит на нагреватель.
Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры.
В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр выполнен на сердечнике Ш12Х25. Обмотка I содержит 8000 витков провода ПЭВ-1 0,1, обмотка II — 170 витков провода ПЭВ-1 0,4.

5.7. ТЕРМОРЕГУЛЯТОР ДЛЯ ИНКУБАТОРА
Предложена схема простого и надежного в работе термореле для инкубатора. Отличается малым потреблением электроэнергии, выделение тепла на силовых элементах и балластном резисторе незначительно.
Предлагаю схему простого и надежного в работе термореле для инкубатора. Схема изготовлена, испытана, проверена в работе в непрерывном режиме в течение нескольких месяцев эксплуатации.
Технические данные:
Напряжение питания 220 В, 50 Гц
Коммутируемая мощность активной нагрузки до 150 Вт.
Точность поддержания температуры ±0,1 °С
Диапазон регулирования температуры от + 24 до 45°С.
Принципиальная схема устройства [30]

На микросхеме DA1 собран компаратор. Регулировка заданной температуры производится переменным резистором R4. Термодатчик R5 подключен к схеме экранированным проводом в хлорвиниловой изоляции через фильтр C1R7 для уменьшения наводок. Можно применить двойной тонкий провод, свитый в жгут. Терморезистор необходимо поместить в тонкую полихлорвиниловую трубку.
Конденсатор С2 создает отрицательную обратную связь по переменному току. Питание схемы осуществляется через параметрический стабилизатор, выполненный на стабилитроне VD1 типа Д814А-Д. Конденсатор С3 — фильтр по питанию. Балластный резистор R9 для уменьшения рассеиваемой мощности составлен из двух последовательно соединенных резисто¬ров 22 кОм 2 Вт. С этой же целью транзисторный ключ на VT1 типа КТ605Б, КТ940А подключен не к стабилитрону, а к аноду тиристора VS1.
Выпрямительный мост собран на диодах VD2-VD5 типа КД202К,М,Р, установленных на не-большие П-образные радиаторы из алюминия толщиной 1-2 мм площадью 2-2,5 см2 Тиристор VS1 также установлен на аналогичный ра¬диатор площадью 10-12 см2
В качестве нагревателя используются осветительные лампы HL1. HL4, включенные последовательно-параллельно для увеличения срока службы и исключения аварийных ситуаций в случае перегорания нити накала одной из ламп.
Работа схемы. Когда температура термодатчика меньше заданного уровня, выставленного потенциометром R4, напряжение на выводе 6 микросхемы DA1 близко к напряжению питания. Ключ на транзисторе VT1 и тиристоре VS1 открыт, обогреватель на HL1. HL4 подключен к сети. Как только температура достигнет заданного уровня, микросхема DA1 переключится, напряжение на ее выходе станет близким к нулю, тиристорный ключ закроется, и обогреватель отключится от сети. При отключении обогревателя температура начнет понижаться, и когда она станет ниже заданного уровня, снова включатся ключ и обогреватель.
Детали и их замена. В качества DA1 можно применить К140УД7, К140УД8, К153УД2 (Прим.ред. — подойдет практически любой операционный усилитель или компаратор). Конденсаторы любого типа на соответствующее рабочее напряжение. Терморезистор R5 типа ММТ-4 (или другой с отрицательным ТКС). Его номинал может быть от 10 до 50 кОм. При этом номинал R4 должен быть таким же.

Устройство, выполненное из исправных деталей, начинает работать сразу.
При испытании и работе следует соблюдать правила техники безопасности, так как устройство имеет гальваническую связь с сетью.

5.8. ТЕРМОСТАТ [31]
Термостат предназначен для поддержания температуры в интервале 25-45°С с точностью не хуже 0,05С. При очевидной простоте схемы этот термостат обладает несомненным преимуществом перед аналогичными: в схеме нет элементов, работающих в ключевом режиме. Таким образом, удалось избежать импульсных помех, возникающих при коммутации нагрузки со значительным током потребления.

Нагревательными элементами являются проволочные резисторы (10 Ом, 10 Вт) и регулирующий транзистор П217В (может быть заменен любым современным кремниевым транзистором структуры р-п-р). Холодильником — радиатор. Терморезистор (ММТ-4 3,3 Ком) припаян к медному стаканчику, в который вставляется термостатируемая баночка. Вокруг стаканчика необходимо намотать несколько слоев термоизоляции и сделать термоизолирующую крышечку над баночкой.
Питание схемы осуществляется от стабилизированного лабораторного блока питания. При включении схемы начинается нагрев, о чем сигнализирует красный светодиод. По достижении заданной температуры яркость свечения красного светодиода уменьшается и начинает светиться зеленый. После окончания процесса «выбегания» температуры, оба светодиода светятся в полнакала – температура стабилизировалась.
Вся схема располагается внутри П-образного алюминиевого радиатора. Таким образом, все элементы схемы оказываются так же термостатированными, что повышает точность работы устройства.

5.9. Регулятор температуры, освещенности или напряжения
Этот простой электронный регулятор [32] в зависимости от используемого датчика может выполнять функции регулятора температуры, освещенности или напряжения. За основу взято устройство, опубликованное в статье И. Нечаева "Регуляторы температуры жала сетевых паяльников" ("Радио", 1992, № 2 — 3, с. 22). Принцип его действия отличается от аналога только тем, что порог срабатывания транзистора VT1 регулируется резистором R5.

Регулятор некритичен к номиналам примененных элементов. Он работает при напряжении стабилизации стабилитрона VD1 от 8 до 15 В. Сопротивление терморезистора R4 — в пределах от 4,7 до 47 кОм, переменного резистора R5 — от 9,1 до 91 кОм. Транзисторы VT1, VT2 любые маломощные кремниевые структуры р-п-р и п-р-п соответственно, например, серий КТ361 и КТ315 с любым буквенным индексом. Конденсатор С1 может иметь емкость 0.22. 1 мкф, а С2 — 0,5. 1 мкф. Последний должен быть рассчитан на рабочее напряжение не менее 400 В.
Правильно собранное устройство в налаживании не нуждается. Чтобы оно выполняло функции регулятора освещенности, терморезистор R4 необходимо заменить на фоторезистор или фотодиод, соединенный последовательно с резистором, номинал которого подбирается экспериментально.
Авторский вариант описанной здесь конструкции используется для регулирования температуры в домашнем инкубаторе, поэтому для повышения надежности при открытом тринисторе VS1 подключенные к нагрузке осветительные лампы (четыре параллельно включенных лампы мощностью 60 Вт на напряжение 220 В) горят в полнакала. Эксплуатируя устройство в режиме регулятора освещенности, к точкам А-В следует подключить мостовой выпрямитель VD2- VD5. Его диоды подбирают в зависимости от регулируемой мощности.
При работе с регулятором важно соблюдать меры электробезопасности: его необходимо поместить в пластмассовый корпус, ручку резистора R5 выполнить из изоляционного материала и обеспечить хорошую электроизоляцию терморезистора R4.

5.10. Питание лампы дневного света постоянным током
В этих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема варианта устройства, рассчитанного на питание люминесцентной лампы мощностью 40 Вт и более, приведена на рис. [33]. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.
Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. [34]. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.
Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

На этом я заканчиваю обзор ТЕРМОРЕЗИСТОРОВ.
Несколько слов ещё об одном радиокомпоненте [35] – варисторе .
Я не планирую делать о нём отдельную статью, поэтому — коротко:
ВАРИСТОР – это также полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Причём, при увеличении напряжения сопротивление варистора уменьшается. Всё элементарно. Чем больше напряжённость внешнего электрического поля, тем больше электронов «срывает» оно с оболочек атома, тем больше образуется дырок – количество свободных носителей заряда возрастает, проводимость – тоже, а сопротивление уменьшается. Это в том случае, если полупроводник чистый. На практике всё гораздо сложнее. Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния. Оксид цинка — новый материал для варисторов. Как видим, чистых полупроводников здесь нет.

Варистор обладает свойством резко уменьшать свое сопротивление с единиц ГОм (ГигаОм) до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений [37].

На этом знакомство с семейством резисторов можно считать законченным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *