Мкд светодиода что это
Перейти к содержимому

Мкд светодиода что это

  • автор:

Немного о светодиодах

Давным давно я откопал в интернете интересную статью, по которой пытался въехать в суть светодиодной хитрости. Написано конечно много и временами нудно, но довольно доходчиво и полезно. На авторство не претендую. Человека, написавшего данный материал я указал внизу статьи. В общем, изучайте граждане =)

————————————————————————————————————————
Накнулся в конфе на тему о поворотниках на светодиодах, и так как сам об этом размышлял, то решил написать небольную статейку. Сразу скажу, что здесь я коснусь в основном электрики. Механика конструкции на ваш вкус.

Сперва о плюсах и минусах.

Один из таких плюсов, постоянно приводимый в различных печатных издания, это значительно меньшее по срвнению с лампами накаливания, время зажигания светодиода, что повышает безопасность движения. Хотя я считаю, что не так уж и велика эта разница во времени.

Второй плюс, это значительно более высокая надежность. Светодиод может спокойно работать по десять лет и более. Это особенно характерно при большой вибрации.

Третий плюс, меньшее энергопотребление. Поворотник из 30 светодиодов потребляет не более 5 Вт (смотря какие светодиоды).

И четвертый плюс, который должны более всего оценить именно российские мотолюбители – это возможность создавать оптику любой формы. Например можно смонтировать передние поворотники в зеркалах.

Теперь минус — это высокая стоимость.

Кроме этого, если вы будете делать поворотники, то стандартный прерыватель вам скорее всего не подойдет (так как разная мощность), и необходимо будет изготовить специальный. Но, зато вы можете сделать их 4 штуки (я прикидывал, они получаются недорогими) и смонтировать каждый в своем поворотнике. Представляете какая будет надежность.

Также, может возникнуть проблема с передним габаритом, так как белых светодиодов нет. (есть — прим. SHTRLZ) Но HEWLETT-PACKARD выпускает светло-голубые, можно попробывать их.

Теперь о светодиодах.

Прежде всего, яркость обычных светодиодов составляет 20 – 50 мКд (милликанделл). Такие вам не годяться. Необходимы сверхяркие светодиоды (яркость составляет 1000 – 4000 мКд, такие используются в светофорх).

Кстати, 4000 мКд это очень не хилая ярксть, такой светодиод слепит глаза не хуже фонарика.

В России сверхяркие светодиоды выпускает завод Протон Оптоэлектроника в г. Орел. Из зарубежных известны такие фирмы-производители как KINGBRIGHT ELECTRONIC и HEWLETT-PACKARD ( у HP светодиоды дороже).

Кроме того светодиоды разделяються по диаметру (в основном 5 мм, 8 мм, 10 мм и 20 мм), по форме (круглые, прямоугольные и т.д.), по цвету свечения (обычно, также, указывают длину волны излучения), по цвету рассеивателя (окрашенные или неокрашенные), по типу рассеивателя (диффузионый – когда корпус светодиода матовый и прозрачный – когда, соответственно, корпус прзрачный) и по цене (чем ярче, тем дороже. Красные и желтые дешевле зеленых и синих при одинаковой яркости, так как используется другая технология изготовления криссталлов).

Яркость сильно зависит от рассеивателя. Диффузионные светодиоды имеют больший угол излучения (обычно 45 — 60 град), но меньшую яркость (при одинаковой стоимости). У прозрачных светодиодов угол излучения обычно лежит в пределах 15 – 30 град.

Вот цены на светодиоды в Москве, в Платане (Чип и Дип) на 1.09.02 г.

Наименование… Цена, руб…Производитель
10R3SCB-6, св.диод кр.d=10мм, 1200мКд…11.00…TWN
10Y3SCB-6, св.диод жл.d=10мм, 1200мКд…11.00…TWN
L-1503SRC-C св.д. кр.d=5мм 1000мКд…6.10…KNBR
L-1503SRC-Dсв.диод кр.d=5мм 1500мКд…4.20…KNBR
L-1503SRC-Eсв.диод кр.d=5мм 2800мКд…11.00…KNBR
L-1503SRC-Fсв.диод кр.d=5мм 4000мКд…10.00…KNBR
L-1513SRC-D св д. кр.d=5мм 2000мКд…5.80 …KNBR
L-1513SRC-E св.д. кр.d=5мм 3500мКд …9.60…KNBR
L-1513SRC-F св.д. кр.d=5мм 4500мКд…12.00…KNBR
L-1543SRC-E св.диод кр.d=5мм2000мКд…9.60…KNBR
L-53SRC-C св.д.кр. d=5мм 1000мКд…4.80…KNBR
L-53SRC-DU св.диод кр.d=5мм 1200мКд…3.60…KNBR
L-53SRC-DV св.диод кр.d=5мм 1500мКд…3.90…KNBR
L-53SRC-DW св.диод кр.d=5мм 1800мКд…9.00…KNBR
L-53SRC-E св.диод кр.d=5мм 2800мКд…9.00…KNBR
L-793SRC-B св.диод кр.d=8мм1000мКд…9.00…KNBR
L-793SRC-C св.диод кр.d=8мм 1500мКд…5.20…KNBR
L-793SRC-D св.диод кр.d=8мм 1800мКд…13.00…KNBR
L-793SRC-E св.диод кр.d=8мм 2800мКд…13.00…KNBR

Как видно из таблицы, можно найти светодиод яркостью 2000 мКд за 5,80 руб. Если взять на стоп-сигнал около 40 шт., то это обойдеться в 232 руб. Зато, вы можете придать стоп-сигналу любую форму, даже разделить его на две, три части.

Светодиоды расчитываются на определенный ток. Это значит, что не бывает, например, 5 вольтовых или 12 вольтовых светодиодов. Вместо этого бывают, например, 20 «мАмперные» или 50 «мАмперные» и т.д. Напряжение на светодиоде колеблеться от 1,5 В до 2,5 В (в зависимости от марки светодиода, и связано с технологией производства) и слабо зависит от тока. Соответственно, если нужно запитать светодиод от 13,8 В, необходимо задать нужный нам, протекающий через него ток. Проше всего это сделаеть с помощью резистора R.

Фото в бортжурнале Toyota Corolla (140/150)Подключение одного светодиода

Здесь VD — светодиод, а R – токозадающий резистор.

Для расчета R необходимо знать следующие параметры светодиода:

1. Максимально допустимый прямой ток через светодиод Ivdmax

2. Падение напряжения на на светодиоде Uvd в прямом направлении (обычно в справочниках указывается при каком токе присходило измерение)

При расчетах не обязательно абсолютная точность, так как все электронные компоненты имеют разброс параметров от 5 до 20%.

Теперь пользуясь законами Киргофа находим R:

R=(U-Uvd)/(Ivdmax*0.75), Ом (1)

Где U – напряжни питания,
Uvd — падение напряжения на на светодиоде,
Ivdmax — максимально допустимый прямой ток через светодиод.
Коэффициент 0.75 берем для обеспечения необходимой надежности (обычно в пределах 0.7 – 0.8). Так как, чем ближе заданный нами ток к максимально допустимому, тем меньше надежность.

При этом протекающий через светодиод рабочий ток будет составлять 0.75 от максимально допустимого.

Иногда, в справочных данных указывается рабочий ток Ivd (обозначение может быть другим), тогда коэффициент берем равным 1.

Мощность сопротивления рассчитывается по формуле:

N=R*(Ivdmax*0.75)^2, Вт. (2)

При этом рабочий ток через светодиоды составит:

Ivd=Ivdmax*0.75 (3)

Так как вам необходимо не один, а штук 10 – 20 светодиодов, то схема включения будет вглядеть так:

Фото в бортжурнале Toyota Corolla (140/150)Подключение нескольких светодиодов

Здесь FU – предохранитель на ток :

Ictmax > Ifu > 1,2*m*Ivd, А (4)

Где,
m – число паралельно включенных линеек светодиодов.

Ictmax – максимальный ток стабилизации стабилитрона VD1 (указывается в справочниках).

Uct — напряжение стабилизации стабилитрона VD1, должно быть равен U, при котором через светодиоды будет протекать ток Ivdmax, для того, чтобы при слишком большом напряжении он открылся и сработал предохранитель:

Uct = (R*Ivdmax + n*Uvd), В (5)

По Ictmax и Uct необходимо выбрать стабилитрон из справочника. Стабилитрон и предохранитель защищают схему от перенапряжения.

R находим как:

R = (U – n*Uvd)/(Ivdmax*0,75), Ом (6)

Где n – число светодиодов в одной линейке (подключенных на один резистор),

Мощность сопротивления рассчитывается по формуле:

N=R*(Ivdmax*0.75)^2, Вт. (7)

Эту формулу можно записать в другом виде:

N=(U – n*Uvd)*(Ivdmax*0.75), Вт. (8)

Например:
У нас есть светодиоды с Ivdmax = 70 мА и Uvd = 1,85 В и мы используем 4 линейки по 5 светодиодов (итого 20). Тогда при U = 13,8 B:

R=(13,8 B-5*1,85 B)/(70 мА*0,75)=86,6 Ом.

Такие сопротивления найти трудно, так как все номиналы привязаны к стандартному ряду сопротивлений. Наиболее распространен ряд Е24. Выбираем ближайший из ряда, больше расчетного. Это 91 Ом.

N=91 Oм*(70 мА*0,75)^2=0,251 Вт (берем 0,25 Вт)

Сопротивление берем мощностью не меньше рассчитанной.

Ivd=Ivdmax*0.75 = 52,5 мА

Ictmax > Ifu > 1,2*4*52,5 мА = 252 мА (можно взять 250 мА)

Uct = (91 Ом*70 мА + 5*1,85) = 15,6 В (Можно взять на 15 В).

Из формулы (8) видно, что чем больше светодиодов в линейке, тем меньше рассеиваемая мощьность резистора, да и самих резисторов понадобиться меньше. Но увеличивать число светодиодов в линейке до максимально возможного нельзя. Сейчас объясню почему. Дело в том, что напряжение бортовой сети не когда на бывает абсолютно стабильным., а постоянно изменяется, хотя и в небольших пределах, в то время как Udv практически не меняется. Посмотрим как будет изменяться ток через 4, 5 и 6 светодиодов с Ivdmax = 70 мА и Uvd = 1,85 В, при сопротивлении R=86,6 Ом рассчитанном для U = 13,8 B, если бортовое напряжение U изменяется от 12 В до 14,5 В.
Результаты вычеслений я свел в таблицу:

Наименование…U = 12 B…U = 13,8 B…U = 14,5 B
Ток через 4 светодиода, мА…37,7 мА…52,5 мА…58,2 мА
Ток через 5 светодиодов, мА…31,7 мА…52,5 мА…60,5 мА
Ток через 6 светодиодов, мА…17,5 мА…52,5 мА…66,1 мА

Из таблицы видно, что чем больше светодиодов в линейке, тем больше колебания тока, а значит и яркость, при изменении бортового напряжения. Так 6 светодиодов при U=12 В будут светить очень слабо, а при U>14,5 В могу и сгореть.

Поэтому здесь необходимо находить компромисс, изходя из того, насколько стабильно у вас напряжение бортовой сети.

Теперь немного о конструкции

Во первых, рассеиватель. Дело в том, что светодиоды излучают свет определенной длинны волны, и если цвет рассеивателя не будет соответствовать цвету излучения, то из-за этого будет уменьшаться яркость. Поэтому рассеиватель лучше использовать белый – прозрачный.

Во вторых о креплении светодиодов. Светодиоды вместе с резисторами можно запаять на печатную плату из стеклотекстолита. Но, для увеличения угла излучения светодиоды должны запаиваться не все вертикально, а под разными углами. Если взять тонкий текстолит, то плату можно изогнуть. Кроме этого, для защиты от вибрации, необходимо устанавливить светодиоды на держатели или залить выводы каким нибудь компаундом. При пайке будьте осторожны, не перегревайте светодиоды и не паяйте слишком близко к корпусу.

От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить

Валить все типы светодиодов в одну кучу и рассматривать их одинаково нельзя. Срок службы напрямую зависит от типа светодиода, подаваемого на него тока, охлаждения кристалла (chip) светодиода, состава и качества кристалла, компоновки и сборки в целом.

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Очевидно, например, что в светодиодах мощностью от 1 Вт (рабочий ток 0,350 А) и более мощных, тепловыделение гораздо обильнее, чем в светодиодах типа «5 мм». светодиодах, рассчитанных на ток 0,02 А. По светоотдаче 1 шт. светодиод мощностью 1 Вт заменяет около 50 светодиодов типа «5 мм». но и греется сильнее. Поэтому светодиодные сборки с мощными светодиодами требуют пассивного (монтаж на MCPCB плату и радиатор) охлаждения.

По нашим тестам средний срок службы:

5 мм.-LED и SMD-LED (произведенные лучшими брендами):

• белый до 50000 ч. с падением светового потока до 35% в течении первых 15000 ч.

• синий, зеленый до 70000 ч. с падением светового потока до 15% в течении первых 25000 ч.

• красный, желтый до 90000 ч. с падением светового потока незначительно.

HI-POWER LED от 1 Вт и выше (произведенные лучшими брендами):

• белый до 80000 ч. с падением светового потока до 15% в течении первых 10000 ч.

• синий, зеленый до 80000 ч.

• красный, желтый до 80000 ч.

2. Почему у белых светодиодов наименьший срок службы?

К сожалению, структур, излучающих белый свет, никто еще не придумал. Основой LED белого цвета свечения является структура InGaN, излучающая на длине волны 470nm (синий цвет) и нанесенный сверху на нее люминофор (специальный состав), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтый части. Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Люминофор ухудшает тепловые характеристики светодиода, поэтому срок службы сокращается. Сейчас мировые производители изобретают новые и новые варианты эффективного нанесения люминофора.

Большинство сверхярких светодиодов служат в районе 50000 — 80000 часов. Много это или мало?

50000 часов — это:

24 часа в день 5.7 лет

18 часов в день 7.4 лет

12 часов в день 11.4 лет

8 часов в день 17.1 лет

3. Греются ли светодиоды?

Многие считают, что светодиоды практически не греются. Так почему светодиодным приборам нужен теплоотвод и что будет если теплоотвода нет?

Cветодиоды продуцируют тепло в полупроводниковом переходе. И чем мощнее LED тем больше тепла. Конечно индикаторные светодиоды например датчики автосигнализаций сильно не греются. Но со сверхяркими LED они имеют мало общего. Если мощные светодиоды объединены в некую сборку, да еще и установлены в герметичный корпус, то нагрев становится значительным.

И если не происходит отвод тепла, полупроводниковый переход перегревается, отчего изменяются характеристики кристалла, и через некоторое время светодиод может выйти из строя. Так что очень важно строго контролировать количество тепла и обеспечивать эффективный теплоотвод. Тепловые характеристики наших приборов просчитываются уже на стадии проектирования, что исключает любые проблемы в эксплуатации.

Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

4. Чем отличается полноцветный RGB светодиод от одноцветного?

В полноцветном светодиоде на одной подложке установлены независимые кристаллы трех цветов свечения (R+G+B), а монохромный светодиод содержит кристалл(ы) какого-либо одного цвета свечения.

5. Как регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы).

Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять от сотен до тысяч герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет.

6. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%.Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

7. Какие на сегодняшний день существуют технологии изготовления светодиодов?

Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой производственной культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24×0,24 до 1×1 мм2.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый свето-диод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светоди-ода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

8. Где на сегодняшний день применяются светодиоды и каковы их перспективы?

Cветодиодное освещение целесообразно применять в тех случаях, где требуется высокая надежность, где обслуживание световой установки слишком дорого и требует спецтехники или работ альпинистов, где нужно применять цветодинамические решения, где требуется энергоэффективное решение, например при питании от разнообразных генераторов.

Обратная сторона медали: светодиодные светильники идеально подойдут для неяркой, но эффектной подсветки. Этот конкретный пример по степени потребления электроэнергии на 90% экономичнее самых маленьких 15 Вт галогеновых лампочек.

Каждый год светоотдача и эффективность светодиодов увеличивается на 30-50%. По состоянию на 2008 год светодиодные светильники уже чаще ламп применяются в архитектурном, декоративном, ландшафтном, подводном освещении, праздничной иллюминации, шоу-бизнесе, а также в специальных приложениях — медицине и растениеводстве, например.

В обозримом будушем скорее всего светодиоды вытеснят лампы в дежурном освещении мест общественного пользования — подъездах жилых домов, световых указателях и т.д. А также на транспорте — в самолетах, поездах, автомобилях. А затем, по мере развития технологии и удешевления производства, дело дойдет до ночного освещения автомобильных дорог и улиц. Все это даст существенную экономию энергоресурсов в национальных масштабах.

9. Какие мировые компании производят светодиоды?

Список лидирующих производителей в мире:

— «Lumieleds Luxeon» (США);

— «Seoul Semiconductor» (Ю.Корея);

— «Prolight Opto» (Тайвань);

— НПО «РоСАТ» (Россия).

Ежегодно, световой поток самого производительного светодиода каждого из мировых брэндов возрастает стабильно на 20-30%. Стоимость 100 лм светового потока падает на 10-15% в год, а отсюда и стабильное ежегодное падение цен на светодиодные осветительные приборы.

Цена светодиодного прибора, безусловно, зависит от стоимости самих светодиодов. Светодиоды при серийном производстве светотехнических изделий составляют самую большую строку в бюджете изготовления светодиодных приборов.

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники. Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации. Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой — нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Другое определение — освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2). У обычных светодиодов яркость 20-50 мкд, у сверхярких — до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у них яркость свечения — это мощность (сила) света, измеряемая в ваттах и зависящая от угла конуса, основание которого расположено на освещаемой площади, вершина — в источнике света. При равном излучении во всех направлениях яркость свечения будет соотношением потока к пространственному углу (в градусах). Чаще всего градусы переводятся в стерадианы: sr = 2 π (1 — cos θ/2), где θ — угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод — это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча (небольшом угле излучения) яркость свеяения увеличивается независимо от объема потока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которого напрямую зависит объем светового потока и яркость свечения — величина кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 — 5,6х3 мм, световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются большими размерами и высокими показателями интенсивности свечения. Это объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

На SMD указываются только размеры чипа, определить интенсивность свечения можно только из техдокументации. Philips на своей продукции указывает световой поток в люменах, Samsung кодирует этот показатель под цифрами, значение которых можно найти в специальных таблицах. На изделиях CREE из маркировки можно узнать только цветопередачу, обозначенную как CRI.

Важно! Маркировка является одним из факторов, затрудняющих выбор светодиодных источников света при отсутствии определенного уровня знаний.

Способы регулировки яркости

Зная, что яркость свечения любого светодиода зависит от тока, можно сделать логический вывод, что характеристики луча меняются одновременно с увеличением или уменьшением подаваемых на кристалл ампер. При аналоговом регулировании резисторами интенсивность свечения регулируется ступенчато, поэтому в схему необходимо включить стабилизатор LM317, фиксирующий ток и напряжение. Такой способ регулирования используется в транспортных средствах и при подключении светодиодов к источнику постоянного напряжения.

Лучшим способом считается широтно-импульсной модуляции с включением в схему резистора и контроллера (если диоды цветные). На светодиод подаются импульсы определенной частоты, то есть, питание включается и выключается очень быстро, светодиод открывается каждый раз, но глаза это не улавливают.

Важно! Интенсивность свечения ламп с цоколем на основе светодиодов нельзя регулировать, если они не специальные (на упаковке возможность диммирования не указана). Для обычных ламп используется балластный блок питания на основе конденсаторов.

Измерить интенсивность свечения светодиода в домашних условиях невозможно. Этот показатель редко указывается в маркировке, для правильного выбора необходимо знать его зависимость от размеров кристалла, потока света и угла излучения.

Возможность менять яркость (использовать диммирование) широко используется в быту для экономии электроэнергии и устройства специальных систем освещения. Интенсивность свечения можно уменьшить при просмотре телевизионных программ, во время отдыха, для ночного освещения детских комнат. Удобство использования повышает возможность управления диммированием при помощи пульта управления или автоматически (с учетом движения и времени).

От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов

Потребителей нередко интересует, в чем измеряется яркость светодиодной лампы и по каким цифрам и обозначениям на ее упаковочной коробке определяется данный параметр. На ней указываются:

  • канделы (cd);
  • люмены (лм или lm);
  • две цифры потребляемой мощности (W и Watt);
  • угол освещения;
  • цветовая температура.

Именно по этим характеристикам можно узнать яркость светодиодов в лампе. В канделах обозначают силу света, или поверхностную плотность потока. За единицу здесь принято считать его интенсивность в процессе горения одной свечи.

Параметр мощности света в люменах принимает во внимание и силу, и длину воспринимаемой человеческим глазом волны, и угол освещения. От последнего, не менее важного показателя зависит площадь зоны освещения, схема расположения и количество требуемых ламп. Если сравнивать изделия с углами освещения в 60 и 30 градусов, то при одинаковых характеристиках можно наверняка сказать, что первое окажется раза в 3-4 эффективнее второго.

Яркость светодиода зависит от вида установленной в лампу линзы. Матовая даст более мягкий и рассеянный свет. При этом, угол освещения наверняка будет шире, а световые потоки слабее.

И, наконец, классификация по мощности. На самом деле, для уровня яркости светодиодных лампочек этот показатель определяющим не является. Его указывают для облегчения расчетов потребления электроэнергии и для понимания данного параметра большинством среднестатистических потребителей. Две цифры, к примеру измерение в ваттах 5,5W и 35 Watt, означают, что потребляемая мощность лампы составляет 5,5Вт, а светит она как обычная 35Вт-ная лампочка накаливания. Все достаточно просто, но следует понимать, что данное соотношение является довольно-таки приблизительным, и светодиоды повышенной яркости исключением не являются.

Светодиодные электроприборы относятся к энергосберегающим изделиям, а управление яркостью излучения помогает потребителю еще больше экономить на электричестве в бытовых и промышленных условиях.

Цветовая температура влияет на цветовой диапазон светодиода. Он может смещаться:

  • по мере возрастного старения элементов;
  • при изменении показателей подводимого тока.

Холодное сине-зеленое свечение присуще источникам света, имеющим высокую цветотемпературу. А теплый свет красно-желтых оттенков — низкую. Часто на этикетках указывают длину световой волны в доминирующих значениях. Ее смещение происходит в зависимости от цветовой температуры.

Мкд светодиод. ЯРКОСТЬ СВЕТОДИОДА

Что больше всего интересует потребителя при выборе светодиодов для ламп и других осветительных устройств — не ток потребления, не размеры и даже не срок службы, а яркость. Как известно яркость — обозначается буквой L, это световая величина, равная отношению светового потока d2 к геометрическому фактору ddAcos : L = d2/ddAcos. Где d — заполненный излучением телесный угол, dA — площадь участка, испускающего излучение, или угол между перпендикуляром к этому участку и направлением излучения. Другими словами яркость, это сотношение силы света I элемента поверхности к площади его проекции, перпендикулярной рассматриваемому направлению: формула L = dI/dA cos . Также яркость можно сформулировать и четез отношение освещённости Е в точке плоскости, перпендикулярной направлению на источник, к элементарному телесному углу, в котором заключён поток, создающий эту освещённость: формула L = dE/dcos. Яркость измеряют в канделлах на метр в минус второй степени: кд·м-2. Яркость, непосредственно связана со зрительными ощущениями, так как освещённость изображения предмета на сетчатке глаза пропорциональна яркостям этого предмета.

Что касается конкретно яркости светодиодов, то она представляет собой суммарную мощность, выделившуюся в виде света — излучающая энергия или излучающий поток, и измеряется она в ваттах. Но насколько ярким окажется объект, будет зависеть и от дополнительных факторов: сколько излучаемого потока выпущено в направлении наблюдателя и насколько чувствителен наблюдатель к длине волны света.

От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов

Здесь мы введём понятие стерадиан — телесный угол, твердых объёмных углов. Проще говоря конус с вершиной в источнике света. Если поток излучения источника — светодиода или лампы, одинаковый во всех направлениях, интенсивность излучения будет равна общему потоку излучения, разделенному на 12,57 стерадиан, пространственный угол полной сферы. В светодиодах, излучающий поток концентрируется в луче, а интенсивность излучения будет равна излучающему потоку, поделенному на пространственный угол луча. Ширина углов обычно обозначается в градусах, а интенсивность излучения обычно выражается в милливаттах на стерадиан мВт / ср., что вызывает необходимость перевода угла луча в стерадианы: sr = 2 π (1 — cos(θ/2)), где sr — телесный угол, в стерадианах, и θ — это угол луча.

От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов 01

Световой поток измеряется в люменах, а сила света измеряется в люменах на стерадиан и названная канделой. Отношения между световым потоком, силой света и углом луча означают, что акцентом учета светодиода в более плотных лучах при уменьшающемся угле луча, увеличит силу света (то есть яркость) без увеличения светового потока. Поэтому при покупке светодиода для освещения — светодиод с 1000 милликандел и 45° углом обзора, даст столько же света, как светодиод в 10000 милликандел с 12° углом обзора. Светодиод, как видим достаточно яркий, но эта яркость узконаправленная.

От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов 02

Яркость светодиодов принято измерять в милликанделах — 1 мкд = 0.001 канделы. Обычные советские светодиоды имеют яркость в диапозоне 20 — 50 мкд., а сверхяркие светодиоды могут достигать 20000 мкд и выше. Чтоб было ещё нагляднее замечу, что обычная лампа накаливания 100 Вт производит около 1500 люмен, и если свет будет излучаться одинаково во всех направлениях, она будет иметь яркость около 120 000 мкд. Но если луч будет узконаправленный в угле 20°, она будет иметь яркость окло 16 000 000 мкд. Так что светодиодам, даже сверхмощным всё ещё далеко до ламп в плане излучаемой яркости, но с каждым месяцем этот разрыв стремительно сокращается.

Какой элемент обязателен в схеме индикатора на светодиоде. Конденсаторный балласт

Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность — я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.Номинал резистора в схеме выше рассчитан для тока светодиода около 10 — 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000

11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде — около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.Считая по, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели — катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.

«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву «μ» с оторванным хвостиком.
Кроме того, «Фарад» — мужского рода , так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!

Как я уже говорил, преимущество у такого балласта только одно — простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.

Как измерить яркость светодиода. Светоотдача, угол свечения и мощность светодиодов

Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода — направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной — 35-40 лм/Вт, светодиодной — 130-140 лм/Вт.

От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить

От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к хаpaктеристикам светотехники. Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации. Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2). У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у них яркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящая от угла конуса, основание которого расположено на освещаемой площади, вершина – в источнике света. При равном излучении во всех направлениях яркость свечения будет соотношением потока к прострaнcтвенному углу (в градусах). Чаще всего градусы переводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования. Читайте также Устройство, виды и подключение RGB светодиодов

Зависимость яркости свечения идеального светодиода от электротока линейная. На пpaктике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча (небольшом угле излучения) яркость свеяения увеличивается независимо от объема потока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которого напрямую зависит объем светового потока и яркость свечения – величина кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм, световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются большими размерами и высокими показателями интенсивности свечения. Это объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

На SMD указываются только размеры чипа, определить интенсивность свечения можно только из техдокументации. Philips на своей продукции указывает световой поток в люменах, Samsung кодирует этот показатель под цифрами, значение которых можно найти в специальных таблицах. На изделиях CREE из маркировки можно узнать только цветопередачу, обозначенную как CRI.

Важно! Маркировка является одним из факторов, затрудняющих выбор светодиодных источников света при отсутствии определенного уровня знаний.

Способы регулировки яркости

Зная, что яркость свечения любого светодиода зависит от тока, можно сделать логический вывод, что хаpaктеристики луча меняются одновременно с увеличением или уменьшением подаваемых на кристалл ампер. При аналоговом регулировании резисторами интенсивность свечения регулируется ступенчато, поэтому в схему необходимо включить стабилизатор LM317, фиксирующий ток и напряжение. Такой способ регулирования используется в трaнcпортных средствах и при подключении светодиодов к источнику постоянного напряжения.

Лучшим способом считается широтно-импульсной модуляции с включением в схему резистора и контроллера (если диоды цветные). На светодиод подаются импульсы определенной частоты, то есть, питание включается и выключается очень быстро, светодиод открывается каждый раз, но глаза это не улавливают.

Важно! Интенсивность свечения ламп с цоколем на основе светодиодов нельзя регулировать, если они не специальные (на упаковке возможность диммирования не указана). Для обычных ламп используется балластный блок питания на основе конденсаторов.

Основные выводы

Измерить интенсивность свечения светодиода в домашних условиях невозможно. Этот показатель редко указывается в маркировке, для правильного выбора необходимо знать его зависимость от размеров кристалла, потока света и угла излучения.

Возможность менять яркость (использовать диммирование) широко используется в быту для экономии электроэнергии и устройства специальных систем освещения. Интенсивность свечения можно уменьшить при просмотре телевизионных программ, во время отдыха, для ночного освещения детских комнат. Удобство использования повышает возможность управления диммированием при помощи пульта управления или автоматически (с учетом движения и времени).

Характеристики светодиодов различного назначения

Для того чтобы произвести оценку всего многообразия существующих типов твердотельных источников света попробуем сравнить характеристики светодиодов различного назначения.

Общие характеристики, которые можно применить при оценке параметров любых светоизлучающих диодов – это спектр излучения, показатели световой мощности (сила света либо световой поток), вольтамперная характеристика, электрическая мощность светодиода.

Вольтамперная характеристика всех диодов в той или иной мере идентична по своей форме, отличия состоят только в конкретных величинах токов и напряжений, поэтому на ней заострять внимание не будем.

Начнем с самых простых представителей

Стандартные индикаторные светодиоды в круглых и овальных корпусах имеют мощности порядка 20-50 мВт и различный спектр излучения, определяющийся типом используемого полупроводника для его изготовления. Типовым представителем таких светодиодов может служить круглый 5 мм АЛ307 отечественного производства.

Image 000

Его технические параметры приведены в таблице ниже.

Поскольку светодиоды индикаторного типа имеют узкий угол свечения, то для оценки используется такой параметр излучения как сила света, измеряющийся в милликанделах [мкд]. АЛ307 имеет по три градации яркости для каждого цвета. Спектр представлен четырьмя цветами.

Светодиоды в корпусах типа «пиранья» позволяют получать большие мощности за счет сниженного теплового сопротивления и отвода тепла на плату сразу через четыре вывода. Корпус «пиранья» также обрел популярность благодаря повышенной механической устойчивости – светодиоды «пиранья» с успехом применяются для изготовления автомобильного света. Практически все крупные производители имеют в своей номенклатуре семейство светодиодов в корпусе «пиранья».

Image 001

Такие светодиоды обычно называются ультраяркими или сверхяркими. Основные технические параметры светодиодов «пиранья» производства американской компании CREE приведены в таблице.

Угол свечения может быть 40˚, 70˚ или 100˚ в зависимости от модификации, определить которую поможет data sheet производителя.

Корпус «пиранья» позволяет отводить до 200 мВт мощности.

Длина волны, которая приведена в таблице для каждого цвета свечения является доминантной для данного типа светодиода. В действительности же спектр излучения, например, красного светодиода может находиться в диапазоне от 620 до 637 нм.

«Пиранья» может быть и белого свечения. Белые светодиоды изготавливаются путем нанесения желтого люминофора на синий кристалл.

Следующую группу – SMD 5050 – можно отнести уже к категории мощных светодиодов. Как видно из названия это светодиоды поверхностного монтажа с размерами 5×5 мм.

Image 002

Наименование SMD 5050 – условное, поскольку различные производители дают свое обозначение данному классу светодиодов в соответствии со сложившейся системой. Максимальная мощность достигает одного ватта. На дне корпуса такого светодиода обычно располагается специальная площадка для отведения тепла, хотя в менее мощных модификациях она может и отсутствовать.

Светодиоды SMD 5050 обычно белого цвета свечения, т.к. предназначены для изготовления светильников. Они могут монтироваться как на стеклотекстолитовую, так и на алюминиевую печатную плату. Последняя используется для лучшего отвода тепла при больших мощностях.

Белый спектр излучения подобных светодиодов имеет различные цветовые оттенки. Для них вводится такая характеристика как «коррелированная цветовая температура», которая измеряется в Кельвинах [K].

Угол свечения у них составляет 115˚.

Ниже приведены основные характеристики светоизлучающих диодов CLN6A, как одного из лучших видов в этом классе (полный список возможных исполнений достаточно велик, поэтому приведены два типовых представителя).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *