Ток и электричество в чем разница
Перейти к содержимому

Ток и электричество в чем разница

  • автор:

X Международная студенческая научная конференция Студенческий научный форум — 2018

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создаёт переменный ток во внешней цепи. Наличие индуктивности или ёмкости (либо того и другого вместе) приводит к смещению фазы между напряжением V и током I. Ёмкость вызывает смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности по-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю. Такие трехфазные токи используют в короткозамкнутых асинхронных электродвигателях с ротором. В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых и открытых колебательных контурах. Высокочастотные электромагнитные волны, используемые в некоторых системах коммуникации, производятся такими цепями.

Электрический ток – направленное движение электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках – электроны, в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, «дырки» («электронно-дырочная проводимость»). Также существует «ток смещения», протекание которого обусловлено процессом заряда ёмкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/t,

q = 1,6·10 9 – заряд электрона, Кл;

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/dt.

Электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи.

Вместо термина «ток» («величина тока») часто применяется термин «сила тока». Однако последний нельзя назвать удачным, так как сила тока не есть какая-либо сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника.

Ток характеризуется силой тока, которая в СИ измеряется в амперах (А), и плотностью тока, которая в СИ измеряется в амперах на квадратный метр.

Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

В общем случае, обозначив ток буквой i, а заряд q, получим:

Единица тока называется ампер (А). Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Рис. 1 – Направленное движение электронов в проводнике

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.

В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда – электронов, движущихся в проводящих средах от минуса к плюсу (рис. 2).

Рис. 2 – Направление электрического тока в электролите и свободных электронов в проводнике

Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока (обозначается δ): δ= I/S

При этом предполагается, что ток равномерно распределён по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм 2 .

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения. Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.

Полный электрический ток – скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время.

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в СИ измеряется в герцах), в том случае, когда его сила изменяется периодически. Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные. Синусоидальным называют ток, изменяющийся по гармоническому закону:

где Im – амплитудное (наибольшее) значение тока, А.

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота ω – скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I, неустановившиеся (мгновенные) значения – буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Переменный ток – это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение – перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми. Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью. При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля. Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой – наоборот. Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Материал, в котором течёт ток, называется проводником. Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю. Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по закону Ома для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Список использованных источников

1. Влияние электрического тока на человека [Электронный ресурс]. Режим доступа: http://pue8.ru/podstantsii/561-vliyanie-elektricheskogo-toka-na-cheloveka.html.

2. Трофимова Т.И. Курс физики: Пособие для вузов. – 7-е изд. – М.: Высш. шк., 2002. – 542 с.

3. Френкель, Е.Н. Концепции современного естествознания : физические, химические и биологические концепции : учеб. пособие / Е.Н. Френкель. – Ростов н/Д : Феникс, 2014. – 246 с.

Ток и электричество в чем разница

Видео: В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ

Обычный ток против электрического тока

Ток — главный параметр при изучении электрических систем. Электрический ток и обычный ток — это две формы тока, которые очень полезны в относительных областях. Концепция тока широко применяется в таких областях, как электротехника, электронная инженерия, теория электромагнитного поля и многих других областях. Жизненно важно иметь правильное представление об электрическом и обычном токах, чтобы преуспеть в таких областях. В этой статье мы собираемся обсудить, что такое ток, что такое электрический ток и обычный ток, их определения, применения, связи между обычным током и электрическим током, их сходства и, наконец, различия между обычным током и электрическим током.

Электрический ток

Электрический ток можно определить как ток, вызываемый потоком зарядов в направлении потока зарядов. Ток определяется как скорость прохождения зарядов через среду. Эти заряды обычно имеют форму электронов. Единицей измерения силы тока в системе СИ является ампер, названный в честь Андре-Мари Ампера. Ток измеряется амперметрами. 1 ампер равен 1 кулонам в секунду. Для протекания тока требуется электродвижущая сила. Если разница напряжений между двумя точками равна нулю, между этими двумя точками не может быть чистого тока. Ток также существует в таких формах, как поверхностный ток и вихревой ток. Ток или любой движущийся заряд всегда создает магнитное поле помимо электрического поля. Это магнитное поле перпендикулярно скорости заряда и электрического поля. Электрический ток измеряется в направлении потока электронов. Любой электрический ток, измеренный в направлении чистого электронного потока, является отрицательной величиной.

Обычный ток

Обычный ток, или, другими словами, стандартный ток, измеряется в направлении, противоположном потоку отрицательных зарядов (то есть электронов). Если ток измеряется для потока положительных зарядов, обычный ток имеет то же направление, что и поток заряда. В любом месте, если используется термин «ток», он относится к обычному току. Поскольку ток, измеренный в том же направлении, что и электроны, отрицательный, ток, измеренный в направлении, противоположном потоку электронов, положительный. Это означает, что обычный ток всегда положительный. Обычный ток также измеряется в амперах.

В чем разница между обычным и электрическим током?

• Электрический ток может быть отрицательным или положительным, но обычный ток всегда положительный.

• Обычный ток для электронного потока положительный, а электрический ток отрицательный.

• Для потока положительных зарядов электрический и обычный ток одинаковы.

• Поскольку почти каждая электрическая цепь использует поток электронов, можно с уверенностью сказать, что условный ток = — электрический ток.

• В обычном токе поток электронов рассматривается как поток протонов в противоположном направлении.

В чем разница между статическим электричеством и электрическим током?

Наиболее существенное различие между статическим электричеством и «обычным» электричеством состоит в том, что в статическом электричестве заряды находятся в состоянии покоя и накапливаются на поверхности изолятора. В то время как при протекании тока электроны движутся внутри проводника. Другие различия между статическим электричеством и электрическим током объяснены ниже в сравнительной таблице.

Статическое электричество используется в различных машинах для борьбы с загрязнением, в машинной покраске, ксерографии и других сферах. Металлические пластины машины для борьбы с загрязнением преобразуют частицы грязи в статический заряд. Статические частицы грязи притягиваются к противоположной зарядной пластине машины для контроля загрязнения. Таким образом, накапливаются в устройстве и потом легко удаляются.

Сравнительная таблица

Основа для сравнения Статичное электричество Электрический ток
Определение Электричество, которое накапливается на поверхности вещества, известно как статическое электричество. Электрический ток возникает из-за направленного движения электронов.
Причины возникновения Возникает из-за движения отрицательных зарядов от одного объекта к другому Возникает из-за движения электронов
Вещество Статическое электричество возникает как в проводнике, так и в изоляторе Электрический ток возникает только в проводнике
Магнитное поле Не наводит магнитное поле Индуцирует магнитное поле
Временной период Не может долго существовать Может существовать долгое время
Измерительное устройство Электроскоп с сусальным золотом Аналоговый и цифровой измеритель
Примеры «Молнии», возникающие при трении шариков о волосы и других предметов Электрический ток используется для работы вентилятора, освещения, телевизора и других электроприборов.

Определение статического электричества

Слово «статичный» означает неподвижный. Электричество, при котором заряды остаются в покое на поверхности вещества, называется статическим электричеством. Статическое электричество возникает при трении предметов друг о друга.

Каждый объект состоит из крошечных частиц, называемых атомами. Атом состоит из ядра и свободных электронов. В ядре равное количество нейтронов и протонов. Электроны атома движутся по своей орбите. Свободные частицы части вещества слабо связаны между собой.

Статическое электричество на примере волоса и воздушного шара

При трении двух объектов электроны со слабой связью «прыгают» с одного объекта на другой. Предметы, теряющие электроны, заряжаются положительно. И объект, который получает электроны, становится отрицательно заряженным. Между статическими объектами возникает потенциал, вызванный статическим электричеством.

Рассмотрим атомы волос и шара. Когда мы натираем шар волосами, между ними переносятся отрицательные заряды. Пусть отрицательный заряд движется от атома волоса и прибавляется к атому шарика. Таким образом, атомы волос становятся заряженными положительно, а атомы шара — отрицательно.

Между волосами и шаром возникает сила притяжения. Положительный и отрицательный заряды создают разность потенциалов между волосами и шаром. Таким образом, между ними возникает статическое электричество.

Определение электрического тока

Электричество, которое является направленным движением электронов, известно как электрический ток. Он развивается только на материале, имеющем свободные электроны. Ток используется для выполнения механических работ, таких как вращение электродвигателей, нагрева элементов (обогреватели), в химической промышленности, для освещения и многого другого. Магнитное поле также создается из-за протекания электрического тока.

AC (переменный ток) и DC (постоянный ток) — это типы электрического тока. При переменном токе заряды текут в обоих направлениях. А в постоянном токе заряды движутся только в одном направлении.

Вещество, состоящее из крошечных частиц, называемых атомом. У атома есть ядро ​​и электроны. Электроны движутся по орбите атома, при этом ядро ​​неподвижно. Вещества бывают двух типов — те, у которых есть слабосвязанные электроны, и те, у которых сильно ограниченные электроны.

Вещество, имеющее слабую связь между электронами и атомом, называется проводником. Когда к проводнику прикладывается внешняя сила (напряжение) электроны получают энергию и начинают перескакивать с одного атома на другой внутри проводника. Это движение электронов генерирует электричество, выделяя при этом тепло..

Как электрический ток движется внутри проводника рисунок

В неметаллах электроны сильно ограничены. Но в металлах электрон перескакивает с одного атома на другой из-за отталкивающего свойства зарядов. Движение электронов генерирует электрический ток.

Ключевые различия между статическим электричеством и электрическим током

  • Электричество, при котором заряды остаются статическими, называется статическим электричеством. В то время как электрический ток вырабатывается за счет перетекания зарядов.
  • Статическое электричество возникает из-за движения отрицательных зарядов от одного объекта к другому. Ток возникает из-за движения электронов в атомах проводника.
  • Статическое электричество возникает на поверхности изолятора и проводника, тогда как электрический ток возникает только в проводнике.
  • Магнитное поле образуется током, и оно не связано со статическим электричеством.
  • Статическое электричество «уходит» в течение короткого времени (например, разряда наэлектризованного предмета), тогда как электрический ток может существовать в течение длительного времени, до тех пор, пока на противоположных концах проводника будет присутствовать разность потенциалов, создаваемых источниками тока или напряжения (батареями, аккумуляторами и другими).
  • Электроскоп с сусальным золотом измеряет величину статического электричества, в то время как ток измеряют аналоговым или цифровым амперметром.
  • Удары молнии — это примеры статического электричества. Удары молнии происходят из-за того, что на поверхности облаков накапливается заряд. Для промышленных машин, освещения и бытовой техники такое статическое электричество не подходит, так как его пока невозможно “обуздать”. Поэтому для их работы используют обычный электрический ток, вырабатываемый электростанциями.

Вывод

Статическое электричество возникает из-за накопления объектом, или предметом, и “сохранением” зарядов в состоянии покоя. А электрический ток возникает из-за движения отрицательных зарядов.

Электричество течёт по проводам?

И это справедливо не только для простых людей, но и для учёных. Во всяком случае, короткого и всеобъемлющего определения данного явления так и не появилось. Вот пара цитат.

«Определять чётко, что такое электричество, в настоящее время не следует… И если сделать вывод, то сегодня мы чёткого определения понятия электричеству дать не можем.» (Копылов И.П.) [1],[2]

Если Вы не знаете профессора Копылова, то вот цитата другого исследователя, о котором Вы наверняка слышали, и который знал про электричество значительно больше, чем многие знают и сегодня.

Никола Тесла про электричество

Сейфер Марк, «Никола Тесла. Повелитель вселенной»

«День за днем я задавался вопросом, что же такое электричество, и не находил ответа. С тех пор прошло восемьдесят лет, и я по-прежнему задаю себе тот же вопрос, но не в состоянии ответить на него.» (Никола Тесла) [3]

Общераспространённое представление об электрическом токе

Большинство людей считает, что это некий поток электронов, движущийся по проводам от источника питания (электростанция, генератор, батарейка, аккумулятор и т.п.) к электроприбору и приводящий его в работу. Почти как бензин в топливопроводе машины.

Но это – распространённое заблуждение. Вот несколько причин, по которым данное представление не может быть верным, если бы энергия и поток электронов были бы одним и тем же.

  • Скорость движения свободных электронов в медном проводнике сечением 1,5 мм2 (стандарт для бытовой системы освещения) составляет… 0,05 мм/с. [4] На этом отрезке умещается более 100 тысяч атомов. Если представить их цепочкой бильярдных шариков, то они будут располагаться с дистанцией между ними примерно равным самим шарикам. Если бы энергия передавалась простым физическим столкновением электронов, им бы потребовалось некоторое время на передачу по цепочке импульса к движению. При такой скорости, после нажатия клавиши выключателя на стене, лампочка на потолке загорелась бы отнюдь не мгновенно.
  • В отличии от батареек, в наших электросетях переменный ток. Это означает, что он постоянно меняет своё направление. В России это происходит 50 раз в секунду. Так что электроны в проводе вообще никуда не движутся. Они просто колеблются туда-сюда практически на одном месте.
  • Проводов, идущих без разрывов от электростанции до наших домов, не существует в природе. На этом пути стоит множество подстанций с трансформаторами, в которых нет прямого контакта проводов. Электроны там физически не в состоянии перескочить с одной катушки на другую.
  • Сегодня представление об электроне, как некой физической частице, в принципе находится под вопросом. Наука пересматривает традиционную модель атома с орбитами электронов. Квантовые физики говорят о вероятностном электронным облаке вокруг ядра, где электрон «размазан» по всему объёму.

Из всего этого можно сделать вывод, что не сами электроны приводят в действие электроприборы. Так что же, а главное каким образом течёт по нашим проводам?

Официальное определение электрического тока

Для начала посмотрим, как электрический ток объясняется в энциклопедиях. Вот первые два предложения из его определения в «Физической энциклопедии»:

«Электрический ток – направленное движение электрических зарядов (электронов, ионов, дырок и т.п.). Количественно электрический ток характеризуется вектором плотности электрического тока…» [5]

Физическая энциклопедия - электрический ток

Определение электрического тока в «Физической энциклопедии» (1998)

Далее идут разъяснения, которые простому человеку будут мало понятны. Нам надо просто запомнить, что для электрического тока не обязательно нужны электроны. Электроны – это лишь один из возможных носителей, передающих заряды. И именно эти заряды являются электрическим током.

Теперь посмотрим более доступное для понимания определение в Википедии:

«Электрический ток или электроток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда. Последующее электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а посредством электромагнитного поля. Скорость распространения электромагнитного взаимодействия (поля) или скорость электромагнитного излучения достигает световых скоростей, что многократно превышает скорость движения самих носителей электрического заряда.» [6]

Тут надо обратить внимание на то, что скорость движения передаваемой энергии превышает скорость движения самих носителей заряда, достигая практически скорости света.

Из всего этого следует, что электрический ток – это вовсе не движение электронов по проводу. Более того, скорость его передачи никак не связана со скоростью и направлением движения электронов.

Да и сам электрический ток и электричество — это разные понятия. Вот определение электричества из Большой Советской Энциклопедии:

ЭЛЕКТРИЧЕСТВО, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов — электростатического поля; см. Электростатика). Движущиеся заряды (Электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме, т. о., является составной частью общего учения об Э.). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения. [7]

Электричество определение БСЭ

Определение электричества в Большой Советской Энциклопедии

А далее будет самое интересное. Оказывается, электрическая энергия вообще не передаётся внутри провода. Но чтобы это понять, ознакомимся немного с природой электричества.

Электричество и электромагнитные волны

В середине XIX века британский физик Джеймс Клерк Максвелл проанализировал все известные на тот момент формулы, описывающие явления электричества и магнетизма. Сегодня они свелись всего к четырём уравнениям. Но одно из них противоречило остальным. Чтобы привести его в соответствие, Максвелл чисто математическим путём добавил в него ещё одно слагаемое, перекликающееся с частью другого уравнения.

Уравнения Максвелла

Система уравнений Максвелла

Так появилось математическое описание взаимодействия меняющихся в пространстве электромагнитных полей. Через несколько лет оно было подтверждено уже экспериментально другими физиками. Сегодня мы называем это явление электромагнитными волнами.

Электромагнитные волны

Векторный вид электромагнитной волны

Длинна этих волн измеряется в сантиметрах или метрах, а частота колебания – в герцах (в честь немецкого физика Генриха Рудольфа Герца, который был в числе подтвердивших выводы Максвелла экспериментальным путём). В зависимости от частоты колебания, электромагнитные волны охватывают весь спектр излучений от низкочастотных и радиоволн до гамма-излучения.

Шкала электромагнитных волн

Шкала электромагнитных волн

Выяснилось, что для передачи электромагнитных волн никакой среды (воздух, вода, металл) не требуется. Они передаются и в полном вакууме, как бы цепляясь друг за друга.

Электричество вокруг нас

Из вышесказанного, можно сделать два интересных вывода:

  • Во-первых, электрическая составляющая есть во всех видах излучения, включая видимый нами свет.
  • Во-вторых, для передачи энергии этой составляющей провода не являются обязательным условием. При желании, можно обойтись и без них. Но это будет сложнее.

Электричество не течёт внутри провода, как вода в шланге. И разрыв «шланга» не всегда означает прерывание передачи электричества. Ведь не поток электронов заставляет работать наши машины и приборы. Их приводит в действие энергия, которая передаётся электромагнитным полем, распространяющимся в пространстве.

Где именно передаётся эта энергия

Даже при проводной передаче электричества энергия распространяется не внутри проводника, а вокруг него. Она передаётся вдоль провода максимально близко к его поверхности, но не в нём самом. А в самом центре проводника напряжённость поля (не путать с потоком электронов) и вовсе равна нулю [8] . Вот отрывок из ещё советского фильма студии «Леннаучфильм», для учащихся высших учебных заведений. В нём однозначно говорится, что:

«…энергия течёт в пространстве, окружающем провод, но не в самом проводе.»

По мере проникновения вглубь проводника, амплитуда электромагнитных волн уменьшается. Это называется скин-эффектом [9] . В следствии этого, и плотность тока максимальна у поверхности проводника, в так называемом скин-слое. Толщина этого слоя определяется как материалом проводника, так и частотой тока. В медном проводнике при частоте 50 Гц толщина скин-слоя будет 9,34 мм, а при частоте 10 МГц — всего 0,021 мм [10] .

Непосредственно для тока имеет значение именно радиус проводника, а не просто его сечение. Для больших радиусов и высокочастотных линий существуют полые провода, дающие больший диаметр без увеличения сечения и веса. Пустое пространство внутри таких проводов может использоваться даже для устройства внутрипроводникового жидкостного охлаждения. Полые провода придуманы достаточно давно. Так, в СССР одна из заявок на патент устройства такого провода была подана ещё в 1928 году [11] .

Патент на полый провод

Патент № 17464, заявка №28110 от 24.05.1928, Торопов А. К

Заключение

Говоря об электричестве, следует разделять понятия электронов, зарядов, тока носителей этих зарядов, электро-магнитных волн и энергии. Все эти понятия тесно связаны между собой, но не одно и то же.

Представление об электрическом токе, как неком непрерывном потоке электронов, текущих внутри провода, как вода в шланге, и приводящем в движение наши приборы и машины — неверно.

Сам же проводной способ передачи электричества экономически эффективен при использовании электромагнитных волн частотой 50-60 герц. И эту частоту нельзя увеличивать бесконечно. После определённого предела провод превратится в антенну, излучающую энергию во все стороны в виде радиоволн. В конечном итоге, лампочка на другом его конце просто не сможет гореть. Зато в будущем мы вполне сможем получать энергию для неё и вовсе без проводов.

Примечания и ссылки:

    (1928-2014), доктор технических наук, профессор, почетный профессор кафедры «Электромеханика» Московского энергетического института, Заслуженный деятель науки и техники РФ, лауреат Государственной премии СССР. Почётный академик Инженерной Академии РФ, почётный академик Академии Электротехнических Наук РФ. , начиная с отметки 7:30. , издательство «Яуза», 2007 г., стр.14.
  1. Физика металлов. Расчет скорости движения электронов в металлах.
  2. «Физическая энциклопедия», Москва, издательство «Большая Российская энциклопедия», 1998 г., том 5, стр. 515.
  3. Википедия, статья Электрический ток.
  4. Большая Советская Энциклопедия, 3-е издание, том. 30, стр. 48, стлб. 130. Национального исследовательского ядерного университета «МИФИ», видео 2.4.
  5. Скин-эффект, «Физическая энциклопедия», Москва, издательство «Большая Российская энциклопедия», 1998 г., том 4, стр. 541.
  6. Википедия, статья Скин-эффект.
  7. Портал «База патентов СССР», патент №17464.

Вам могут понравиться и другие подобные статьи, например:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *