Какую форму имеют импульсы напряжения на выходе автоколебательного мультивибратора
Перейти к содержимому

Какую форму имеют импульсы напряжения на выходе автоколебательного мультивибратора

  • автор:

Мультивибратор в автоколебательном режиме

Мультивибратор представляет собой релаксационный генератор колебаний почти прямоугольной формы. Он является двухкаскадным усилителем на резисторах с положительной обратной связью, в котором выход каждого каскада соединен со входом другого. Само название "мультивибратор" происходит от двух слов: "мульти" — много и "вибратор" — источник колебаний, поскольку колебания мультивибратора содержат большое число гармоник. Мультивибратор может работать в автоколебательном режиме, режиме синхронизации и ждущем режиме. В автоколебательном режиме мультивибратор работает как генератор с самовозбуждением, в режиме синхронизации на мультивибратор действует извне синхронизирующее напряжение, частота которого определяет частоту импульсов, ну а в ждущем режиме мультивибратор работает как генератор с внешним возбуждением.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 — графики, поясняющие принцип его работы. Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.

Рис. 1 — Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность — это отношение периода повторения к длительности импульса Q=Tи/tи. Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой — в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.

Рис. 2 — Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:

Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно — не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики Rд1 и Rд2.

Рис. 3 — Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциалла коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик Rд, а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным Eк. Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 — Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение. Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса. В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 — Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.

Блокинг-генераторы

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Исследование работы автоколебательного и ждущего мультивибраторов

Цель работы: изучение принципа действия автоколебательного и ждущего мультивибраторов.

1 Краткие теоретические сведения

1.1 Введение

Мультивибратор принадлежит к обширному классу генераторов импульсов релаксационного типа, используемых для получения колебаний, резко отличающихся по форме от синусоидальных. В основном, с помощью релаксационных генераторов получают импульсы напряжения, форма которых близка к прямоугольной.

По режиму работы мультивибраторы делятся на автоколебательные и ждущие. При работе в режиме автоколебаний мультивибратор без внешнего воздействия вырабатывает импульсы, период повторения и длительность которых определяется параметрами схемы мультивибратора. В ждущем режиме мультивибратор при отсутствии внешних импульсов запуска находится в состоянии покоя (в состоянии устойчивого равновесия) и не генерирует никаких импульсов. Лишь при воздействии импульсов запуска, поступавших от внешнего генератора, мультивибратор вырабатывает только один рабочий импульс, после чего возвращается в исходное состояние. Таким образом, частота следования пульсов, генерируемых ждущим мультивибратором, задается не параметрами схемы, а частотой следования импульсов запуска. Параметры же схемы определяют длительность вырабатываемых импульсов.

1.2 Автоколебательный мультивибратор

Рассмотрим схему, показанную на рисунке 1. Это схема двухкаскадного транзисторного усилителя звуковой частоты с выходом на головные телефоны. Что произойдет, если выход такого усилителя соединить с его входом, как на схеме показано штриховой линией? Между ними возникает положительная обратная связь и усилитель самовозбудится станет генератором колебаний звуковой частоты (рисунок 2), и в телефонах мы услышим звук низкого тона. С таким явлением в приемниках и усилителях ведут решительную борьбу, а вот для автоматически действующих приборов оно оказывается полезным.

Рисунок 1 – Схема двухкаскадного усилителя

Рисунок 2 – Схема автоколебательного мультивибратора

Мультивибратор представляет собой двухкаскадный усилитель с резистивно-емкостной связью, выходное напряжение которого () полностью приложено к его входу, т.е, осуществляется 100%-я положительная обратная связь. Мультивибратор работает в режиме генератора незатухающих колебаний, при этом напряжение между коллектором и эмиттером транзистораимеет вид последовательности импульсов, близких по форме к прямоугольным (рисунок 3). Транзисторнаходится либо в открытом (интервалы,), либо в закрытом (интервалы,) состоянии. Переход из закрытого состояния в открытое и обратный переход (интервалыи) происходит очень быстро (). Транзистор, работает в противофазе с транзистором(открыт,закрыт и т.д.). В течение переходных интервалови />оба транзистора открыты, усилитель обладает большим коэффициентом усиления, токи и напряжения транзисторов изменяются очень быстро. Затем следует интервал (или) квазиустойчивого (т.е. устойчивого в течение некоторого промежутка времени) состояния, определяемого зарядом или разрядом конденсаторов.

Рисунок 3 – Напряжение между коллектором и эмиттером транзистора

Мультивибратор не может находиться в состоянии, при котором токи и напряжения оставались бы неизменными при открытых, транзисторах. Считаем, что схема мультивибратора симметрична, т.е. , и, предположим, что после включения источника питания токи транзисторов одинаковы. По каким-либо причинам, например, изменение напряжения питания при неидентичности характеристик транзисторов, токи транзисторов становятся неодинаковыми. Допустим,возрос на некоторую величину, при этом коллекторное напряжение, связанное с током равенством

, (1)

уменьшается по абсолютной величине. Соответственно, напряжение на базе первого транзистора , равное

, (2)

уменьшится по абсолютной величине, т.к. напряжение на конденсаторе не может измениться мгновенно. Это приведет к уменьшению тока базыи коллектора, т.к.. Повторяя рассуждения, которые мы проводили, записывая уравнения (1 – 2), но уже для первого транзистора, приходим к выводу, что при этом увеличивается абсолютное значениеи, следовательно,. Последнее повлечет за собой увеличение,, т.е. действует положительная обратная связь. Описанный процесс протекает очень быстро, токи транзистора(и) возрастают до насыщения, а токи транзистораубывают до нуля, т.е. по окончании такого переходного процесса (интервал)открыт (насыщен),закрыт.

Следовательно, будем считать, что до момента(рис. 2) транзисторбыл закрыт,— открыт. На графиках рис. 2 мы пренебрегаем коллекторным напряжением насыщения в временными интерваламииввиду их малой величины. Очередное опрокидывание схемы происходит при, когда напряжение на базе закрытого транзистора становится отрицательным. Итак,— открывается, переходят в насыщение и его коллекторное напряжение падает практически до 0. Напряжениена емкостив первый момент не меняется и остается равным(т.к. потенциалдо скачка был равен нулю, а потенциалбыл равен). Отсюда следует, что токв моментвозрастает от нуля до величины. Слагаемоеобусловлено тем, что сопротивлениепосле скачка находится под напряжением

. (3)

Перед перебросом схемы напряжение на было близко к нулю и сохраняет эту величину после скачка. Отсюда следует, что базовый ток(который до опрокидывания равен нулю) возрастает допоскольку резисторыив первый момент соединены через незаряженную емкость. Одновременно положительное напряжение на конденсаторезакрывает транзистор. Коллекторный токдо скачка равен,a после опрокидывания падает до нуля. Легко заметить, что во время переброса коллекторный ток запирающегося транзистора переходит в базу отпирающегося транзистора. Потенциал в моментне изменяется и остается близким к нулю. Это следует из того, что , где оба слагаемых очень малы. Ток , который до опрокидывания был равен, после опрокидывания уменьшается до нуля. Таков в первом приближении результат произошедшего переброса в схеме.

Начиная с момента , величины в схеме изменяются следующим образом. Потенциалы,и токи,остаются практически неизменными и близкими к нулю. Потенциалравный напряжению на конденсаторе, уменьшается с постоянной времени, стремясь к величине. Разряд емкостипроисходит по цепи – заряженный конденсатор, насыщенный транзистор, источник питания, резистори прерывается в момент, когда напряжение на конденсаторе становится отрицательным. В это же времяпроисходит заряд конденсатора, разряженного во время предыдущего периода почти до нуля. Цепь заряда –,, источник питания, открытый переход эмиттер-базы транзистора.

(4)

так как сопротивление перехода эмиттер-базы много меньше. В следствии того, что

. (5)

Следовательно, заряд конденсатора заканчивается намного быстрее, чем разряд конденсатора, который определяет длительность первого интервала квазиустойчивого равновесия мультивибратора. В момент времениотпирается транзистори происходит обратное опрокидывание схемы. При обратном опрокидывании протекает аналогичные процессы.

Отметим, что в течение всего периода параметры выходных импульсов не зависят от характеристик транзисторов, а определяются параметрами схемы. Однако надо иметь в виду, что мы не учитывали импульсных свойств транзисторов, полагая, что изменения токов в них происходят мгновенно.

Итак, амплитуда выходного сигнала близка к значению напряжения питания, а длительность импульсов определяется временем разряда емкостей связи:

; (6)

Период колебаний мультивибратора равен

(7)

Учитывая симметричность схемы,

Какую форму имеют импульсы напряжения на выходе автоколебательного мультивибратора

Мультивибраторами называют электронные устройства, генерирующие электрические колебания, близкие по форме к прямоугольной. Спектр колебаний, генерируемых мультивибратором, содержит множество гармоник — тоже электрических колебаний, но кратных колебаниям основной частоты, что и отражено в его названии: «мульти — много», «вибро — колеблю».

Рассмотрим схему, показанную на (рис. 1,а). Узнаете? Да, это схема двухкаскадного транзисторного усилителя 3Ч с выходом на головные телефоны. Что произойдет, если выход такого усилителя соединить с его входом, как на схеме показано штриховой линией? Между ними возникает положительная обратная связь и усилитель самовозбудится станет генератором колебаний звуковой частоты, и в телефонах мы услышим звук низкого тона.С таким явлением в приемниках и усилителях ведут решительную борьбу, а вот для автоматически действующих приборов оно оказывается полезным.

Двухкаскадный усилитель охваченный положительной обратной связью
Рис. 1 Двухкаскадный усилитель охваченный, положительной обратной связью, становится мультивибратором.

Теперь посмотрите на (рис. 1,б). На нем вы видите схему того же усилителя, охваченного положительной обратной связью, как на (рис. 1, а), только начертание ее несколько изменено. Именно так обычно чертят схемы автоколебательных, т. е. самовозбуждающихся мультивибраторов. Опыт — самый лучший, пожалуй, метод познания сущности действия того или иного электронного устройства. В этом вы убеждались не раз. Вот и сейчас, чтобы лучше разобраться в работе этого универсального прибора — автомата, предлагаю провести опыт с ним. Принципиальную схему автоколебательного мультивибратора со всеми данными его резисторов и конденсаторов вы видите на (рис. 2, а). Смонтируйте его на макетной плате. Транзисторы должны быть низкочастотными (МП39 — МП42), так как у высокочастотных транзисторов очень маленькое пробивное напряжение эмиттерного перехода. Электролитические конденсаторы С1 и С2 — типа К50 — 6, К50 — 3 или их импортные аналоги на номинальное напряжение 10 — 12 В. Сопротивления резисторов могут отличаться от указанных на схеме до 50%. Важно лишь, чтобы возможно одинаковыми были номиналы нагрузочных резисторов Rl, R4 и базовых резисторов R2, R3. Для питания используйте батарею «Крона» или БП. В коллекторную цепь любого из транзисторов включите миллиамперметр (РА) на ток 10 — 15 мА, а к участку эмиттер — коллектор того же транзистора подключите высокоомный вольтметр постоянного тока (PU) на — напряжение до 10 В. Проверив монтаж и особенно внимательно полярность включения электролитических конденсаторов, подключите к мультивибратору источник питания. Что показывают измерительные приборы? Миллиамперметр — резко увеличивающийся до 8 — 10 мА, а затем также резко уменьшающийся почти до нуля ток коллекторной цепи транзистора. Вольтметр же, наоборот, то уменьшающееся почти до нуля, то увеличивающееся до напряжения источника питания коллекторное напряжение. О чем говорят эти измерения? О том, что транзистор этого плеча мультивибратора работает в режиме переключения. Наибольший коллекторный ток и одновременно наименьшее напряжение на коллекторе соответствуют открытому состоянию, а наименьший ток и наибольшее коллекторное напряжение — закрытому состоянию транзистора. Точно так работает и транзистор второго плеча мультивибратора, но, как говорят, со сдвигом фазы на 180°: когда один из транзисторов открыт, второй закрыт. В этом нетрудно убедиться, включив в коллекторную цепь транзистора второго плеча мультивибратора такой же миллиамперметр; стрелки измерительных приборов будут попеременно отклоняться от нулевых отметок шкал. Теперь, воспользовавшись часами с секундной стрелкой, сосчитайте, сколько раз в минуту транзисторы переходят из открытого состояния в закрытое. Примерно раз 15 — 20. Таково число электрических колебаний, генерируемых мультивибратором в минуту. Следовательно, период одного колебания равен 3 — 4 с. Продолжая следить за стрелкой миллиамперметра, попытайтесь изобразить эти колебания графически. По горизонтальной оси ординат откладывайте в некотором масштабе отрезки времени нахождения транзистора в открытом и закрытом состояниях, а по вертикальной — соответствующий этим состояниям коллекторный ток. У вас получится примерно такой же график, как тот, что изображен на рис. 2, б.

Схема симметричного мультивибратора.
Рис. 2 Схема симметричного мультивибратора (а) и генерируемые им импульсы тока (б, в, г).

Значит, можно считать, что мультивибратор генерирует электрические колебания прямоугольной формы. В сигнале мультивибратора, независимо от того, с какого выхода он снимается, можно выделить импульсы тока и паузы между ними. Интервал времени с момента появления одного импульса тока (или напряжения) до момента появления следующего импульса той же полярности принято называть периодом следования импульсов Т, а время между импульсами длительностью паузы Тn — Мультивибраторы, генерирующие импульсы, длительность Тn которых равна паузам между ними, называют симметричными. Следовательно, собранный вами опытный мультивибратор — симметричный. Замените конденсаторы С1 и С2 другими конденсаторами емкостью по 10 — 15 мкФ. Мультивибратор остался симметричным, но частота генерируемых им колебаний увеличилась в 3 — 4 раза — до 60 — 80 в 1 мин или, что то же самое, примерно до частоты 1 Гц. Стрелки измерительных приборов еле успевают следовать за изменениями токов и напряжений в цепях транзисторов. А если конденсаторы С1 и С2 заменить бумажными емкостью по 0,01 — 0,05 мкФ? Как теперь будут вести себя стрелки измерительных приборов? Отклонившись от нулевых отметок шкал, они стоят на месте. Может быть, сорвана генерация? Нет! Просто частота колебаний мультивибратора увеличилась до нескольких сотен герц. Это колебания диапазона звуковой частоты, фиксировать которые приборы постоянного тока уже не могут. Обнаружить их можно с помощью частотомера или головных телефонов, подключенных через конденсатор емкостью 0,01 — 0,05 мкФ к любому из выходов мультивибратора или включив их непосредственно в коллекторную цепь любого из транзисторов вместо нагрузочного резистора. В телефонах услышите звук низкого тона. Каков принцип работы мультивибратора? Вернемся к схеме на рис. 2, а. В момент включения питания транзисторы обоих плеч мультивибратора открываются, так как на их базы через соответствующие им резисторы R2 и R3 подаются отрицательные напряжения смещения. Одновременно начинают заряжаться конденсаторы связи: С1 — через эмиттерный переход транзистора V2 и резистор R1; С2 — через эмиттерный переход транзистора V1 и резистор R4. Эти цепи зарядки конденсаторов, являясь делителями напряжения источника питания, создают на базах транзисторов (относительно эмиттеров) все возрастающие по значению отрицательные напряжения, стремящиеся все больше открыть транзисторы. Открывание транзистора вызывает снижение отрицательного напряжения на его коллекторе, что вызывает снижение отрицательного напряжения на базе другого транзистора, закрывая его. Такой процесс протекает сразу в обоих транзисторах, однако закрывается только один из них, на базе которого более высокое положительное напряжение, например, из — за разницы коэффициентов передачи токов h21э номиналов резисторов и конденсаторов. Второй транзистор остается открытым. Но эти состояния транзисторов неустойчивы, ибо электрические процессы в их цепях продолжаются. Допустим, что через некоторое время после включения питания закрытым оказался транзистор V2, а открытым — транзистор V1. С этого момента конденсатор С1 начинает разряжаться через открытый транзистор V1, сопротивление участка эмиттер — коллектор которого в это время мало, и резистор R2. По мере разрядки конденсатора С1 положительное напряжение на базе закрытого транзистора V2 уменьшается. Как только конденсатор полностью разрядится и напряжение на базе транзистора V2 станет близким нулю, в коллекторной цепи этого, теперь уже открывающегося транзистора появляется ток, который воздействует через конденсатор С2 на базу транзистора V1 и понижает отрицательное напряжение на ней. В результате ток, текущий через транзистор V1, начинает уменьшаться, а через транзистор V2, наоборот, увеличиваться. Это приводит к тому, что транзистор V1 закрывается, а транзистор V2 открывается. Теперь начнет разряжаться конденсатор С2, но через открытый транзистор V2 и резистор R3, что в конечном итоге приводит к открыванию первого и закрыванию второго транзисторов и т.д. Транзисторы все время взаимодействуют, в результате чего мультивибратор генерирует электрические колебания. Частота колебаний мультивибратора зависит как от емкости конденсаторов связи, что вами уже проверено, так и от сопротивления базовых резисторов, в чем вы можете убедиться сейчас же. Попробуйте, например, базовые резисторы R2 и R3 заменить резисторами больших сопротивлений. Частота колебаний мультивибратора уменьшится. И наоборот, если их сопротивления будут меньше, частота колебаний увеличится. Еще один опыт: отключите верхние (по схеме) выводы резисторов R2 и R3 от минусового проводника источника питания, соедините их вместе, а между ними и минусовым проводником включите реостатом переменный резистор сопротивлением 30 — 50 кОм. Поворачивая ось переменного резистора, вы в довольно широких пределах сможете изменять частоту колебаний мультивибраторов. Примерную частоту колебаний симметричного мультивибратора можно подсчитать по такой упрощенной формуле: F = 700/(RC), где f — частота в герцах, R — сопротивления базовых резисторов в килоомах, С — емкости конденсаторов связи в микрофарадах. Пользуясь этой упрощенной формулой, подсчитайте, колебания каких частот генерировал ваш мультивибратор. Вернемся к исходным данным резисторов и конденсаторов опытного мультивибратора (по схеме на рис. 2, а). Конденсатор С2 замените конденсатором емкостью 2 — 3 мкФ, в коллекторную цепь транзистора V2 включите миллиамперметр, следя за его стрелкой, изобразите графически колебания тока, генерируемые мультивибратором. Теперь ток в коллекторной цепи транзистора V2 будет появляться более короткими, чем раньше, импульсами (рис. 2, в). Длительность импульсов Тh будет примерно во столько же раз меньше пауз между импульсами Тh, во сколько уменьшилась емкость конденсатора С2 по сравнению с его прежней емкостью. А теперь тот же (или такой) миллиамперметр включите в коллекторную цепь транзистора V1. Что показывает измерительный прибор? Тоже импульсы тока, но их длительность значительно больше пауз между ними (рис. 2, г). Что же произошло? Уменьшив емкость конденсатора С2, вы нарушили симметрию плеч мультивибратора — он стал несимметричным. Поэтому и колебания, генерируемые им, стали несимметричными: в коллекторной цепи транзистора V1 ток появляется относительно длинными импульсами, в коллекторной цепи транзистора V2 — короткими. С Выхода 1 такого мультивибратора можно снимать короткие, а с Выхода 2 — длинные импульсы напряжения. Временно поменяйте местами конденсаторы С1 и С2. Теперь короткие импульсы напряжения будут на Выходе 1, а длинные — на Выходе 2. Сосчитайте (по часам с секундной стрелкой), сколько электрических импульсов в минуту генерирует такой вариант мультивибратора. Около 80. Увеличьте емкость конденсатора С1, подключив параллельно ему второй электролитический конденсатор емкостью 20 — 30 мкФ. Частота следования импульсов уменьшится. А если, наоборот, емкость этого конденсатора уменьшать? Частота следования импульсов должна увеличиваться. Есть, однако, иной способ регулирования частоты следования импульсов — изменением сопротивления резистора R2: с уменьшением сопротивления этого резистора (но не менее чем до 3 — 5 кОм, иначе транзистор V2 будет все время открыт и автоколебательный процесс нарушится) частота следования импульса должна возрастать, а с увеличением его сопротивления, наоборот, уменьшаться. Проверьте опытным путем — так ли это? Подберите резистор такого номинала, чтобы число импульсов в 1 мин составляло точно 60. Стрелка миллиамперметра будет колебаться с частотой 1 Гц. Мультивибратор в этом случае станет как бы электронным механизмом часов, отсчитывающих секунды.

Ждущий мультивибратор

Такой мультивибратор генерирует импульсы тока (или напряжения) при подаче на его вход запускающих сигналов от другого источника, например от автоколебательного мультивибратора. Чтобы автоколебательный мультивибратор, опыты с которым вы уже проводили в этом уроке (по схеме на рис. 2,а), превратить в мультивибратор ждущий, надо сделать следующее: конденсатор С2 удалить, а вместо него между коллектором транзистора V2 и базой транзистора V1 включить резистор (на рис. 3 — R3) сопротивлением 10 — 15 кОм; между базой транзистора V1 и заземленным проводником включить последовательно соединенные элемент 332 (G1 или другой источник постоянного напряжения) и резистор сопротивлением 4,7 — 5,1 кОм (R5), но так, чтобы с базой соединялся (через R5) положительный полюс элемента; к базовой цепи транзистора V1 поключить конденсатор (на рис. 3 — С2) емкостью 1 — 5 тыс. пФ, второй вывод которого будет выполнять роль контакта входного управляющего сигнала. Исходное состояние транзистора V1 такого мультивибратора — закрытое, транзистора V2 — открытое. Проверьте — так ли это? Напряжение на коллекторе закрытого транзистора должно быть близким к напряжению источника питания, а на коллекторе открытого транзистора — не превышать 0,2 — 0,3 В. Затем в коллекторную цепь транзистора V1 включите миллиамперметр на ток 10 — 15 мА и, наблюдая за его стрелкой, включите между контактом Uвх и заземленным проводником, буквально на мгновение, один — два элемента 332, соединенные последовательно (на схеме GB1) или батарею 3336Л. Только не перепутайте:, отрицательный полюс этого внешнего электрического сигнала должен подключаться к контакту Uвх. При этом стрелка миллиамперметра должна тут же отклониться до значения наибольшего тока коллекторной цепи транзистора, застыть на некоторое время, а затем вернуться в исходное положение, чтобы ожидать следующего сигнала. Повторите этот опыт несколько раз. Миллиамперметр при каждом сигнале будет показывать мгновенно возрастающий до 8 — 10 мА и спустя некоторое время, так же мгновенно убывающий почти до нуля коллекторный ток транзистора V1. Это одиночные импульсы тока, генерируемые мультивибратором. А если батарею GB1 подольше держать подключенной к зажиму Uвх. Произойдет то же, что и в предыдущих опытах, — на выходе мультивибратора появится только один импульс Попробуйте!

Опытный ждущий мультивибратор.
Рис. 3. Опытный ждущий мультивибратор.

И еще один эксперимент: коснитесь вывода базы транзистора V1 каким — либо металлическим предметом, взятым в руку. Возможно, и в этом случае ждущий мультивибратор сработает — от электростатического заряда вашего тела. Повторите такие же опыты, но включив миллиамперметр в коллекторную цепь транзистора V2. При подаче управляющего сигнала коллекторный ток этого транзистора должен резко уменьшиться почти до нуля, а затем так же резко увеличиться до значения тока открытого транзистора. Это тоже импульс тока, но отрицательной полярности. Каков же принцип действия ждущего мультивибратора? В таком мультивибраторе связь между коллектором транзистора V2 и базой транзистора V1 не емкостная, как в автоколебательном, а резистивная — через резистор R3. На базу транзистора V2 через резистор R2 подается открывающее его отрицательное напряжение смещения. Транзистор же V1 надежно закрыт положительным напряжением элемента G1 на его базе. Такое состояние транзисторов весьма устойчиво. В таком состоянии они могут находиться сколько угодно времени. Но вот на базе транзистора V1 появился импульс напряжения отрицательной полярности. С этого момента транзисторы переходят в режим неустойчивого состояния. Под действием входного сигнала транзистор V1 открывается, а изменяющееся при этом напряжение на его коллекторе через конденсатор С1 закрывает транзистор V2. В таком состоянии транзисторы находятся до тех пор, пока не разрядится конденсатор С1 (через резистор R2 и открытый транзистор V1, сопротивление которого в это время мало). Как только конденсатор разрядится, транзистор V2 тут же откроется, а транзистор V1 закроется. С этого момента мультивибратор вновь оказывается в исходном, устойчивом ждущем режиме. Таким образом, ждущий мультивибратор имеет одно устойчивое и одно неустойчивое состояние. Во время неустойчивого состояния он генерирует один прямоугольный импульс тока (напряжения), длительность которого зависит от емкости конденсатора С1. Чем больше емкость этого конденсатора, тем больше длительность импульса. Так, например, при емкости конденсатора 50 мкФ мультивибратор генерирует импульс тока длительностью около 1,5 с, а с конденсатором емкостью 150 мкФ — раза в три больше. Через дополнительные конденсаторы — положительные импульсы напряжения можно снимать с выхода 1, а отрицательные с выхода 2. Только ли импульсом отрицательного напряжения, поданным на базу транзистора V1, можно вывести мультивибратор из ждущего режима? Нет, не только. Это можно сделать и подачей импульса напряжения положительной полярности, но на базу транзистора V2. Итак, вам остается экспериментально проверить, как влияет емкость конденсатора С1 на длительность импульсов и возможность управления ждущим мультивибратором импульсами положительного напряжения. Как практически можно использовать ждущий мультивибратор? По — разному. Например, для преобразования синусоидального напряжения в импульсы напряжения (или тока) прямоугольной формы такой же частоты, или включения на какое — то время другого прибора путем подачи на вход ждущего мультивибратора кратковременного электрического сигнала. А как еще? Подумайте!

Мультивибратор в генераторах и электронных переключателях

Электронный звонок. Мультивибратор можно применить для квартирного звонка, заменив им обычный электрический. Собрать же его можно по схеме, показанной на (рис. 4). Транзисторы V1 и V2 работают в симметричном мультивибраторе, генерирующем колебания частотой около 1000 Гц, а транзистор V3 — в усилителе мощности этих колебаний. Усиленные колебания преобразуются динамической головкой В1 в звуковые колебания. Если для звонка использовать абонентский громкоговоритель, включив первичную обмотку его переходного трансформатора в коллекторную цепь транзистора V3, в его футляре разместится вся электроника звонка, смонтированная на плате. Там же разместится и батарея питания.

Электронный звонок на основе мультивибратора
Рис. 4. Электронный звонок на основе мультивибратора.

Электронный звонок можно установить в коридоре и соединив его двумя проводами с кнопкой S1. При нажатии кнопки — в динамической головке появится звук. Так как питание на прибор подается только во время вызывных сигналов, двух батарей 3336Л соединенных последовательно или «Крона», хватит на несколько месяцев работы звонка. Желательный тон звука устанавливайте заменой конденсаторов С1 и С2 конденсаторами других емкостей. Мультивибратор, собранный по такой же схеме, может быть использован для изучения и тренировки в приеме на слух телеграфной азбуки — азбуки Морзе. В этом случае надо только кнопку заменить телеграфным ключом.

Электронный переключатель. Этот прибор, схема которого показана на (рис. 5), можно использовать для коммутации двух елочных гирлянд, питающихся от сети переменного тока. Сам же электронный переключатель можно питать от двух батарей 3336Л, соеди — ненных последовательно, или от выпрямителя, который бы давал на выходе постоянное напряжение 9 — 12 В.

Электронный переключатель на основе мультивибратора.
Рис. 5. Электронный переключатель на основе мультивибратора.

Схема переключателя очень схожа со схемой электронного звонка. Но емкости конденсаторов С1 и С2 переключателя во много раз больше емкостей аналогичных конденсаторов звонка. Мультивибратор переключателя, в котором работают транзисторы V1 и V2, генерирует колебания частотой около 0,4 Гц, а нагрузкой его усилителя мощности (транзистор V3) является обмотка электромагнитного реле К1. Реле имеет одну пару контактных пластин, работающих на переключение. Подойдет, например, реле РЭС — 10 (паспорт РС4.524.302) или другое электромагнитное реле, надежно срабатывающее от напряжения 6 — 8 В при токе 20 — 50 мА. При включении питания транзисторы V1 и V2 мультивибратора попеременно открываются и закрываются, генерируя сигналы прямоугольной формы. Когда транзистор V2 открыт, отрицательное питающее напряжение через резистор R4 и этот транзистор подается на базу транзистора V3, вводя его в насыщение. При этом сопротивление участка эмиттер — коллектор транзистора V3 уменьшается до нескольких ом и почти все напряжение источника питания прикладывается к обмотке реле К1 — реле срабатывает и своими контактами подключает к сети одну из гирлянд. Когда транзистор V2 закрыт, цепь питания базы транзистора V3 разорвана, и он также закрыт, через обмотку реле ток не течет. В это время реле отпускает якорь и его контакты, переключаясь, подключают к сети вторую елочную гирлянду. Если вы захочете изменить время переключения гирлянд, то заменяйте конденсаторы С1 и С2 конденсаторами других емкостей. Данные резисторов R2 и R3 оставьте прежними, иначе нарушится режим работы транзисторов по постоянному току. Усилитель мощности, аналогичный усилителю на транзисторе V3, можно включить и в эмиттерную цепь транзистора V1 мультивибратора. В этом случае электромагнитные реле (в том числе — самодельные) могут иметь не переключающие группы контактов, а нормально разомкнутые или нормально замкнутые. Контакты реле одного из плеч мультивибратора будут периодически замыкать и размыкать цепь питания одной гирлянды, а контакты реле другого плеча мультивибратора — цепь питания второй гирлянды. Электронный переключатель можно смонтировать на плате из гетинакса или другого изоляционного материала и вместе с батареей питания поместить в коробку из фанеры. Во время работы переключатель потребляет ток не больше 30 мА, так что энергии двух батарей 3336Л или «Крона» вполне хватит на все новогодние праздники. Аналогичный переключатель можно использовать и для других целей. Например, для иллюминации масок, аттракционов. Представьте себе выпиленную из фанеры и разрисованную фигурку героя сказки «Кот в сапогах». Позади прозрачных глаз находятся лампочки от карманного фонаря, коммутируемые электронным переключателем, а на самой фигурке — кнопка. Стоит нажать кнопку, как кот тут же начнет подмигивать тебе. А разве нельзя использовать переключатель для электрификации некоторых моделей, например модели маяка? В этом случае в коллекторную цепь транзистора усилителя мощности можно вместо электромагнитного реле включить малогабаритную лампочку накаливания, рассчитанную на небольшой ток накала, которая станет имитировать вспышки маяка. Если такой переключатель дополнить тумблером, с помощью которого в коллекторную цепь выходного транзистора можно будет включать поочередно две такие лампочки, то он может стать указателем поворотов вашего велосипеда.

Метроном — это своеобразные часы, позволяющие по звуковым сигналам отсчитывать равные промежутки времени с точностью до долей секунды. Такие приборы используют, например, для выработки чувства такта при обучении музыкальной грамоте, во время первых тренировок по передаче сигналов телеграфной азбукой. Схему одного из таких приборов вы видите на (рис. 6).

Метроном на основе мультивибратора.
Рис. 6. Метроном на основе мультивибратора.

Это тоже мультивибратор, но несимметричный. В таком мультивибраторе использованы транзисторы разной структуры: Vl — n — p — n (МП35 — МП38), V2 — p — n — p (МП39 — МП42). Это позволило уменьшить общее число деталей мультивибратора. Принцип же его работы остается таким же — генерация возникает за счет положительной обратной связи между выходом и входом двухкаскадного усилителя 3Ч; связь осуществляется электролитическим конденсатором С1. Нагрузкой мультивибратора служит малогабаритная динамическая головка В1 со звуковой катушкой сопротивлением 4 — 10 Ом, например 0.1ГД — 6, 1ГД — 8 (или телефонный капсюль), создающая при кратковременных импульсах тока звуки, похожие на щелчки. Частоту следования импульсов можно регулировать переменным резистором R1 примерно от 20 до 300 импульсов в минуту. Резистор R2 ограничивает ток базы первого транзистора, когда движок резистора R1 находится в крайнем нижнем (по схеме) положении, соответствующем наибольшей частоте генерируемых колебаний. Метроном можно питать от одной батареи 3336Л или трех элементов 332, соединенных последовательно. Ток, потребляемый им от батареи, не превышает 10 мА. Переменный резистор R1 должен иметь шкалу, отградуированную по механическому метроному. Пользуясь ею, простым поворотом ручки резистора можно установить нужную частоту звуковых сигналов метронома.

Принцип работы мультивибратора на транзисторах

Принцип работы мультивибратора на транзисторах
Рисунок из статьи Абрахама и Блоха — принципиальная схема мультивибратора, выполненного на электровакуумных триодах

Мультивибратор изобретён в годы Первой Мировой войны французскими учеными Анри Абрахамом и Эженом Блохом и впервые описан в статье, опубликованной в журнале Annales de Physique в 1919 г.

Название мультивибратор для устройства предложил голландский физик ван дер Поль, и отражает тот факт, что в спектре прямоугольных колебаний мультивибратора присутствует множество высших гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»).

Некоторые типы и классификация мультивибраторов

Электрическая принципиальная схема моностабильного транзисторного мультивибратора (одновибратора).

Электрическая принципиальная схема бистабильного мультивибратора (триггера).

Существуют три типа мультивибраторов в зависимости от режима работы:

  • нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое. При этом не обязателен внешний сигнал синхронизации, если не требуется захват частоты колебаний.
  • моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов, переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
  • бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключён из одного состояния в другое подачей внешних импульсов. Такие устройства называют бистабильными триггерами. Такие триггеры иногда называют «мультивибраторами», что не корректно, так эти триггеры есть лишь подкласс мультивибраторов но никак не мультивибраторы вообще.

Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор генерирует импульсы только тогда, когда на его вход поступают синхронизирующие сигналы.

Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся синхронизовать частоту колебаний автоколебательного мультивибратора под частоту синхронизирующего сигнала или сделать кратной ей (режим «захвата частоты») для автоколебательных мультивибраторов.

Общие принципы работы мультивибратора

Как сказано в энциклопедии, «симметричный мультивибратор — это двухкаскадный усилитель, охваченный положительной обратной связью». Посмотрим на схему:

Двухкаскадный усилитель с обратной связью

Рис. 1. Двухкаскадный усилитель с положительной обратной связью

Если Вы читали статью об усилительном каскаде на транзисторе, то все действующие лица на этой схеме Вам хорошо знакомы. Это разделительный конденсатор C, базовый резистор Rб, задающий ток смещения, и Rк в качестве нагрузки. И таких каскада здесь два, они абсолютно одинаковы.

Что необычно — это провод обратной связи (на схеме показан красным), который замыкает наш двухкаскадный усилитель в кольцо. Именно благодаря положительной обратной связи наш усилитель превращается в генератор, управляя сам собой и поддерживая незатухающие колебания.

Процессы, происходящие в мультивибраторе

Давайте теперь более детально разберём, какие электронные процессы происходят в мультивибраторе. Но для начала перерисуем его схему более «традиционным» образом, подчёркивая симметричность:

Схема симметричного мультивибратора

Рис. 2. Та же схема, скомпонованная по-другому

Можете сравнить и убедиться, что это та же самая схема, что на предыдущем рисунке. Я оставил прежние обозначения элементов, чтобы легче было понять, к какому именно из двух каскадов относится та или иная деталь.

Включение питания

В первый момент после включения питания оба транзистора начинают открываться. Откуда берётся открывающий ток? Рассмотрим на примере транзистора T1

Процессы в мультивибраторе в момент включения питания

Рис. 3. Момент включения питания: токи, открывающие транзистор

Первый, очевидный путь — через Rб1, на рисунке синяя стрелка. Второй, не столь очевидный — через конденсатор C1. Не будем забывать, что в первый момент времени конденсатор разряжен, его сопротивление практически нулевое, и в цепи возникает ток заряда через Rк2 — С1 — эмиттерный переход T1. Этот путь показан красной стрелкой.

Тут важно отметить, что коллекторные сопротивления Rк в этой схеме значительно меньше базовых Rб, как минимум на порядок, а то и на несколько. Значит, «красная» составляющая в первый момент будет давать больший вклад.

Симметричный мультивибратор на транзисторах

Принцип работы состоит в переходе из одного нестабильного состояния (Q1 закрыт, Q2 открыт) в другое (Q1 открыт, Q2 закрыт).

Начнем с первого состояния: Q1 закрыт, Q2 открыт.

Конденсатор С1 быстро заряжается идет через «меньший» резистор R4 и базовый переход Q2. Одновременно с этим через открытый Q2 через «больший» резистор R2 медленно разряжается C2, отрицательное напряжение на котором держит в запертом состоянии Q1.

В процессе дальнейшего перезаряда С2 на базе Q1 появляется уже положительное, отпирающее напряжение, и Q1 начинает открываться. Ток через него возрастает, снижается напряжение на коллекторе Q1 и базе Q2, что вызывает его запирание.

Напряжение на коллекторе Q2 увеличивается и через конденсатор C2 еще сильнее открывает Q1.

Процесс открывания Q1 ускоряет запирание Q2, и процесс происходит практически лавинообразно, и переход из одного состояния в другое происходит очень быстро.

Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2

В общем, транзисторы периодически друг друга открывают и закрывают.

Теперь немного о расчете элементов.

Период состоит из двух частей t1 и t2, зависящих от сопротивлений R2, R3 и емкостей C1, C2:

t1 = 0,7 x R3 x C1;

t2 = 0,7 x R2 x C2

Для примера, в схеме на картинке выше период равен t1 + t2 = 2*0,7*22 кОм*0,1 мкФ = 3,08 мс.

Период 3,3 мсПериод 3,3 мс

От сопротивления резисторов R1 и R4 зависит длительность спада импульсов: чем меньше сопротивление, тем быстрее спад.

При R1 = R4 = 470 ОмПри R1 = R4 = 470 Ом

Главный недостаток такой схемы — медленные спады. Этот недостаток исправляют в схеме:

Несимметричный мультивибратор на транзисторах разной структуры

Подключая в схему те или иные внешние цепи, можно собрать не один десяток конструкций. Например, звуковой пробник, генератор для изучения азбуки Морзе, прибор для отпугивания москитов, основа одноголосого музыкального инструмента. А применение внешних датчиков или устройств управления в цепи базы транзистора VT1 позволяет получить сторожевое устройство, индикатор влажности, освещённости, температуры и многие другие конструкции.

Как работает мультивибратор на транзисторах

Мультивибратор на самом деле работает просто. Во время подключения питания два светодиода периодически загораются и потухают. Частоту переменного переключения светодиодов возможно изменять при помощи емкостей конденсаторов или сопротивления резисторов, подключенных к транзисторам и светодиодам.

Это устройство находится в одном из двух противоположных нестабильных состояний и периодически переходит из одного в другое и снова обратно. Фаза перехода довольно мала относительно большой длительности нахождения в состояниях за счет положительной обратной связи (ПОС), которая охватывает два каскада усиления.

Принцип работы мультивибратора на транзисторах

Открыть в полном размере

Допустим, что VT1 закрыт, VT2 полностью открыт и насыщен, при этом C1 быстро заряжается током открытого базового перехода VT2 через R1 и VT2 практически до напряжения питания. Когда полностью заряжен конденсатор C1 через резистор R1 ток прекращается, напряжение на C1 = (ток базы VT2) ·R2, а на коллекторе VT1 — питающему напряжению.

Электрическое напряжение на коллекторе VT2 достаточно невелико (что в свою очередь будет равно падению электрического напряжения на насыщенном транзисторе). C2, заряженный ранее в предыдущем состоянии (полярность как по схеме), медленно начинает разряжаться через открытый транзистор VT2 и резистор R3. Текущее напряжение на базе у транзистора VT1 отрицательно и благодаря этому напряжению он прочно удерживается в закрытом состоянии. Закрытое от напряжения состояние транзистора VT1 сохраняется до того, пока конденсатор C2 не будет перезаряжаться через R3 и напряжение на базе VT1 не начнет достигать порога его полного отпирания (около +0,6 В).

При этом VT1 начинает незамедлительно приоткрываться, и напряжение его коллектора начинает стремительно снижаться, что в свою очередь вызывает необратимое начало запирания VT2, напряжение коллектора транзистора VT2 начинает стремительно увеличиваться, что в свою очередь через конденсатор C2 еще больше открывает VT1. По итогу в транзисторном мультивибраторе происходит лавинообразный регенеративный повторяющийся процесс, приводящий к тому, что VT1 переходит в открытое насыщенное состояние, а VT2 в свою очередь запирается.

Электрические колебательные процессы в схеме будут постоянно и периодически повторяться, в зависимости от емкости и сопротивления компонентов и коэффициентов используемых транзисторов.

Какие параметры возможны у деталей

Параметры резисторов R1 и R4 выбираются меньше, чем у пары R3 и R2. Это нужно для того, чтобы зарядка конденсаторов через R1 и R4 была побыстрее, чем разрядка через R3 и R2. Если дольше будет время зарядки конденсаторов, тогда аналогичными будут фронты импульсов. Но соотношения R3/R1 и R2/R4 не должны быть больше, чем текущие коэффициенты усиления используемых транзисторов. В противном случае транзисторы перестанут полностью открываться.

Можно ли собрать схему самостоятельно

Да, можно. Это устройство отлично подойдет для начинающих и для тех, кто интересуется электроникой.

На этой схеме мало деталей, но работает она просто и надежно. Можно собрать схему и навесным монтажом, на монтажной плате или же попробовать свои силы в изготовлении печатной платы — лазерно утюжная технология (ЛУТ).

Из деталей транзисторы КТ315 можно брать любые, близкие по аналогам. Резисторы 0,125 Вт, а конденсаторы — не меньше питающего напряжения. Питать можно от ЛБП (лабораторного блока питания) или от аккумулятора +12 В, зарядного устройства.

По поводу настройки частоты. Можно поменять частоту при помощи емкости и сопротивления. При помощи резисторов намного проще. Достаточно просто поменять обычный резистор на переменный (не подстроечный). Достаточно из контактов 1-2-3 использовать 1-2 или 3-1.

Чем больше сопротивление — тем меньше шаг регулировки. От переменного резистора можно провести провода и визуально наблюдать за изменением частоты.

Принцип работы мультивибратора на транзисторах

Схематически мультивибратор

Как мы знаем, мультивибратором называют электронные устройства, генерирующие электрические колебания, близкие по форме к прямоугольной, что и отражено в его названии: «мульти — много», «вибро — колебание». Другими словами, мультивибратор — генератор прямоугольных импульсов релаксационного типа с резистивно — емкостными положительными обратными связями, использующий замкнутый в кольцо положительной обратной связи двухкакасдный усилитель. При работе мультивибратора в режиме автоколебаний вырабатываются периодически повторяющиеся импульсы прямоугольной формы. Частота генерируемых импульсов определяется параметрами времязадающей цепи, свойствами схемы и режимом ее питания. На частоту автоколебаний оказывает также влияние подключаемая нагрузка. Обычно мультивибратор применяется в качестве генератора импульсов относительно большой длительности, которые затем используются для формирования импульсов необходимой длительности и амплитуды.

Работа схемы мультивибратора

мультивибратор - структурная схема

Симметричный мультивибратор на транзисторах

Схематически мультивибратор состоит из двух усилительных каскадов с общим эмиттером, выходное напряжение каждого из которых подается на вход другого. При подсоединении схемы к источнику питания Ек оба транзистора пропускают коллекторные точки — их рабочие точки находятся в активной области, поскольку на базы через резисторы RБ1 и RБ2 подается отрицательное смещение. Однако такое состояние схемы неустойчивое. Из-за наличия в схеме положительной обратной связи выполняется условие ?Ку>1 и двухкаскадный усилитель самовозбуждается. Начинается процесс регенерации — быстрое увеличение тока одного транзистора и уменьшение тока другого транзистора. Пусть в результате любого случайного изменения напряжений на базах или коллекторах несколько увеличится ток IK1 транзистора VT1. При этом увеличится падение напряжения на резисторе RK1 и коллектор транзистора VT1 получит приращение положительного потенциала. Поскольку напряжение на конденсаторе СБ1 не может мгновенно измениться, это приращение прикладывается к базе транзистора VT2, подзапирая его. Коллекторный ток IK2 при этом уменьшается, напряжение на коллекторе транзистора VT2 становится более отрицательным и, передаваясь через конденсатор СБ2 на базу транзистора VT1, еще больше открывает его, увеличивая ток IK1. Этот процесс протекает лавинообразно и заканчивается тем, что транзистор VT1 входит в режим насыщения, а транзистор VT2 — в режим отсечки. Схема переходит в одно из своих временно устойчивых состояний равновесия. При этом открытое состояние транзистора VT1 обеспечивается смещением от источника питания Ек через резистор RБ1, а запертое состояние транзистора VT2 — положительным напряжением на конденсаторе СБ1 (Ucm = UБ2 > 0), который через открытый транзистор VT1 включен в промежуток база — эмиттер транзистора VT2.

Для сооружения мультивибратора нам из радиокомпонентов понадобятся:
1. Два транзистора типа КТ315.
2. Два электролитических конденсатора на 16в, 10-200микрофарад (Чем меньше емкость, тем чаще моргание).
3. 4 резистора номиналом: 100-500 ом 2 штуки (если вы ставите 100 ом, то схема будет работать даже от 2.5в), 10 ком 2 штуки. Все резисторы мощностью в 0.125 ватт.
4. Два не ярких светодиода (Любого цвета, кроме белого).

Электрическая схема мультивибратора:

Электрическая схема мультивибратора

Печатная плата формата Lay6 в архиве. Приступим к изготовлению. Сама печатная плата имеет такой вид:

печатная плата мультивибратора

Припаивываем два транзистора, не перепутайте коллектор и базу на транзисторе — это частая ошибка.

пайка транзисторов мультивибратора

Паяем конденсаторы 10-200 Микрофарад. Обратите внимание, что конденсаторы на 10 вольт крайне нежелательны для использование в этой схеме, если вы будете подавать питание 12 вольт. Помните, что у электролитических конденсаторов существует полярность!

МУЛЬТИВИБРАТОР - детали

Идем дальше. Паяем резисторы номиналом в 100-500 ом (500 ом использовать крайне не желательно, если у вас нету блока питания на 12вольт).

МУЛЬТИВИБРАТОР самодельный

Мультивибратор почти готов. Остается припаять светодиоды, и входные провода. Фото готового устройства выглядит примерно так:

Окончание работы мультивибратора

Автоколебательный режим мультивибратора

В автоколебательном режиме мультивибратор возбуждается и генерирует прямоугольные импульсы сразу же после включения источника питания. Процесс возбуждения и генерирования импульсов показан графиками на рис.2.
rabota multivibratora2
В момент включения питания транзисторы обеих плеч мультивибратора начинают открываться, т.к. на них, через базовые резисторы, подается отрицательное смещение.
Одновременно начинают заряжаться конденсаторы связи: С1 — через базово-эмиттерный переход VT2 и Rк1, С2 — через VT1 и Rк2. При подаче постоянки на мультивибратор проходит токовый заряд через С1, С2, VT1, VT2 и резисторы у которых в реальности, даже при тщательном подборе идентичных пар, не будет идеального совпадения параметров. У VT1 и VT2 будет хоть какая-та разница коэффициентов передачи токов; от различия параметров базовых резисторов будет отличатся величина смещения у транзисторов и т.д.
Предположим, что в момент включения источника питания VT1 повезло и у него ток больше, чем у соседа VT2. Вследствие этого падение напряжения на Rк1 будет больше чем у Rк2. Так как коллекторное питание отрицательно, то поэтому потенциал коллектора VT1 станет менее отрицательным, а у VT2 — более. Но так как изменения через конденсаторы передаются на базы VT1 и VT2, то это приведет к еще большему нарастанию тока коллектора VT1 и его насыщению, а ток VT2 уменьшится и он запрется. С1 и С2 оказываются заряженными до напряжений близких к Еп (полярность указана на рис.1).

На рис.2 показаны эти процессы работы за период от «0» до «to», где приводятся графики следующих напряжений: Uc1, Uc2 — на обкладках конденсаторов; Uб1, Uб2 — базового смещения; Uк1, Uк2 — выходные сигналы мультивибратора.
После прекращения изменений коллекторных токов С1 сравнительно медленно разряжается через Rб1, Rб2, источник питания и переходы открытого VT1. Напряжения на С1 — Uc1, и базы VT2 — Uб2 убывают по экспоненте ( на графике период to — t1), и когда положительный потенциал Uб2 уменьшится и станет отрицательным — VT2 отпирается. Это приводит к уменьшению его отрицательного потенциала на коллекторе, который передается через С2 на базу VT1 и ускоряет его запирание. Этот лавинообразный процесс длится до тех пор, пока VT1 не войдет в режим отсечки, а VT2 — в режим насыщения (точка t1).
Таким образом, возникает состояние, противоположное исходному, которое затем в результате выше описанному процессу, вновь переходит в исходное. Таким путем поддерживаются колебания в мультивибраторе..
В симметричном мультивибраторе время заряда конденсатора меньше времени раздяда, т. к. Rк << Rб. Графики Uк1 и Uк2 имеют форму импульсов, близкую к прямоугольной, а скругление фронтов объясняется падением напряжения из-за зарядки конденсаторов.
Частота колебаний мультивибратора определяется постоянными времени разряда τр = Rб1·С2 = Rб2·С1 и ее можно примерно определить по формуле:

где f — частота в Гц;
Rб — сопротивление базового резистора в кОм;
С — емкость конденсатора связи в мкФ.

Ждущие мультивибраторы и генераторы

Ждущие мультивибраторы и генераторы

1-4-51.jpg

Как уже отмечалось выше, ждущие мультивибраторы и генераторы нельзя отнести ни к последовательностным, ни к комбинационным микросхемам, поэтому рассмотрим их отдельно.

МикросхемаК155АГ1 (рис. 146) — одиночный ждущий мультивибратор, имеет три входа запуска, три вывода С, RC и RI для подключения времязадающих цепей, прямой и инверсный выходы. Условие запуска мультивибратора — изменение входных сигналов, в результате которого появляется следующее сочетание — хотя бы на одном из

входов 3 или 4 — лог. 0, на входе 5 — лог. 1. Исходное состояние для запуска — любое, не соответствующее указанному требованию.

1-4-52.jpg

Несколько основных вариантов подачи входных сигналов, обеспечивающих запуск, показано на рис. 147. Для обеспечения запуска фронтом положительного импульса его следует подать на вывод 5, при этом хотя бы на

одном из входов 3 или 4 должен быть лог. 0 (рис. 147, а). Для запуска спадом положительного импульса можно использовать включение по схемам рис. 147 (б или в).

При запуске на прямом выходе генерируется импульс положительной полярности, на инверсном — отрицательной. Длительность импульса при основном варианте подключения времязадающей цепи, приведенном на рис. 148 (а), составляет приблизительно Т — 0,7R1C1. Размерности в этом формуле — килоомы, нанофарады, микросекунды или килоомы, микрофарады, миллисекунды.

Сопротивление резистора R1 может находиться в пределах 1.5…43 кОм. Емкость конденсатора С1 может быть любой, конденсатор

1-4-53.jpg

даже может отсутствовать. В этом случае длительность генерируемого импульса составляет 30… 100 нс в зависимости от сопротивления времязадающего резистора. При применении оксидных конденсаторов их полярность должна соответствовать приведенной на рис. 148. Сопротивление резистора может быть и более 43 кОм, однако стабильность длительности импульса при этом ухудшается.

Микросхема содержит внутренний времязадающий резистор сопротивлением около 2 кОм, включенный между выводами RC и RI, что может обеспечить работу ждущего мультивибратора без внешнего резистора при включении по схеме рис. 148 (б). Внутренний резистор может использоваться как ограничительный при использовании в качестве времязадающего переменного резистора (рис. 148, в).

Если необходимо обеспечить большую длительность выходного импульса при малой емкости конденсатора, времязадающую цепь следует дополнить транзистором (рис. 148, г). В этом случае длительность генерируемого импульса определяется по приведенной выше формуле, однако сопротивление времязадающего резистора R1 может быть выбрано в h21э раз больше, чем указанные выше 43 кОм. При использовании транзисторов серии КТ3102 сопротивление времязадающего резистора может доходить до 20 МОм. Сопротивление ограничительного резистора R2 может находиться в пределах 1.5…20 кОм.

1-4-54.jpg

Длительность генерируемого ждущим мультивибратором импульса не зависит от длительности запускающего импульса. Во время генерации выходного импульса ждущий мультивибратор нечувствителен к изменению входных сигналов. Повторно мультивибратор может быть запущен спустя время t > С1 после окончания генерируемого импульса (размерности в этой формуле те же, что и в предыдущей). Если интервал после окончания импульса меньше, сокращается длительность генерируемого импульса и даже возможен срыв запуска.

МикросхемаК155АГ3 (рис. 149) — сдвоенный ждущий мультивибратор. Каждый из мультивибра

торов микросхемы имеет два входа для запуска — А, В, вход сброса R, выводы С и RC для подключения времязадающих элементов, прямой и инверсный выходы. Условие запуска мультивибратора — изменение входных сигналов, в результате которого появляется следующее сочетание — лог. 0 на входе А, лог. 1 на входах В и R. Исходное состояние для запуска — любое, не соответствующее указанному требованию.

Несколько основных вариантов подачи входных сигналов, обеспечивающих запуск, показано на рис. 150. Для обеспечения запуска фронтом положительного импульса его необходимо подать на вход В (рис. 150, а) или R (рис. 150, б). Для запуска спадом положительного импульса следует использовать включение по схеме рис. 150 (в).1-4-55.jpg

Различие между входами В и R в том, что лог. 0 на входе R прекращает генерацию импульса и принудительно устанавливает выходы мультивибратора в исходное состояние независимо от состояния других входов.

Ждущие мультивибраторы микросхемы К155АГЗ обладают способностью повторного запуска. Если во время генерации выходного импульса повторно выполнится условие запуска, длительность выходного импульса увеличится на интервал времени между запускающими импульсами (рис. 151). Однако для повторного запуска этот интервал должен удовлетворять требованию t > 0,224С, где размерности те же, что и в приведенных выше формулах.

Подключение времязадающих цепей проиллюстрировано на рис. 152. В основном варианте включения, приведенном на рис. 152 (а), сопротивление резистора R1 может находиться в пределах 5,1…51 кОм,

1-4-56.jpg

емкость конденсатора С1 — любая. Длительность генерируемого импульса приближенно может быть определена по формуле

Т = 0,32 (R1 + 0,7)С1.

Размерности в этой формуле те же, что и в формуле для микросхемы К155АГ1. При установке оксидного конденсатора во времязадающую цепь рекомендуется

1-4-57.jpg

устанавливать диод (рис. 152, б), в этом случае полярность включения конденсатора меняется. В отсутствие внешнего конденсатора С1 (рис. 152, в) ждущий мультивибратор генерирует импульсы длительностью примерно 50…200 нс при сопротивлении резистора R1 соответственно 5,1…51 кОм.

Так же, как и в случае применения микросхемы К155АГ1, емкость конденсатора может быть существенно уменьшена, если времязадающую цепь дополнить транзистором (рис. 152, г). Ограничения на резисторы этой схемы включения аналогичны ограничениям схемы рис. 148 (г).

Микросхема К555АГЗ — сдвоенный ждущий мультивибратор, схемы включения и условия запуска те же, что и микросхемы К155АГЗ. Длительность импульса при времязадающей емкости С > 1000 пФ рассчитывают по формуле Т = 0,45 RC. Времязадающий резистор может иметь сопротивление 3…200 кОм. В отсутствие внешнего конденсатора и при сопротивлении времязадающего резистора 10 кОм длительность выходного импульса около 2 мкс. Диод во времязадающей цепи не нужен при любой емкости времязадающего конденсатора, полярность подключения оксидных конденсаторов должна соответствовать указанной на рис. 152 (б).

При изменении напряжения питания от 4,5 до 5,5 В длительность генерируемого импульса возрастает не более чем на 5%, имея максимум приблизительно при 5,25 В. Изменение температуры окружающего воздуха от минимальной до максимальной приводит к уменьшению длительности импульса приблизительно на 4%, причем более круто при повышении температуры более 20 °С.

Микросхема АГ3 удобна для построения различных генераторов импульсов. Для примера на рис. 153 приведена схема управляемого генератора импульсов. Если на вход «Запуск» подать лог. 0, генерация импульсов не происходит, на выходах обоих ждущих мультивибраторов лог. 0; если подать лог. 1, на входах ждущего мультивибратора DD1.1 возникнет условие запуска, на его выходе появится

1-4-58.jpg

положительный импульс, спадом которого запустится ждущий мультивибратор DD1.2, спадом выходного импульса последнего — жду-

щий мультивибратор DD1.1 и т. д.

Если лог. 0 на вход «Запуск» будет подан во время генерации ждущим мультивибратором DD1.1 выходного импульса, этот импульс будет укорочен, вслед за чем ждущий мультивибратор DD1.2 сформирует последний импульс (рис. 154). Если в качестве входа «Запуск» использовать

1-4-59.jpg

вход В DD1.1, а на его вход R подать постоянно лог. 1, указанного укорочения импульса не произойдет. Вместо соединения прямого выхода каждого ждущего мультивибратора с инверсным входом запуска А другого можно соединить инверсный выход с прямым входом В. Использование свободных входов ждущих мультивибраторов позволяет создавать различные варианты управляемых генераторов импульсов.

Повторный запуск ждущего мультивибратора можно заблокировать, если инверсный выход мультивибратора соединить с входом В или прямой — с входом А. В этом случае во время формирования выходного импульса условие запуска не может быть выполнено. Однако, если длительность запускающего импульса превышает длительность выходного, сразу после окончания выходного импульса происходит повторный запуск и ждущий генератор превращается в управляемый генератор (рис. 155). Такой генератор формирует на своем прямом выходе короткие импульсы отрицательной полярности, на инверсном — положительной (рис. 156). Длительность импульсов — примерно 50… 100 нс. Период импульсов определяется по последней из приведенных выше формул.

Естественно, что управляемые генераторы по схемам рис. 153 и 155 могут использоваться как автогенераторы, если на их входы «Запуск» постоянно подавать разрешающий генерацию уровень.

1-4-510.jpg

1-4-511.jpg

Микросхема К555АГ4 (рис. 149) — сдвоенный ждущий мультивибратор, по разводке выводов совпадает с АГ3. Каждый из мультивибраторов микросхемы имеет два входа для запуска — А, В, вход сброса R, выводы С и RC для подключения времязадающих цепей, прямой и инверсный выходы. Условие запуска мультивибратора — изменение

входных сигналов, в результате которого появляется следующее сочетание — лог. 0 на входе А, лог. 1 на входе В. Исходным состоянием на входах А и В может быть любое, не соответствующее указанному требованию, на входе R во время запуска должна быть лог. 1.

Два основных варианта подачи входных сигналов, обеспечивающих запуск, показаны на рис. 150 (а, в). Для запуска фронтом положительного импульса его необходимо подать на вход В (рис. 150, а), для запуска спадом положительного импульса следует использовать включение по схеме рис. 150 (в).

Подача лог. 0 на вход R предотвращает запуск или прекращает генерацию импульса и принудительно устанавливает выходы мультивибратора в исходное состояние независимо от состояния других входов.

Ждущие мультивибраторы микросхемы К555АГ4 в отличие от АГЗ не обладают способностью повторного запуска. Если во время генерации выходного импульса повторно выполнится условие запуска, длительность выходного импульса не изменится.

Подключение времязадающих цепей проиллюстрировано на рис. 152 (а, в, г), полярность включения конденсаторов всегда такая, как на рис. 152 (а). В основном варианте включения, приведенном на рис. 152 (а), сопротивление резистора R1 может находиться в пределах 1,4…100 кОм, емкость конденсатора С1 — любая. Длительность генерируемого импульса приближенно может быть определена по формуле Т = 0,7 R1C1. Размерности в этой формуле — килоомы, нанофарады, микросекунды или килоомы, микрофарады, миллисекунды. В отсутствие внешнего конденсатора С1 (рис. 152, в) ждущий мультивибратор генерирует импульсы длительностью 20…70 нс при сопротивлении резистора R1 = 2 кОм.

Если необходимо обеспечить большую длительность выходного импульса при малой емкости конденсатора, времязадающую цепь следует дополнить транзистором (рис. 152, г). В этом случае длительность генерируемого импульса определяется по приведенной выше формуле, однако сопротивление времязадающего резистора R1 может быть выбрано в h21э раз больше, чем указанные выше 100 кОм.

При использовании транзисторов серии КТ3102 сопротивление времязадающего резистора может доходить до 20 МОм. Сопротивление ограничительного резистора R2 может находиться в пределах 1,5…100 кОм.

При использовании микросхем К155АГ1, АГЗ и К555АГ4 следует помнить, что они легко запускаются как от помех по цепи питания, так и по входным цепям. Для исключения ложных запусков рекомендуется в непосредственной близости от микросхем устанавливать по цепи питания блокировочные керамические конденсаторы емкостью не менее 0,033 мкФ, а проводники входных и времязадающих цепей выполнять минимальной длины. Монтажная емкость точки соединения времязадающих конденсатора, резистора и вывода микросхемы К155АГЗ не должна превышать 50 пФ.

Следует также иметь в виду, что приведенные выше формулы для расчета длительности генерируемого импульса приближенные и дают заниженный результат при емкости времязадающего конденсатора менее 1000 пФ.

1-4-512.jpg

МикросхемаКР531ГГ1 (рис. 157) — два генератора импульсов. Частота генерируемых колебаний определяется или кварцевым резонатором, подключаемым к выводам С1 и С2, или конденсатором, подключаемым вместо резонатора. В последнем случае частоту можно регулировать в некоторых пределах, изменяя напряжение на двух управляющих входах, один из которых обычно называют диапазонным Uд, другой — входом управления частотой Uч. При увеличении напряжения

на входе Uч частота увеличивается, при увеличении напряжения на входе Uд — уменьшается. Рекомендуемый интервал изменения напряжения на входе Uд от 2 до 4…4.5 В. В зависимости от напряжения на входе Uд меняется диапазон изменения частоты при изменении напряжения на входе Uч. При Uд=2 В и при изменении напряжения на входе Uч от 1 до 5 В частота может быть изменена приблизительно на 15%, а при Uд= 4 В примерно в 4 раза (рис. 158).

Зависимость частоты f0 генератора при Uд=Uч=2 В от емкости конденсатора приведена на рис. 159, максимальная частота генерации — около 80 МГц. При изменении температуры от -0 до +70 «С частота изменяется в пределах примерно от 107 до 91% частоты при 25 °С, а при колебаниях напряжения питания +-5% частота изменяется примерно на ±2,5%.

1-4-513.jpg

1-4-514.jpg

На выходах генераторов микросхемы установлены ключи, которыми можно перевести вь1ходы в состояние 1 подачей на входы Е лог. 1. Сигналы генераторов проходят на выход при лог. 0 на входе Е.

Цепи питания (выводы 16 и 15) и общего провода (9 и 8)цифровой и аналоговой частей микросхемы для уменьшения влияния генераторов друг на друга разделены. Несмотря на это, существует взаимное влияние генераторов, поэтому одновременная работа двух управляемых напряжением генераторов не рекомендуется.

  • Рис. 146 Микросхема К155АГ1
  • Рис. 147 Варианты запуска микросхемы К155АГ1
  • Рис. 148 Подключение времязадающих элементов к микросхеме К155АГ1
  • Рис. 149 Микросхемы К155АГ3 (К555АГ3) и АГ4 (К555АГ4)
  • Рис. 150 Варианты подачи сигнала для запуска микросхемы АГ3 и АГ4
  • Рис. 151 Влияние повторного запуска микросхемы АГ3 на длительность входного импульса
  • Рис. 152 Подключение времязадающих элементов к микросхемам АГ3 и АГ4
  • Рис. 153 Генератор на двух мультивибраторах микросхемы АГ3
  • Рис. 154 Временная диаграмма работы генератора
  • Рис. 155 Генераторы на одном мультивибраторе микросхемы АГ3
  • Рис. 156 Временная диаграмма работы генератора
  • Рис. 157 Микросхема КР531ГГ1
  • Рис. 158 Зависимость частоты генерации от управляющих напряжений
  • Рис. 159 Зависимость частоты генерации от емкости

Подборка простых и эффективных схем

Принцип работы мультивибратора на транзисторах

Простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него. На первом рисунке изображена его принципиальная схема.
В качестве нагрузки используются светодиоды. Когда мультивибратор работает — светодиоды переключаются.
Для сборки потребуется минимум деталей:
1. Резисторы 500 Ом — 2 штуки 2. Резисторы 10 кОм — 2 штуки 3. Конденсатор электролитический 47 мкФ на 16 вольт — 2 штуки 4. Транзистор КТ972А — 2 штуки 5. Светодиод — 2 штуки
Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода. Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

Рисунки специально сделаны в разных ракурсах и можно подробно рассмотреть все детали монтажа. А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд..
Фотореле.
А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод — любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами. На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.
При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:
Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально.
Усилитель мощности на микросхеме TDA1558Q.
Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера.
Для его сборки понадобится всего пять деталей:
1. Микросхема — TDA1558Q 2. Конденсатор 0.22 мкФ 3. Конденсатор 0.33 мкФ – 2 штуки 4. Электролитический конденсатор 6800 мкФ на 16 вольт
Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора. Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля». К выводам 5, 13 и 14 припаяйте провод плюса питания. Этот же провод припаивается к плюсу конденсатора 6800 мкФ. Отогнутые вниз выводы 3, 7 и 11 так же спаиваются вместе проводом, и этот провод припаивается к минусу конденсатора 6800 мкФ. Далее от конденсатора провода идут к источнику питания. Выводы 6 и 8 – это выход правого канала, 6 вывод припаивается к плюсу динамика, а вывод 8 к минусу. Выводы 10 и 12 – это выход левого канала, вывод 10 припаивается к плюсу динамика, а вывод 12 к минусу. Конденсатор 0.22 мкФ надо припаять параллельно выводам конденсатора 6800 мкФ.
Прежде чем подавать питание, внимательно проверьте правильность монтажа. На входе усилителя надо поставить сдвоенный переменный резистор 100 кОМ для регулировки громкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *