Ток утечки: что это такое, особенности, путь протекания, измерение
Ток утечки (leakage current) — это электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях (определение согласно ГОСТ 30331.1-2013 [1]).
Проведя очень большой анализ существующей нормативной документации Харечко Ю.В. в своей книге [2] заключает следующее:
« Из представленного выше определения следует, что ток утечки имеет место в нормальных условиях оперирования, когда изоляция токоведущих частей низковольтной электроустановки, находящихся под напряжением, не имеет повреждений. Такие условия называют нормальными условиями. Ток утечки протекает из токоведущих частей в землю или сторонние проводящие части. При этом следует учитывать, что ток утечки электрооборудования класса I обычно протекает по следующему проводящему пути: из токоведущих частей в его открытые проводящие части и далее – в присоединенные к ним защитные проводники. »
Харечко Ю.В. также поясняет причину возникновения тока утечки [2]:
« Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их емкость относительно земли или связанных с землей проводящих частей не может быть равной нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в землю, а также в проводящие части, электрически соединенные защитными проводниками с заземляющим устройством электроустановки здания и с заземленной токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной документации называют током утечки. То есть в нормальных условиях из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в землю, открытые и сторонние проводящие части и защитные проводники. »
Устранить токи утечки можно лишь одним способом – отключив электроустановку здания.
Особенности
Харечко Ю.В. конкретизирует некоторые особенности, которые касаются понятия «ток утечки» [2]:
« Любое качественное электрооборудование имеет какие-то токи утечки, которые начинают протекать в проводниках электрических цепей при его включении. Если выполнять защиту от токов утечки, электрооборудование невозможно будет использовать, поскольку любое его включение будет инициировать срабатывание защитных устройств, которые будут отключать электрические цепи. В условиях повреждений, когда происходят замыкания на землю, протекают токи замыкания на землю. Защитные устройства обнаруживают токи замыкания на землю и отключают защищаемые ими электрические цепи или сигнализируют о появлении замыканий на землю. »
Харечко Ю.В. продолжает [2]:
« При прикосновении человека к находящейся под напряжением токоведущей части через его тело будет протекать ток замыкания на землю, а не ток утечки. Ток замыкания на землю возникает также при повреждении «изоляции относительно корпуса или земли». Дифференциальный ток представляет собой векторную сумму токов в проводниках главной цепи УДТ, т. е. он является расчетной величиной. В нормальных условиях его величина примерно равна значению тока утечки, а в условиях повреждения – сумме тока утечки и тока замыкания на землю. Причем при типах заземления системы TN-C, TN-S, TN-C-S и даже TT значение тока утечки ничтожно по сравнению с величиной тока замыкания на землю. »
« В трехфазных трехпроводных электрических цепях и сетях три тока утечки протекают по трем фазным проводникам. По трем фазным проводникам могут протекать три тока утечки, значения которых либо примерно равны между собой, либо существенно отличаются друг от друга. Более того, в защитном проводнике этих электрических цепей и сетей протекает ток утечки, который представляет собой векторную сумму трех токов утечки фазных проводников. »
В национальной нормативной документации термин «ток утечки» часто ошибочно используют вместо термина «ток замыкания на землю», который характеризует электрический ток, появляющийся в условиях единичного или множественных повреждений, и термина «номинальный отключающий дифференциальный ток», который определяет одну из характеристик устройства дифференциального тока. Имеются и другие неправильные варианты использования рассматриваемого термина.
Нижеследующий пример анализа ПУЭ 7, который касается ошибочного употребления понятия «ток утечки» провел Харечко Ю.В. Привожу цитаты данного анализа [2]:
« Например, в п. 6.1.16 ПУЭ указано: «Для питания светильников местного стационарного освещения с лампами накаливания должны применяться напряжения: в помещениях без повышенной опасности – не выше 220 В1 и в помещениях с повышенной опасностью и особо опасных – не выше 50 В. В помещениях с повышенной опасностью и особо опасных допускается напряжение до 220 В для светильников, в этом случае должно быть предусмотрено или защитное отключение линии при токе утечки до 30 мА …». Последнее из процитированных требований содержит серьезную ошибку. Буквальное его выполнение может привести к смертельному поражению электрическим током, поскольку оно предписывает выполнять защитное отключение только для светильников, имеющих ток утечки до 0,03 А. Если светильник имеет ток утечки более 0,03 А, который представляет реальную опасность для человека, то защитное отключение можно не выполнять!
В рассматриваемых требованиях термин «ток утечки» неправомерно использован вместо характеристики устройства дифференциального тока «номинальный отключающий дифференциальный ток». То есть требования п. 6.1.16 ПУЭ должны предусматривать защиту электрической цепи светильников посредством УДТ, имеющего номинальный отключающий дифференциальный ток до 0,03 А включительно, для обеспечения дополнительной защиты при прямом прикосновении, как было предусмотрено ранее действовавшим ГОСТ Р 50571.3–94, или для обеспечения дополнительной защиты, как предписано действующим ГОСТ Р 50571.3-2009. »
Путь протекания тока утечки
Харечко Ю.В. в своей книге [2] описывает пути протекания тока утечки следующим образом:
« Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, токи утечки электрооборудования класса I через неповрежденную основную изоляцию протекают из токоведущих частей в их открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главным заземляющим шинам, заземляющим проводникам и заземлителям токи утечки протекают в землю. »
« Если электроустановки зданий соответствуют типам заземления системы TN-S, TN-C и TN-C-S, то бόльшие части токов утечки протекают не в землю, а по защитному проводнику в системе TN-S и PEN-проводникам в системах TN-C и TN-C-S низковольтных распределительных электрических сетей протекают к заземленным токоведущим частям источников питания. Иными словами, токи утечки электрооборудования класса I протекают по тем же проводящим путям, по которым протекают токи защитного проводника (см. рис. 1 и 2 статьи «Ток защитного проводника»). »
« Токи утечки электрооборудования классов 0, II и III протекают по менее определенным проводящим путям, например, через оболочку электрооборудования в землю или сторонние проводящие части. Причем частью проводящего пути может быть тело человека, который держит в руках переносное электрооборудование или находится в электрическом контакте с доступными частями передвижного или стационарного электрооборудования. Токи утечки могут протекать через полы, стены и другие элементы здания, если по каким-то причинам (например, из-за повышенной влажности) их сопротивление резко уменьшилось, а также по иным нежелательным проводящим путям. »
Токи утечки всегда имеют место в электрических цепях при нормальном оперировании электроустановки здания (при нормальных условиях). Их значения в конечных электрических цепях мало зависят от типа заземления системы и редко превышают несколько десятков миллиампер (обычно не более 10 мА). Если в электроустановке здания применяют электрооборудование, имеющее повышенные токи утечки, то должны быть выполнены дополнительные электрозащитные мероприятия в соответствии с требованиями, например, подраздела 707.4 ГОСТ Р 50571.22-2000. При этом значения повышенных токов утечки измеряют десятками миллиампер. На это обстоятельство прямо указывает название п. 707.471.3.3 национального стандарта: «Дополнительные требования для оборудования обработки информации с током утечки выше 10 мА».
Предельные значения токов утечки
Если электрооборудование имеет ток утечки, не превышающий нормативное значение, его рассматривают в качестве кондиционного электрооборудования. В противном случае его следует рассматривать в качестве некондиционного электрооборудования, которое подлежит ремонту или утилизации. Рассмотрим максимально допустимые значения токов утечки, установленные нормативными документами для некоторых видов электрооборудования.
В разделе 13 «Ток утечки и электрическая прочность при рабочей температуре» стандарта ГОСТ IEC 60335-1-2015 [3] установлены следующие максимально допустимые значения тока утечки для основных видов бытового электрооборудования:
- для приборов класса II и частей конструкций класса II – 0,35 мА (амплитудное значение);
- для приборов класса 0 и класса III – 0,7 мА (амплитудное значение);
- для приборов класса 0I – 0,5 мА;
- для переносных приборов класса I – 0,75 мА;
- для стационарных электромеханических приборов класса I (с приводом от двигателя) – 3,5 мА;
- для стационарных нагревательных приборов класса I – 0,75 мА или 0,75 мА на кВт номинальной потребляемой мощности прибора в зависимости от того, что больше, но не более 5 мА.
Для комбинированных приборов общий ток утечки может быть внутри ограничений, установленных для нагревательных приборов или для электромеханических приборов в зависимости от того, что больше, но не суммируя оба предела.
В некоторых стандартах комплекса ГОСТ IEC 60335 «Бытовые и аналогичные электрические приборы. Безопасность» для отдельных видов бытового электрооборудования установлены иные значения максимально допустимых токов утечки. Например, в ГОСТ IEC 60335-2-6-2016 [4], для стационарных электроплит, духовых шкафов, конфорочных панелей и аналогичных нагревательных приборов класса I максимально допустимое значение тока утечки установлено равным 10 мА.
В разделе 13 «Ток утечки» стандарта ГОСТ Р МЭК 60745-1-2009 [5] установлены следующие максимально допустимые значения тока утечки для основных видов электрического инструмента:
- для инструмента класса I – 0,75 мА;
- для инструмента класса II – 0,25 мА;
- для инструмента класса III – 0,50 мА.
Соответствие фактического тока утечки электрического инструмента максимально допустимому значению тока утечки в стандарте ГОСТ Р МЭК 60745-1-2009 проверяют с помощью специального испытания, которое выполняют при напряжении питания, равном 1,06 номинального напряжения. До выполнения испытаний отсоединяют защитное сопротивление. Испытания на ток утечки выполняют с переменным током. Испытания инструмента, предназначенного только для постоянного тока, не проводят.
Технический отчет МЭК 62350 приводит следующие типичные примеры уровней тока утечки, которые может иметь распространенное электрооборудование: компьютеры – 1–2 мА; принтеры – 0,5–1мА; небольшое портативное электрооборудование – 0,5–0,75 мА; факсимильные аппараты – 0,5–1 мА; светокопировальные аппараты – 0,5–1,5 мА; фильтры – около 1 мА.
Измерение
Согласно требованиям стандарта ГОСТ IEC 60335-1-2015 [3] измерение токов утечки электрооборудования выполняют во время нормального оперирования прибора при самых неблагоприятных условиях его использования в течение промежутка времени, который может состоять из более чем одного цикла оперирования.
Во время испытаний бытового электрооборудования нагревательные приборы приводят в действие при 1,15 номинальной потребляемой мощности. Приборы с приводом от двигателя и комбинированные приборы питают напряжением, равным 1,06 номинального напряжения. Трехфазные приборы, которые в соответствии с инструкциями по монтажу являются также пригодными для однофазного питания, испытывают как однофазные приборы с тремя цепями, соединенными параллельно. До выполнения испытаний отсоединяют защитное сопротивление и фильтры подавления радиопомех.
Ток утечки измеряют посредством измерительного многополюсника, изображенного на рис. 4 стандарта ГОСТ Р МЭК 60990-2010 [6] (см. рис. 2 статьи «Ток прикосновения»), между любым полюсом источника питания и доступными металлическими частями, присоединенными к металлической фольге, имеющей площадь не менее 20 × 10 см, которая находится в контакте с доступными поверхностями из изоляционных материалов. Поэтому ток утечки, измеренный в соответствии с требованиями стандарта ГОСТ IEC 60335-1-2015, равен току прикосновения, измеренному в соответствии с требованиями стандарта ГОСТ Р МЭК 60990-2010.
Для однофазных приборов класса II применяют измерительную цепь, показанную на рис. 1 стандарта ГОСТ IEC 60335-1-2015 [3] (рис. 1 настоящей статьи), для приборов иных, чем класса II, – на рис. 2 (рис. 2). Ток утечки измеряют с многопозиционным переключателем, находящимся в каждой из позиций «a» и «b».
Для трехфазных приборов класса II применяют измерительную цепь, показанную на рис. 3 стандарта ГОСТ IEC 60335-1-2015 [3] (рис. 3), для приборов иных, чем класса II, – на рис. 4 (рис. 4). Ток утечки измеряют с выключателями «a», «b» и «c», находящимися в замкнутом положении. Затем измерения повторяют с каждым из выключателей «a», «b» и «c» разомкнутым по очереди, когда другие два выключателя остаются замкнутыми. Для приборов, предназначенных быть соединенными только звездой, нейтраль не присоединяют.
Рис. 1. Принципиальная схема для измерения тока утечки при температуре оперирования для однофазного присоединения приборов класса II (на основе рисунка 1 из ГОСТ IEC 60335-1-2015)
На рисунке показано:
- C – цепь рис. 4 стандарта ГОСТ Р МЭК 60990-2010;
- 1 – доступная часть;
- 2 – недоступная металлическая часть;
- 3 – основная изоляция;
- 4 – дополнительная изоляция;
- 5 – двойная изоляция;
- 6 – усиленная изоляция.
Если электроприбор содержит в себе конденсаторы и обеспечен однополюсным выключателем, измерения повторяют с выключателем, находящимся в положении «Отключено». Если электроприбор содержит в себе устройство регулирования температуры, которое оперирует в течение испытания, ток утечки измеряют непосредственно до того, как устройство регулирования разомкнет цепь.
Рис. 2. Принципиальная схема для измерения тока утечки при температуре оперирования для однофазного присоединения приборов иных, чем класса II (на основе рисунка 2 из ГОСТ IEC 60335-1-2015)
Примечание. Для приборов класса 0I и приборов класса I C (измерительный многополюсник) может быть заменен амперметром с низким полным сопротивлением.
Рис. 3. Принципиальная схема для измерения тока утечки при температуре оперирования для трехфазного присоединения приборов класса II (на основе рисунка 3 из [2])
На рисунке 3 обозначено:
- C – цепь рис. 4 стандарта ГОСТ Р МЭК 60990-2010;
- 1 – доступная часть;
- 2 – недоступная металлическая часть;
- 3 – основная изоляция;
- 4 – дополнительная изоляция;
- 5 – двойная изоляция.
Примечание. Для приборов класса 0I и приборов класса I C (измерительный многополюсник) может быть заменен амперметром с низким полным сопротивлением.
Ток утечки измеряют посредством измерительного многополюсника, схема которого приведена на рис. 10 стандарта ГОСТ Р МЭК 60745-1-2009 [5], между любым полюсом источника питания и доступными металлическими частями и металлической фольгой с площадью не менее 20 × 10 см, находящейся в контакте с доступными поверхностями из изоляционного материала, соединенными вместе. Поэтому ток утечки, измеренный в соответствии с требованиями стандарта ГОСТ Р МЭК 60745-1-2009, равен току прикосновения, измеренному в соответствии с требованиями стандарта МЭК 60990.
Трехфазные инструменты, которые пригодны для однофазного питания, испытывают как однофазные инструменты с тремя секциями, соединенными параллельно. Для однофазных инструментов и трехфазных инструментов, испытываемых как однофазные инструменты, ток утечки измеряют с многопозиционным переключателем, показанным на рис. 3 ГОСТ Р МЭК 60745-1-2009 (рис. 5), находящимся в каждой из позиций «1» и «2», и выключателем «S1», находящимся в положении «Включено».
Рис. 5. Схема для измерения тока утечки при температуре оперирования для однофазного присоединения и трехфазных инструментов, пригодных для однофазного питания (на основе рисунка 5 из ГОСТ Р МЭК 60745-1-2009)
На рисунке 5 показано:
- C – цепь рис. 10 (из ГОСТ Р МЭК 60745-1-2009) для измерителя тока утечки;
- S – выключатель питания испытываемого изделия;
- 1 – доступная часть;
- 2 – недоступная металлическая часть;
- 3 – основная изоляция;
- 4 – дополнительная изоляция;
5 – усиленная изоляция; - 6 – двойная изоляция.
Для трехфазных инструментов, непригодных для однофазного питания, ток утечки измеряют в соответствии с рис. 4 ГОСТ Р МЭК 60745-1-2009 (рис. 6) с выключателями «a», «b» и «c», находящимися в положении «Включено». Для инструментов, предназначенных быть соединенными только звездой, нейтраль не присоединяют.
Если инструмент содержит в себе один или более конденсаторов и обеспечен однополюсным выключателем, измерения повторяют с выключателем, находящимся в положении «Отключено».
Рис. 6. Схема для измерения тока утечки при температуре оперирования для однофазного присоединения и трехфазных инструментов, пригодных для однофазного питания (на основе рисунка 6 из ГОСТ Р МЭК 60745-1-2009)
Ток утечки в электрических сетях, как проверить и найти ток утечки
Вы наверняка слышали выражение «ток утечки» или «ток утечки на землю», но каждый ли сможет объяснить, что это такое? Из-за чего возникает ток утечки, чем он опасен, как его устранить? На эти вопросы мы и постараемся получить ответ.
Во-первых, для возникновения «утечки» току необходима замкнутая электрическая цепь, как и любому току проводимости. И нагрузкой здесь может стать практически любой проводящий объект: тело человека, ванна, труба, часть корпуса электроустановки и т. д. А если ток утечки оказывается чрезмерно большим, то может возникнуть опасность для здоровья людей. Вот почему необходимо иметь представление о данном явлении.
Схематически на рисунке изображен путь, который ток утечки проложил себе по телу человека. Почему ток пошел по телу в данном примере? Потому что сопротивление между корпусом и токоведущими частями установки по какой-то причине уменьшилось. Если корпус установки с поврежденной изоляцией заземлен, то ток утечки двинется к земле, и в месте контакта корпуса с землей из-за разогрева может случиться возгорание.
Ток утечки на землю разогреет место крепления провода заземления к корпусу, это и опасно пожаром. Если такое случится, например, на объекте горнодобывающей промышленности, где высока вероятность обильного выделения горючих взрывоопасных газов или иных легко воспламеняющихся веществ, это может привести к большой трагедии.
Для сетей с глухозаземленной нейтралью вышеописанная проблема, к сожалению, типична. Но есть и другая не менее опасная возможность. Для трехфазных сетей с изолированной нейтралью характерна утечка тока между фазами по земле через изоляторы, корпус, опоры ЛЭП, в случае если повреждена изоляция хотя бы одной из фаз.
Сопротивление параллельно соединенных изоляторов и опор уменьшается пропорционально их количеству, и при поврежденной изоляции шаговое напряжение может превысить безопасное для человека значение. В любом случае, если норма тока утечки превышена, необходимо срочно осуществить поиск источника неисправности и устранить утечку.
Итак, величина тока утечки связана с сопротивлением изоляции проводников, которое может быть как очень большим, так и малым при нарушенной изоляции. Так или иначе, через любую изоляцию всегда протекает хоть и очень мизерный, но реальный ток от токоведущей части установки, находящейся в данный момент под напряжением, к заземлению или к другой фазе.
Безопасное значение тока утечки регламентировано, его можно посмотреть в документации на соответствующее оборудование, но по причине работы устройства в агрессивной внешней среде, изоляция может повредиться, и ток утечки тогда возрастет. Для защиты от неприятных последствий необходимо применять «устройства защиты от токов утечки на землю».
УЗО
Чтобы защитить себя и своих близких от поражения электрическим током и от лишних расходов за утекающую в землю электроэнергию, необходимо использовать устройство защитного отключения или дифференциальный автомат (автоматический выключатель совмещенный с УЗО), — такое устройство мгновенно сработает и произведет аварийное отключение от сети всех потребителей в самом начале утечки.
Ток утечки на землю в быту
Ток утечки может создать проблемы и в быту, некоторые люди часто используют этот термин, но понимают ли они сам процесс и осознают ли его потенциальную опасность? Ток ведь движется от фазы к земле через проводящие предметы, такие как металлические трубы, корпус стиральной машины, ванна, батарея — по предметам, не предназначенным в обычных условиях для прохождения по ним тока.
Старение изоляции, оплавленная изоляция, частые перегрузки или механически поврежденная изоляция — вот лишь несколько поводов задуматься, а нет ли здесь токов утечки. Любое нарушение изоляции может привести к утечке тока в жилище и к опасности для жильцов. Давайте же разберемся, как обезопасить себя от этих вредных явлений в быту.
Изначально необходимо понимать, что не существует идеальной изоляции. Конечно, исправная изоляция не опасна, но хоть немного нарушенная изоляция уже несет серьезную угрозу. Прикоснувшись к корпусу стиральной машины, к оболочке кабеля, или просто к вилке, где имеет место утечка тока через поврежденную изоляцию, человек может сильно пострадать и даже погибнуть.
Менее опасным, но не менее неприятным симптомом утечки является повышенный расход электроэнергии — ток проходит через счетчик даже при полностью выключенных потребителях квартиры или дома. Уехали в отпуск, вернулись, и увидели, что холодильник намотал непомерно много. А дело то вовсе не в холодильнике, а в нарушенной где-то изоляции.
Имея представление о природе тока утечки, человек сможет легко найти и устранить неисправность, если на то возникло подозрение. Что может стать причиной для такого подозрения? Например, прикосновение к электрическому обогревателю сопровождается ощущением слабого удара током или прикосновение к стиральной машине во время мытья рук над ванной приводит к похожим ощущениям. Это однозначно указывает на то, что где-то в приборе имеет место поврежденная изоляция. Нужно искать «течь».
Проще всего в домашних условиях использовать мультиметр или индикаторную отвертку. Либо измерить сопротивление мегомметром, если такой вдруг оказался под рукой. Конечно, мегомметр есть далеко не у каждого обывателя дома, поэтому рассмотрим самые простые возможности.
Проверка на утечку при помощи индикаторной отвертки
Оборудование с проводящей оболочкой, такое как холодильник, стиральная машина, водонагреватель — можно очень просто проверить на наличие тока утечки индикаторной отверткой. Осторожно прикоснитесь к корпусу включенного прибора индикаторной отверткой так, словно проверяете наличие фазы в розетке. Если индикатор хоть немного засветится, то это явный признак утечки, — нужно искать повреждение изоляции и, что не менее важно, проверить соединение заземляющего проводника из розетки с корпусом прибора, если такое заземление предусмотрено, и вообще проверить заземление.
Прозвонка омметром
Еще один способ проверки целостности изоляции внутри бытового прибора — при помощи мультиметра. Выдерните проверяемый бытовой прибор из розетки, включите мультиметр в режим омметра, выставьте предел измерения на отметку 20 МОм. Измерьте сопротивление между корпусом прибора и вилкой (между корпусом и каждым из штырей вилки).
Сопротивление должно оказаться более 20 МОм — за пределами шкалы. Если у вас есть мегомметр, то с его помощью можно аналогичным образом провести измерение состояния изоляции на нечувствительном к высокому напряжению оборудовании (мегомметр имеет на своих щупах высокое напряжение).
Старый способ с радиоприемником
Простой бытовой способ поиска утечек в скрытой в стене проводке. Его раньше всегда применяли прежде чем начинать делать ремонт, чтобы рабочих не ударило током во время штукатурки. Брали портативный радиоприемник на средние или длинные волны, выставляли его частоту приема на молчащую станцию, и при всех выключенных потребителях проходились с приемником вдоль пути прокладки проводки. Если динамик начинал издавать шум — в этом месте утечка.
Ток утечки. Причины появления и протекания. Параметры
В соответствие с действующими нормативами ток утечки определяется как паразитное явление, связанное с разрушением изоляции кабельной продукции и другими причинами. В результате таких нарушений незначительная по величине токовая составляющая начинает протекать по не предназначенным для этого цепям или участкам линий. Это могут быть как металлические части электрооборудования, так и корпуса приборов или медные проводники, используемые для заземления.
Нередко токи утечки появляются при контакте поврежденных проводов с влажной древесиной или штукатуркой, отсыревшей после аварии или ремонта. Добавим к этому возможность их протекания через тело человека, что в некоторых ситуациях не считается угрозой для его здоровья (в частности, при работе с индикаторной отверткой).
Причины при которых появляется ток утечки
Согласно требованиям защиты электрических цепей, справедливы следующие утверждения, касающиеся образования токов утечки:
-
любых токоведущих частей по отношению к нулевой шине всегда ограничено каким-то конечным значением (оно не может быть сколько угодно большим).
- Емкость участков действующих электрических сетей относительно грунта нередко достигает значительных величин.
- С учетом всего перечисленного в действующих цепях 220/380 В 50 Гц возможно стекание электрических зарядов «на землю».
То есть в любой электросети с заземленными металлическими частями постоянно протекает небольшой ток утечки, который нормируется соответствующими документами. Устранить это явление удается лишь одним способом – отключением электроустановки от силовой цепи.
Положительные и отрицательные стороны токов утечки
Этот электрический эффект оценивается и классифицируется по его последствиям, которые могут быть как отрицательными, так и положительными. В большинстве случаев его относят к паразитным явлениям, в какой-то мере влияющим на безопасность работы с электрооборудованием и кабельными линиями.
При превышении этим показателем допустимого значения возможны нежелательные последствия, приводящие к таким нарушениям, как появление «перекоса фаз» в сетях с различными системами заземления. Помимо этого, при наличии утечек невозможно избежать потерь электроэнергии при ее передаче на значительные расстояния.
С другой стороны явление под названием «ток утечки» широко применяется в практических целях, позволяя использовать для защиты потребителя специальную аппаратуру. К типичным приборам относятся устройства защитного отключения или УЗО.
Принцип работы этих электрических изделий основан на протекании микроскопических токов утечки через встроенный в них чувствительный элемент. Помимо этого этот эффект используется в измерительных инструментах типа «индикаторной отвертки», способных работать за счет микроскопической токовой составляющей, протекающей через тело человека.
Пути протекания паразитных токов в различных системах заземления
Путь, по которому протекает ток утечки, в основном определяется особенностями устройства и функционирования систем заземления, используемых в данной электросети. Электросети могут иметь несколько вариантов исполнения, различие которых связано со способом прокладки питающих и защитных линий (так называемых «рабочих», «защитных» и «нулевых» проводников).
На объектах, где применяются редко используемые системы TT и IT, например, токи утечки протекают через неповрежденную изоляцию из токоведущих частей в сторону открытых проводящих участков. Помимо этого они могут образовываться в местах, где к электрооборудованию подсоединяются главная шина заземления ГЗШ или медные проводники-отводы к заземляющему устройству (ЗУ).
В случае, когда на объекте используются системы TN-S, TN-C и TN-C-S – большая доля токов утечки протекает не в земляные шины, а по отдельному проводнику, предусмотренному в схемах этих конструкций. В низковольтных цепях с этим же типом защиты они образуются в заземленных токоведущих частях источников питания.
УЗО как вариант практического использования токов утечки
В некоторых случаях ток утечки используется с целью защиты человека от поражения высоким напряжением. Дело в том, что в электротехнике широко распространены особые дифференциальные устройства (Дифавтомат), которые реагируют на различие входящих и выходящих из него потоков заряженных частиц. При появлении разницы между ними устройство с высокой скоростью (за доли секунды) отключает защищаемый объект от линии питания.
Принцип действия защитного прибора в этом случае выглядит так:
- Через тело человека, случайно прикоснувшегося к проводящей части электрооборудования, начинают протекать мизерные паразитные токи, замыкающиеся на землю.
- Вытекающая из УЗО токовая составляющая увеличивается по сравнению с втекающей как раз на величину этих утечек.
- Вслед за этим исполнительный модуль дифференциального автомата получает сигнал с электронной схемы и мгновенно отключает объект от питающей линии.
УЗО рассчитываются на различные токи утечки, величина которых варьируется в пределах от 10 до 300 мкА и более. Точное значение этого показателя определяется требуемым уровнем защиты конкретной линии и особенностями используемого в ней электрооборудования.
Предельные значения токов утечки
Если в действующем электрооборудовании обнаруживается ток утечки, величина которого не превышает допустимой нормы – данный случай не относят к нарушениям в работе электросети. Если же его значение намного больше допустимого – силовое оборудование нуждается в срочном обследовании и профилактическом ремонте.
Максимально допустимые величины токов утечки для некоторых видов электрооборудования приводятся в ПУЭ и в других нормативных документах. Их значения дифференцируются в зависимости от класса приборов, подключаемых к данной электрической сети:
- Для приборов 2-ого класса этот показатель не может превышать 0,35 мА.
- Для оборудования 3-го класса – 0,7 мА.
- У переносных и нагревательных приборов 1-го класса допустимый ток утечки составляет 0,75 мА.
- Для стационарных изделий с приводом от двигателя – в пределах до 3,5 мА.
При рассмотрении типовых электрических инструментов указанный параметр определяется соответствующими разделами нормативных документов. Его значение зависит от группы, присвоенной этим изделиям.
Согласно существующей классификации установлены следующие максимально допустимые значения утечек:
- Инструменты класса I – до 0,75 мА.
- Их аналоги II класса – не более 0,25 мА.
- Изделия класса III – до 0,50 мА.
Для выявления соответствия тока утечки электроинструмента действующим нормам организуются специальные испытания, проводимые при переменном напряжении величиной 1,02 от номинала.
Для бытовой аппаратуры и оргтехники соответствующими документами установлены следующие нормативы:
- Компьютеры и ноутбуки – не более 1-2 мА.
- Принтеры – в пределах 0,5-1 мА.
- Портативное электрооборудование – до 0,5-0,75 мА.
- У светокопировальных аппаратах и фильтрующих устройств этот показатель не может превышать 1 мА.
Как измеряется ток утечки
Контрольные измерения величины токов утечки выполняются во время работы электрооборудования с учетом неблагоприятных факторов и отклонений от нормального режима эксплуатации. Продолжительность этих процедур определяется промежутком времени, достаточным для точного определения величины контролируемого параметра (не менее 2-3 циклов измерений).
При проведении испытаний бытовой техники на нагревательные приборы подается напряжение величиной 1,15 от номинала. Для устройств, приводящихся в движение электродвигателем, а также для комбинированных приборов аналогичный показатель составляет 1,06. Трехфазные агрегаты, устанавливаемые в однофазные цепи, испытываются подобно тому, как это делается с тремя включенными в параллель устройствами (то есть при повышенных напряжениях).
Приборы для измерения токов утечки
Рассматриваемый электротехнический показатель измеряется посредством специальных контрольных приборов типа «ИТВ 140Р», представляющих собой разновидность микроамперметров. Эти устройства традиционно применяются для общего контроля состояния электропроводящих линий (их защитной изоляции, в частности).
Помимо этого измерить ток утечки в трехфазных цепях можно с помощью так называемых «клещей», перед применением которых потребуется провести целый ряд подготовительных операций.
Дело в том, что при работе с этим инструментом его измерительная головка или «клещи» охватывают весь кабель целиком и фиксируют как прямые, так и обратные токи по всем трем фазам. Результатом таких измерений будет разница токовых составляющих по каждой из них, а совсем не то, что требуется. Для получения нужного показателя (тока утечки) придется разделить кабель на отдельные жилы, после чего можно приступать к замерам каждой из этих составляющих.
Если в какой-то из них показание будет отлично от нуля – это значит, что вытекающий ток несколько меньше втекающего. А этот факт в свою очередь означает, что в линии или в подключенном к ней электрооборудовании имеется токовая утечка. Ее величина соответствует показанию измерительного инструмента для данной жилы. Аналогичные операции проделываются с двумя остальными проводами проверяемого кабеля.
Ток утечки в электрических сетях, как проверить и найти ток утечки
Ток утечки как физическое явление Вы наверняка слышали выражение «ток утечки» или «ток утечки на землю», но каждый ли сможет объяснить, что это такое? Из-за чего возникает ток утечки, чем он опасен, как его устранить? На эти вопросы мы и постараемся получить ответ.
Во-первых, для возникновения «утечки» току необходима замкнутая электрическая цепь, как и любому току проводимости. И нагрузкой здесь может стать практически любой проводящий объект: тело человека, ванна, труба, часть корпуса электроустановки и т. д. А если ток утечки оказывается чрезмерно большим, то может возникнуть опасность для здоровья людей. Вот почему необходимо иметь представление о данном явлении.
Схематически на рисунке изображен путь, который ток утечки проложил себе по телу человека. Почему ток пошел по телу в данном примере? Потому что сопротивление между корпусом и токоведущими частями установки по какой-то причине уменьшилось.
Если корпус установки с поврежденной изоляцией заземлен, то ток утечки двинется к земле, и в месте контакта корпуса с землей из-за разогрева может случиться возгорание.
Ток утечки на землю разогреет место крепления провода заземления к корпусу, это и опасно пожаром. Если такое случится например на объекте горнодобывающей промышленности, где высока вероятность обильного выделения горючих взрывоопасных газов или иных легко воспламеняющихся веществ, это может привести к большой трагедии.
Для сетей с глухозаземленной нейтралью вышеописанная проблема, к сожалению, типична. Но есть и другая не менее опасная возможность. Для трехфазных сетей с изолированной нейтралью характерна утечка тока между фазами по земле через изоляторы, корпус, опоры ЛЭП, в случае если повреждена изоляция хотя бы одной из фаз.
Сопротивление параллельно соединенных изоляторов и опор уменьшается пропорционально их количеству, и при поврежденной изоляции шаговое напряжение может превысить безопасное для человека значение. В любом случае, если норма тока утечки превышена, необходимо срочно осуществить поиск источника неисправности и устранить утечку.
Итак, величина тока утечки связана с сопротивлением изоляции проводников, которое может быть как очень большим, так и малым при нарушенной изоляции.
Так или иначе, через любую изоляцию всегда протекает хоть и очень мизерный, но реальный ток от токоведущей части установки, находящейся в данный момент под напряжением, к заземлению или к другой фазе.
Безопасное значение тока утечки регламентировано, его можно посмотреть в документации на соответствующее оборудование, но по причине работы устройства в агрессивной внешней среде, изоляция может повредиться, и ток утечки тогда возрастет. Для защиты от неприятных последствий необходимо применять «устройства защиты от токов утечки на землю».
УЗО
Чтобы защитить себя и своих близких от поражения электрическим током и от лишних расходов за утекающую в землю электроэнергию, необходимо использовать устройство защитного отключения или дифференциальный автомат (автоматический выключатель совмещенный с УЗО), — такое устройство мгновенно сработает и произведет аварийное отключение от сети всех потребителей в самом начале утечки.
Про УЗО у нас на сайте:
Ток утечки на землю в быту
Ток утечки может создать проблемы и в быту, некоторые люди часто используют этот термин, но понимают ли они сам процесс и осознают ли его потенциальную опасность? Ток ведь движется от фазы к земле через проводящие предметы, такие как металлические трубы, корпус стиральной машины, ванна, батарея — по предметам, не предназначенным в обычных условиях для прохождения по ним тока.
Старение изоляции, оплавленная изоляция, частые перегрузки или механически поврежденная изоляция — вот лишь несколько поводов задуматься, а нет ли здесь токов утечки. Любое нарушение изоляции может привести к утечке тока в жилище и к опасности для жильцов.
Давайте же разберемся, как обезопасить себя от этих вредных явлений в быту.
Изначально необходимо понимать, что не существует идеальной изоляции. Конечно, исправная изоляция не опасна, но хоть немного нарушенная изоляция уже несет серьезную угрозу.
Прикоснувшись к корпусу стиральной машины, к оболочке кабеля, или просто к вилке, где имеет место утечка тока через поврежденную изоляцию, человек может сильно пострадать и даже погибнуть.
Менее опасным, но не менее неприятным симптомом утечки является повышенный расход электроэнергии — ток проходит через счетчик даже при полностью выключенных потребителях квартиры или дома.
Уехали в отпуск, вернулись, и увидели, что холодильник намотал непомерно много. А дело то вовсе не в холодильнике, а в нарушенной где-то изоляции.
Имея представление о природе тока утечки, человек сможет легко найти и устранить неисправность, если на то возникло подозрение. Что может стать причиной для такого подозрения?
Например, прикосновение к электрическому обогревателю сопровождается ощущением слабого удара током или прикосновение к стиральной машине во время мытья рук над ванной приводит к похожим ощущениям. Это однозначно указывает на то, что где-то в приборе имеет место поврежденная изоляция. Нужно искать «течь».
Проще всего в домашних условиях использовать мультиметр или индикаторную отвертку. Либо измерить сопротивление мегомметром, если такой вдруг оказался под рукой. Конечно, мегомметр есть далеко не у каждого обывателя дома, поэтому рассмотрим самые простые возможности.
Проверка на утечку при помощи индикаторной отвертки
Оборудование с проводящей оболочкой, такое как холодильник, стиральная машина, водонагреватель — можно очень просто проверить на наличие тока утечки индикаторной отверткой.
Осторожно прикоснитесь к корпусу включенного прибора индикаторной отверткой так, словно проверяете наличие фазы в розетке. Если индикатор хоть немного засветится, то это явный признак утечки, — нужно искать повреждение изоляции и, что не менее важно, проверить соединение заземляющего проводника из розетки с корпусом прибора, если такое заземление предусмотрено, и вообще проверить заземление.
Прозвонка омметром
Еще один способ проверки целостности изоляции внутри бытового прибора — при помощи мультиметра. Выдерните проверяемый бытовой прибор из розетки, включите мультиметр в режим омметра, выставьте предел измерения на отметку 20 МОм.
Измерьте сопротивление между корпусом прибора и вилкой (между корпусом и каждым из штырей вилки). Сопротивление должно оказаться более 20 МОм — за пределами шкалы.
Если у вас есть мегомметр, то с его помощью можно аналогичным образом провести измерение состояния изоляции на нечувствительном к высокому напряжению оборудовании (мегомметр имеет на своих щупах высокое напряжение).
Старый способ с радиоприемником
Простой бытовой способ поиска утечек в скрытой в стене проводке. Его раньше всегда применяли прежде чем начинать делать ремонт, чтобы рабочих не ударило током во время штукатурки.
Брали портативный радиоприемник на средние или длинные волны, выставляли его частоту приема на молчащую станцию, и при всех выключенных потребителях проходились с приемником вдоль пути прокладки проводки. Если динамик начинал издавать шум — в этом месте утечка.
Смотрите также у нас на сайте:
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Секреты электрика, Все про автоматы и УЗО