Что является источником энергии излучаемой
Перейти к содержимому

Что является источником энергии излучаемой

  • автор:

Что является источником энергии излучаемой звездой кратко

Какой мощи должна быть эта энергия, что её хватает на миллиарды лет? Хороший вопрос, учитывая, что подсчитано: если бы Солнце состояло из лучшего угля, то, получай оно для этого в достаточном количестве кислород, полностью сгорело бы примерно за 1500 лет.

Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.

Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.

Может быть, тогда, энергия Солнца пополняется за счет его сжатия, то есть постоянного уменьшения в размерах? Звучит логично, ведь при сжатии, энергия тяготения к центру переходила бы в энергию тепловую. Но и эта теория разбилась о математику.

Было вычислено, что даже если бы Солнце было некогда бесконечно большим, чем сейчас, то и в этом случае его сжатия до современного размера хватило бы на поддержание энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше – как минимум 4,5 миллиарда лет. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.

Наше Солнце - громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Наше Солнце – громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Тогда, возможно, недра звезд состоят из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту.

Но, если бы Солнце целиком состояло из радия, то оно излучало бы… больше энергии, чем действительное Солнце! Тем более, что при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверх-радиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.

Вас может заинтересовать

Ответ на этот вопрос дала людям ядерная физика.

Ядерные реакции в недрах звезд

Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.

При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.

Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.

Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).

Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.

С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.

Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.

1.При температуре в ядре порядка 14—15 млн°С и давлениях от 7 • 10 8 до 3,4 • 10 11 атм звезда должна была бы превратиться в расширяющееся газовое облако. Но этого не происходит. Как вы думаете, какие силы противодействуют расширению звезды?

Сила тяжести вышележащих слоёв, которая пытается сжать звезду, противодействует её расширению.

2. Что является источником энергии, излучаемой звездой?

Термоядерные реакции в ядре — источник энергии звёзд.

3. Какой физический процесс является источником внутреннего обогрева планеты?

Внутренний источник обогрева планет — радиоактивный распад.

4. Что является причиной образования пятен на Солнце?

Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Они препятствуют подъёму горячей плазмы, в результате чего вместо светлых гранул образуется тёмная область — солнечное пятно

5. Из каких слоев состоит солнечная атмосфера?

Солнечная атмосфера состоит из фотосферы, хромосферы, короны Солнца.

6. Расскажите об основных стадиях эволюции Солнца.

Эволюция Солнца: уплотнение масс газа и пыли → сжатие в протозвезду → стационарная стадия, где источник излучения — термоядерные реакции → красный гигант с увеличивающимся гелиевым ядром → гравитационное сжатие красного гиганта → медленное остывание белого карлика.

Что является источником солнечной энергии?

Если сказать проще ) то в результате ядерного синтеза водород превращается в гелий в цетре Солнца. Огромное количество атомов водорода максимально сближаются и сливаются в атомы гелия. Полученная энергия излучается из ядра Солнца и передается в межзвездное пространство.

Какие источники энергии на Земле связаны с солнцем?

Солнце оказывает многоплановое воздействие как на живую, так и на неживую природу Земли. Основное влияние происходит через видимое излучение, ультрафиолетовое излучение, излучение в более коротких диапазонах длин волн и через корпускулярные потоки солнечного ветра.

Почему солнечная энергия это хорошо?

Солнечная энергетика использует возобновляемые источники энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Какое влияние имеет солнце для жизни на Земле объясни?

Без солнца жизни на земле бы не было. Благодаря солнечной энергии растут растения которыми питаемся мы и другие организмы. Люди даже научились преобразовывать солнечный свет в электричество! Так же оно не даёт нашей планете замёрзнуть!

Что называют солнечным ветром в чем его отличие от солнечного излучения?

Солнечным ветром называется поток ионизированных частиц, который образуется вследствии высокой температуры наружнего слоя Солнца, за счет чего частицы движутся очень быстро, а сила гравитации Солнца не может их удержать.

Сколько энергии в час Солнце передает на Землю?

Солнце излучает очень большое количество энергии — примерно 1,1×1020 кВтч в секунду. Примерно одна миллионная часть этой энергии доходит до внешних слоев атмосферы Земли.

Сколько энергии теряет солнце?

Произведенные расчеты показали, что ежегодно Солнце теряет около 179 трлн тонн своей массы. Это сравнимо, например, с 3,5% общей массы атмосферы Земли.

Что такое мощность солнечного излучения?

Солнце состоит из водорода (71%), гелия (27%) и твердой материи (2%). Температура вблизи ядра приблизительно 16 000 000 градусов, а на его поверхности-фотосфере — около 5770 К. Мощность энергии, излучаемой Солнцем, составляет

63 МВт с каждого квадратного метра его поверхности, всего около 3,72 х 10 20 МВт.

Почему солнце забирает энергию?

– Источником энергии в самом Солнце является термоядерный синтез, при котором атомы водорода, соединяясь друг с другом, образуют гелий, второй элемент таблицы Менделеева. При этом выделяется гигантское количество энергии, которая распространяется в виде радиации и доходит до Земли.

Почему звезды светятся и откуда берется их энергия?

Где звезды берут энергию и чем “питается” Солнце?

За счет чего звезды расходуют такие чудовищные количества энергии? Чем “питается” само Солнце? Не смотря на гигантские размеры звезд, их энергия должна пополняться, ибо «вечного двигателя» в природе не существует.

Какой мощи должна быть эта энергия, что её хватает на миллиарды лет? Хороший вопрос, учитывая, что подсчитано: если бы Солнце состояло из лучшего угля, то, получай оно для этого в достаточном количестве кислород, полностью сгорело бы примерно за 1500 лет.

Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.

Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.

Может быть, тогда, энергия Солнца пополняется за счет его сжатия, то есть постоянного уменьшения в размерах? Звучит логично, ведь при сжатии, энергия тяготения к центру переходила бы в энергию тепловую. Но и эта теория разбилась о математику.

Было вычислено, что даже если бы Солнце было некогда бесконечно большим, чем сейчас, то и в этом случае его сжатия до современного размера хватило бы на поддержание энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше – как минимум 4,5 миллиарда лет. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.

Наше Солнце - громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Наше Солнце – громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Тогда, возможно, недра звезд состоят из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту.

Но, если бы Солнце целиком состояло из радия, то оно излучало бы… больше энергии, чем действительное Солнце! Тем более, что при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверх-радиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.

Вас может заинтересовать

Ответ на этот вопрос дала людям ядерная физика.

Ядерные реакции в недрах звезд

Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.

При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.

Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.

Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).

Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.

С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.

Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.

Загадочные частицы: что ученые знают о космических лучах

Фото: Pexels

Кроме электромагнитного излучения и гравитационных волн, на Землю каждую секунду прилетает множество космических частиц. Их называют космическими лучами. Северное сияние, охота на которое в последние годы стала настоящим трендом — тоже частицы, прилетевшие из космоса, а именно от Солнца.

Однако ученым интересно изучать те лучи, которые достигают планеты из-за пределов Солнечной системы.

Любое вещество состоит из протонов, электронов и нейтронов. Нейтрон — весьма нестабильная частица, поэтому в тех космических лучах, которые проделали долгий путь, нейтронов нет: они распадаются по дороге к Земле. Остаются только протоны и электроны. Однако кроме единичных электронов и протонов в потоках космических лучей могут быть и позитроны (античастицы электронов), и антипротоны. Таким образом, на Землю из космоса постоянно прилетают:

  • протоны;
  • электроны;
  • позитроны;
  • антипротоны;
  • ядра элементов.

Как ученые открыли космические лучи

Ученые далеко не сразу поняли, что является источником это излучения, земная кора или космос. Чтобы ответить на этот вопрос, была проведена серия экспериментов.

Первый эксперимент провел австрийский и американский физик Виктор Гесс, получивший за открытие космических лучей Нобелевскую премию в 1936 году. Его идея была проста: сесть в гондолу воздушного шара и лететь вверх, периодически замеряя количество загадочных частиц. Если их будет становиться все больше, значит, эти частицы прилетают из космоса.

Фото:Сергей Савостьянов / ТАСС

Второй эксперимент менее известен и был проведен немного позже, в Италии. Его идея такова: чтобы понять, является ли источником загадочных частиц земная кор, необходимо от нее удалиться на некое расстояние и также замерить количество частиц. При этом необязательно лететь вверх, достаточно сесть в лодку и уплыть на ней как можно дальше от берега. Чем глубже больше будет толща воды, тем дальше земная кора.

В результате серии таких экспериментов ученые пришли к выводу, что поток частиц не изменяется, как бы глубоко ни находилось дно. Значит, чем бы ни являлись эти частицы, их точно излучает не земная кора.

Откуда у космических частиц столько энергии?

Этот вопрос в науке оказался вторым по степени важности. Особенно в первой половине XX века, когда люди еще не умели строить мощных ускорителей, а эксперименты проводить хотелось. Проблема в том, что «вручную» ускорить частицы до таких высоких значений крайне трудно: их энергия в сотни миллионов раз больше, чем энергия частиц в Большом адронном коллайдере.

К примеру, самые сильные космические лучи обладают такой же энергией, как теннисный мяч при подаче профессионального теннисиста. Для микрочастицы это очень много. Этой энергии вполне хватает, чтобы выводить из строя приборы на земной орбите.

Но откуда берется эта огромная энергия в космосе, долго оставалось загадкой. Ученым было ясно одно: эти загадочные космические «ускорители» находится точно не в нашей Галактике.

Галактика Млечный Путь, как и все прочие, обладает магнитным полем. Частицы космических лучей это поле «чувствуют», а значит, двигаются в нем по искривленным траекториям. Насколько магнитное поле может искривить траекторию частицы, зависит от ее энергии: чем выше энергия частицы, тем труднее заставить ее отклониться от изначального пути. Поэтому частицы относительно небольшой энергии легко «запутываются» в галактическом магнитном поле и накапливаются там, долго не покидают Галактику. А частицы самой высокой энергии улетают быстро, фактически не замечая магнитного поля.

Откуда прилетают космические лучи?

Казалось бы, задача простая: зарегистрировать вспышку в небе — свидетельство о прилете космической частицы, — посмотреть на нее через телескоп и понять, что является ее источником. Но оказалось, что это далеко не так просто.

Преодолевая миллиарды световых лет, даже частицы очень высокой энергии оказываются чувствительными к влиянию магнитных полей различных космических объектов и потому немного сбиваются со своей траектории. Поэтому нельзя узнать точно, откуда они прилетают.

Фото:Unsplash

Впрочем, ученые нашли способ решить эту задачу: они стали наблюдать за другими частицами — нейтрино. Их особенность заключается в том, что они совсем не чувствительны к влиянию магнитного поля. И вполне вероятно, что нейтрино рождаются в тех же местах, где и ускоряются космические лучи сверхвысокой энергии.

Нейтрино высоких энергий регистрируют с помощью детекторов:

    — на антарктической станции Амундсен-Скотт,
  • Байкальского нейтринного детектора (Baikal-GVD) — на дне озера Байкал, — в Средиземном море.

Нейтринные детекторы регистрируют довольно большое количество частиц высоких энергий. Это помогло обнаружить интересные совпадения, когда астрономы видели вспышку в гамма-диапазоне и избыток нейтрино высокой энергии на установке IceCube — и это происходило одновременно. Это значит, что можно почти наверняка утверждать, что источник гамма-излучения является одновременно и источником нейтрино высоких энергий. Не исключено, что такие объекты и ускоряют космические лучи высоких энергий. Кстати, одна из гипотез: эти «ускорители» могут быть активными ядрами галактик.

Каждая галактика имеет в центре черную дыру. Эта черная дыра притягивает вещество. Вещество, попадая в черную дыру, часто образует диск вокруг. Лишнее вещество из внутренней части этого диска выбрасывается в виде двух струй — джетов. Теоретически они могут быть очень хорошим источником частиц высокой энергии и космических лучей.

Фото:NASA/JPL-Caltech

Как космические лучи помогают изучать Солнце

Поскольку интенсивность потока космических лучей тесно связана с солнечной активностью, с их помощью ученые могут изучать Солнце на масштабе многих сотен световых лет. Для этого есть два способа:

  1. Космические лучи провоцируют появление новых химических элементов (например, бора и бериллия) — они образуются в результате реакции скалывания из ядер других элементов, прилетевших на Землю.
  2. Частицы космических лучей взаимодействуют с веществом атмосферы и рождают редкие изотопы. Эти изотопы оседают на поверхность, и ученые могут обнаруживать их во льду или в спилах деревьев.

Фото:Rodion Kutsaev / Unsplash

Опасны ли космические лучи для человека?

Хоть частицы из космоса могут выводить из строя технику на орбите, для человека они не представляют особой опасности.

Человечество от космических лучей надежно защищает атмосфера Земли и Солнце. Чем выше активность Солнца, тем меньше космических лучей попадает к нам из Галактики и внегалактического пространства.

Впрочем, некоторое количество радиации из космоса попадает на Землю: космические лучи все-таки создают небольшой уровень радиоактивности. Однако даже регулярные авиаперелеты, если вы не член экипажа и не летаете ежедневно, не слишком вредят здоровью. Более того, краткосрочное радиоактивное облучение не нанесет существенный урон даже космическим туристам.

Скорее, опаснее была бы обратная история: если бы космических лучей вдруг не стало. Это привело бы к эффекту дистиллированной воды, то есть полному исчезновению естественного радиоактивного фона. Такое обстоятельство, конечно, уменьшило бы количество мутаций в нашей ДНК, но, как известно, мутации бывают не только вредными, но и полезными. В конце концов, это важная часть человеческой эволюции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *