Эдс индукции
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток магнитного поля через замкнутую поверхность
, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).
41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.
Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность [1] , краем которой является этот контур. [2][3][4] .
— магнитный поток,
— ток в контуре,
— индуктивность.
Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно — в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.
Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока [4] :
.
Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током [4] :
.
Обозначение и единицы измерения
В системе единиц СИ индуктивность измеряется в генри [7] , сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 10 9 см) [4] . Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I — сила тока, протекающего по контуру в данное мгновение времени.
Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz) [ источник не указан 1017 дней ] . Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry) [8] . Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года [ источник не указан 1017 дней ] .
Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура. При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией. Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В
Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ0μ(N 2 I/l)S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна
Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и
(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем увеличивается, то (dI/dt<0) и ξs>0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs<0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.
42. Ток при размыкании и замыкании цепи.
При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток
(внутренним сопротивлением источника тока пренебрегаем).
В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=
s/R, или
(127.1)
Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln (I /I0) = –Rt/L, или
(127.2)
где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что есть время, в течение которого сила тока уменьшается в е раз.
Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.
При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции
препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома,
или
Введя новую переменную преобразуем это уравнение к виду
где — время релаксации.
В момент замыкания (t=0) сила тока I = 0 и u = –. Следовательно, интегрируя по и (от –
до IR–
) и t (от 0 до t), находим ln[(IR–
)]/–
= —t/, или
(127.3)
где — установившийся ток (при t).
Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.
Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток
. При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI0 и , получим
т. е. при значительном увеличении сопротивления цепи (R/R0>>1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
43. Явление взаимной индукции. Трансформатор.
Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I1, то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I1. Обозначим через Ф21 часть потока,пронизывающая контур 2. Тогда (1) где L21 — коэффициент пропорциональности.
Если ток I1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξi2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф21, который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф12 — часть этого потока, который пронизывает контур 1, то
Если ток I2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξi1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, который создается током во втором контуре и пронизывает первый:
Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, которые подтверждены опытом, показывают, что L21 и L12 равны друг другу, т. е.
(2) Коэффициенты пропорциональности L12 и L21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N1, током I1 и магнитной проницаемостью μ сердечника, B = μμ0(N1I1/l) где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф2 = BS = μμ0(N1I1/l)S
Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N2 витков, Поток Ψ создается током I1, поэтому, используя (1), найдем
(3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник,
Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока
Закон электромагнитной индукции — формулы и определение с примерами
Вам уже известно, что электрический ток, или движущиеся заряды, создают в окружающем пространстве магнитное поле. А возможен ли обратный процесс, при котором с помощью магнитного поля в замкнутом проводнике будет создан электрический ток?
Именно такой вопрос заинтересовал выдающегося английского физика Майкла Фарадея, который в 1821 г. в своем дневнике поставил перед собой задачу: «Превратить магнетизм в электричество». Через 10 лет упорного труда эта задача была им успешно решена. В августе 1831 г. Фарадей сделал фундаментальное открытие в области электромагнитных явлений.
При проведении опытов Фарадей обнаружил, что при введении постоянного магнита в катушку (рис. 160, а) или при выведении из нее (рис. 160, б) стрелка гальванометра в цепи катушки отклонялась, т. е. в цепи возникал кратковременный электрический ток. Изменение направления движения магнита приводило к отклонению стрелки гальванометра в противоположную сторону (см. рис. 160).
Таким образом, при изменении индукции магнитного поля, пронизывающей витки катушки, в замкнутой цепи возникает электрический ток, называемый индукционным. Следовательно, в цепи появился источник тока. Можно сделать вывод о том, что изменение индукции магнитного поля в пределах площади, ограниченной контуром, приводит к появлению в контуре ЭДС, называемой электродвижущей силой индукции.
Фарадей наблюдал возникновение индукционного тока в цепи исследуемой катушки 1 не только при перемещении постоянного магнита, но и в том случае, если замыкали (размыкали) ключ в цепи, содержащей катушку 2, расположенную внутри катушки 1 (рис. 161 ).
Индукционный ток возникал в катушке 1 также при перемещении контура с током 2 в непосредственной близости от исследуемой катушки.
Таким образом, в результате серии экспериментов Фарадей установил, что возникновение индукционного тока в замкнутом контуре достигается при изменении магнитного потока через него.
Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции.
Эксперименты Фарадея позволили установить закон электромагнитной индукции (закон Фарадея), количественно определяющий ЭДС индукции в контуре:
- ЭДС электромагнитной индукции
возникающая в замкнутом контуре, прямо пропорциональна скорости изменения магнитного потока через него:
Как видно из приведенного соотношения, ЭДС индукции не зависит от материала проводника, его сопротивления, температуры и от носителей тока, а определяется только характером изменения магнитного поля.
Для объяснения возникновения ЭДС в неподвижном замкнутом контуре при изменении магнитного поля внутри него английский ученый Джеймс Клерк Максвелл предложил такую гипотезу: изменяющееся магнитное поле создает в окружающем пространстве электрическое поле, которое и приводит свободные заряды проводника в движение, т. е. создает индукционный ток. На основе этой гипотезы Максвелл создал теорию электромагнитного поля, подтвердившуюся на опыте. Согласно этой теории при изменении магнитного поля в некоторой области пространства обязательно возникает электрическое поле с замкнутыми силовыми линиями. Причем это происходит даже при отсутствии проводящего контура, например в вакууме.
Таким образом, явление электромагнитной индукции в более широком понимании заключается нс только в возникновении индукционного тока, или ЭДС индукции но и в возникновении электрического поля, силы которого могут ускорять или замедлять движение заряженных частиц.
Русский физик Эмилий Ленц в 1833 г. сформулировал правило (правило Ленца), позволяющее установить направление индукционного тока в цепи:
возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение внешнего магнитного потока, вызвавшее данный ток.
Согласно этому правилу в формуле, выражающей закон Фарадея, следует ставить знак «минус».
Максвелл в 1873 г. дал современную формулировку закона электромагнитной индукции:
- ЭДС индукции в замкнутом проводящем контуре равна скорости изменения пронизывающего его магнитного потока, взятой с противоположным знаком:
Знак «минус» в законе электромагнитной индукции (в формуле для следует из правила Ленца.
Отметим, что в таком виде закон применим только, когда скорость изменения магнитного потока постоянна. В общем случае эта формула дает среднее значение ЭДС индукции
Покажем, что если бы правило Ленца не выполнялось, то взаимодействие индукционного тока с внешними полями приводило бы к неограниченному росту энергии системы без подвода ее извне, т. е. к нарушению закона сохранения энергии.
Действительно, ток, возникающий за счет ЭДС индукции, сам является источником магнитного поля. Если бы индуцированное магнитное поле «помогало» расти магнитному потоку через контур, то тем самым увеличивался бы индукционный ток, что вызывало бы еще большее увеличение первоначального магнитного поля. Это сопровождалось бы еще большим изменением магнитного потока через контур, и так до бесконечности.
В результате сила индукционного тока и связанная с ним энергия возрастали бы неограниченно, что является нарушением закона сохранения энергии.
Для наглядной демонстрации правила Ленца используется прибор, состоящий из двух колец (замкнутого и незамкнутого), уравновешенных для уменьшения трения на игольчатой опоре (рис. 162).
При введении постоянного магнита в замкнутое кольцо оно «уходит» от него, а при выведении — «догоняет» магнит. Разрезанное кольцо никак не «реагирует» на движения магнита, поскольку в нем не может возникнуть индукционный ток.
Рассмотрим более подробно движение постоянного магнита вблизи проводящего кольца.
При движении магнита вправо магнитный поток через кольцо увеличивается (рис. 163, а). В соответствии с правилом Ленца индукционный ток силой I создает магнитное поле направленное противоположно исходному полю
Движение магнита влево приводит к уменьшению магнитного потока через кольцо. Возникающий индукционный ток силой I создает поле препятствую
щее изменению начального магнитного потока, т. е. стремится сохранить начальную величину магнитного потока (рис. 163, б).
Таким образом, замкнутый контур как бы «сопротивляется» изменению пронизывающего его магнитного потока. Следовательно, возникновение индукционного тока можно рассматривать как проявление инерции системы.
В то же время возникновение индукционного тока в замкнутом контуре при изменении магнитного потока через него означает, что заряженные частицы пришли в движение под действием каких-то сил. Это не могут быть силы Лоренца, поскольку они действуют только на движущиеся заряды. Какие же силы заставляют двигаться электроны в покоящемся проводнике при изменении индукции магнитного поля?
Эти силы имеют электрическую природу, но по своим свойствам отличаются от электростатических сил (сил Кулона). При электромагнитной индукции возникает вихревое электрическое поле, действующее на заряженные частицы.
В отличие от потенциального электростатического поля, создаваемого неподвижными электрическими зарядами, вихревое электрическое поле, возникающее вследствие изменения магнитного поля, непотенциально. Это означает, что работа сил этого поля по замкнутой траектории не равна нулю, и они являются сторонними силами в замкнутом контуре при возникновении индукционного тока. Следовательно, работа сил вихревого электрического поля по перемещению единичного заряда по замкнутому контуру определяет ЭДС электромагнитной индукции.
Подчеркнем, что вихревое электрическое поле, возникающее при изменении магнитного поля, существует независимо от того, имеется или нет в этом месте замкнутый проводящий контур. Проводящий контур является лишь своеобразным индикатором, обнаруживающим наличие этого вихревого поля.
В отличие от электростатического вихревое электрическое поле имеет замкнутые силовые линии. Это связано с тем, что источниками электростатического поля являются электрические заряды, а источником вихревого электрического поля — переменное во времени магнитное поле.
Индукционные токи, возникающие в массивных проводниках под действием переменного магнитного поля, называются токами Фуко или вихревыми токами. В соответствии с законом Джоуля — Ленца они приводят к нагреванию проводников (выделению теплоты) и переходу энергии системы во внутреннюю энергию. Токи Фуко эффективно используются на практике: в плавильных печах, в установках для закалки металлических деталей, в сушильных установках, в медицине.
Открытие Фарадеем явления электромагнитной индукции позволило создать мощные генераторы электрического тока и положило начало промышленному производству электроэнергии, без которой невозможно представить существование современного общества.
Электромагнитная индукция
Электромагнитная индукция — это одно из явлений, на которых основаны электротехника и радиотехника.
Для оценки важности этого явления достаточно назвать взаимное преобразование механической и электрической энергии, передачу и распределение электрической энергии, передачу и прием информации.
Знание явления и закона электромагнитной индукции необходимо при изучении электрических цепей переменного тока.
Закон электромагнитной индукции
Явление электромагнитной индукции открыл в 1831 г. английский физик М. Фарадей и на основе этого открытия сформулировал один из важнейших физических законов — закон электромагнитной индукции.
Явление электромагнитной индукции
Явление электромагнитной индукции можно продемонстрировать следующими опытами. Внутрь цилиндрической катушки, концы которой соединены с гальванометром, с определенной скоростью вводится постоянный магнит. Стрелка гальванометра отклоняется, обнаруживая электрический ток в катушке (рис. 10.1, а). При удалении магнита от катушки стрелка гальванометра отклоняется в обратную сторону.
Гальванометр обнаруживает ток в катушке, если перемещать ее относительно другой катушки с током, которую назовем первичной (рис. 10.1, б). На рис. 10.1, в показаны две катушки, расположенные на одном сердечнике. Одна из них присоединена к источнику электрической энергии через ключ, вторая замкнута через гальванометр.
Электрические катушки между собой не связаны, но при замыкании ключа наблюдается отклонение стрелки гальванометра в одну сторону, при размыкании — в другую.
Несмотря на внешнее различие опытов, их одинаковый результат дает основание полагать, что непосредственная причина возникновения электрического тока в цепи вторичной катушки в этих опытах одинакова.
Действительно, во всех рассмотренных опытах изменяется потокосцепление вторичной катушки: в первых двух случаях — благодаря изменению положения ее в магнитном поле, в третьем случае — в связи с увеличением тока в первичной катушке после замыкания ключа и уменьшением его после размыкания.
Возбуждение электродвижущей силы в контуре при изменении потокосцепления этого контура называется электромагнитной индукцией.
Под действием индуктированной э.д.с. в замкнутом контуре возникает индуктированный электрический ток. Возникновение тока означает, что во вторичный контур передается энергия, которая при наличии сопротивления в цепи превращается в тепло. В первых двух опытах электрическая энергия возникла за счет механической работы при перемещении постоянного магнита (рис. 10.1, а) или катушки (рис. 10.1, б). В третьем опыте обе катушки неподвижны, т. е. механическая работа не совершается. Электрическая энергия во вторичной катушке возникает за счет энергии источника, включенного в цепи первичной катушки. В этом случае электрическая энергия передается из одной цепи в другую посредством магнитного поля.
Рис. 10.1. Опыты для наблюдения электромагнитной индукции
Преобразование энергии из одного вида в другой посредством магнитного поля или изменение энергии поля количественно определяются через абсолютное значение изменения потокосцепления. Явление электромагнитной индукции, сопровождающее эти процессы, связано со скоростью изменения потокосцепления.
Закон электромагнитной индукции
Закон электромагнитной индукции устанавливает количественное выражение для индуктированной э. д. с.
Электродвижущая сила, индуктируемая в замкнутом контуре при изменении сцепленного с ним магнитного потока, равна скорости изменения потокосцепления, взятой с отрицательным знаком:
В этой форме закон электромагнитной индукции был дан Максвеллом.
В катушке, имеющей несколько витков, общая э. д. с. зависит от числа витков N. Если все витки катушки сцеплены с одинаковым магнитным потоком, то э. д. с. будет в N раз больше:
В общем случае витки катушки могут быть сцеплены с разными потоками, тогда ее общая э. д. с. определяется алгебраической суммой э. д. с. отдельных витков:
В числителе последнего выражения дана алгебраическая сумма изменений потокосцепления отдельных витков катушек, т. е. изменение общего потокосцепления.
Таким образом, э. д. с. катушки определяется скоростью изменения ее общего потокосцепления и общая формула закона электромагнитной индукции имеет вид
Правило Ленца
В 1833 г. проф. Петербургского университета Э. X. Ленц установил общее правило для определения направления индуктированного тока и электромагнитных сил, возникающих в результате взаимодействия магнитного поля с индуктированным током.
Если магнитный поток, сцепленный с проводящим замкнутым контуром, изменяется, в контуре возникают явления электрического и механического характера, препятствующие изменению магнитного потока.
Рис. 10.2. Схемы, поясняющие правило Ленца
Правило Ленца отражает проявления электромагнитной инерции в системах контуров с токами. Этому правилу соответствует знак минус в формулах, выражающих закон электромагнитной индукции [см. (10.1) — (10.3)], если принять положительными направления магнитного потока и индуктированной в контуре э.д.с., удовлетворяющие правилу правого буравчика (рис. 10.2, а).
Предположим, что положительный магнитный поток, сцепленный с контуром, увеличивается. Приращение потока dФ и скорость его изменения dФ/dt положительны (dФ > 0, dФ/dt > 0). Индуктированная в контуре э. д. с., согласно правилу Ленца, направлена против выбранного положительного направления, т. е. отрицательна (е 0), т. е. совпадает с выбранным положительным направлением (рис. 10.2, в). Индуктированный в контуре ток i создает вторичный магнитный поток, совпадающий по направлению с основным потоком. Вторичный магнитный поток, возникновение которого можно рассматривать как реакцию системы контуров с токами на изменение ее магнитного состояния, в данном случае препятствует уменьшению основного магнитного потока. Возникающие при этом электромагнитные силы стремятся расширить контур с током, т. е. увеличить магнитный поток, сцепленный с ним.
Факторы, противодействующие изменению магнитного потока, тем сильнее, чем быстрее изменяется поток.
Электромагнитная инерция в системах контуров с токами подобна механической инерции в системах движущихся тел: при всяком изменении скорости возникают силы инерции, препятствующие этому изменению.
Задачи
Задача 10.1. Магнитный поток, создаваемый током в катушке, изменяется по графику рис. 10.3. Построить график э. д. с., индуктированной в катушке с числом витков N = 15, если наибольшая величина потока Фm = 0,2 Вб.
Рис. 10.3. К задаче 10.1
Решение. Э. д. с: в катушке определяют по формуле (10.2), где dФ/dt — скорость изменения магнитного потока. На участке 0-1 отрицательный магнитный поток в течение t1 = 0,02 с растет от нуля до Фm = 0,2 Вб по линейному закону, поэтому скорость изменения потока постоянна и отрицательна:
При постоянной скорости изменения магнитного потока э. д. с. будет постоянной:
Знак э. д. с. определим по правилу Ленца.
Условно-положительные направления магнитного потока и индуктированной э. д. с. в катушке показаны на рис. 10.4, а.
На участке 0-1 кривой Ф(t) отрицательный магнитный поток увеличивается. Направления магнитного потока и тока в катушке, соответствующие этому отрезку времени, отмечены на рис. 10.4, б. Индуктированная э. д. с. препятствует росту магнитного потока, т. е. направлена против тока, создающего поток (пунктирные стрелки). В данном случае э. д. с. положительна, так как ее направление совпадает с условно-положительным направлением.
Рис. 10.4. К задаче 10.1
На участке 1-2 отрицательный магнитный поток уменьшается с той же скоростью, с какой он раньше увеличивался. Индуктированная э. д. с., сохраняя свою величину 150 В, препятствует уменьшению потока, т. е. направлена, так же как ток в катушке (рис. 10.4, в), против условно-положительного направления. Из формулы (10.2) также следует, что э. д. с. отрицательна.
Наведение э.д.с. в проводнике, движущемся в магнитном поле
В проводнике, движущемся в магнитном поле так, что он пересекает линии магнитной индукции, индуктируется электродвижущая сила. Это явление — разновидность электромагнитной индукции.
Выражение э.д.с. в проводнике, движущемся в магнитном поле
Рассмотрим отрезок АБ прямолинейного проводника, который движется, пересекая под прямым углом линии магнитной индукции равномерного поля с магнитной индукцией В.
На рис. 10.6, а показан проводник АБ, который катится в направлении механической силы Fмх по металлическим шинам, соединенным между собой через сопротивление R.
Проводник АБ, отрезки шин и сопротивление образуют замкнутый проводящий контур. При перемещении проводника на расстояние b с постоянной скоростью v магнитный поток, сцепленный с этим контуром, увеличивается за счет увеличения площади поверхности, ограниченной контуром.
Приращение магнитного потока
где l — длина части проводника АБ, находящейся в магнитном поле.
Абсолютная величина э. д. с. в контуре
где Δt — время, в течение которого проводник АБ переместился на расстояние b; b/Δt = v — скорость движения проводника; поэтому
Рис. 10.6. Движение прямого провода в магнитном поле
Если проводник будет перемещаться под углом α 2 r = 12,8 Вт) и в приемнике (I 2 R = 115,2 Вт).
Задача 10.9. Устройство, описанное в задаче 10.8, переведено в режим двигателя. Для этого вместо приемника энергии в цепь включили аккумуляторную батарею с э. д. с. Е0 = 12 В и внутренним сопротивлением rа = 0,2 Ом.
Определить окружное усилие, вращающий момент и скорость рамки и составить баланс мощностей, если ток в цепи установился равным 10 А.
Решение. Определим э. д. с. в рамке согласно второму закону Кирхгофа:
Линейная скорость вращения рамки
Частота вращения
Окружное усилие на цилиндре
Вращающий момент
Механическая мощность
Баланс мощностей: мощность батареи равна сумме механической мощности и мощности потерь в электрической цепи:
Э.Д.С. Самоиндукции и взаимоиндукции
При изменении собственного потокосцепления в контуре или катушке наводится э. д. с. самоиндукции eL, а при изменении взаимного потокосцепления — э. д. с. взаимоиндукции.
Э.д.с. самоиндукции
Изменение собственного потокосцепления обычно является следствием изменения тока
или
Э. д. с. самоиндукции пропорциональна скорости изменения тока di/dt. Она противодействует изменению тока, т. е. при увеличении тока препятствует его росту, а при уменьшении задерживает его падение (правило Ленца).
Чем быстрее изменяется ток, тем больше противодействие его росту или падению. Однако это противодействие зависит не только от скорости изменения тока, но и от конструкции электромагнитного устройства, что в формуле (10.10) выражается множителем L, т. е. индуктивностью этого устройства.
Если изменение тока в катушке является следствием изменения приложенного к ней напряжения, то э. д. с. самоиндукции направлена против приложенного напряжения, когда ток растет, и совпадает по направлению с напряжением, когда ток уменьшается.
Подобно массе, характеризующей инертность в механической системе, индуктивность характеризует инертность в электромагнитной системе.
Э.д.с. взаимоиндукции
Для системы магнитно-связанных катушек (см. рис. 8.21) э. д. с. взаимоиндукции
Изменение взаимного потокосцепления может быть следствием изменения тока в одной из катушек или изменения коэффициента связи.
Предположим, что изменяется ток i1 в первой катушке. Э. д. с. взаимоиндукции е2м во второй катушке пропорциональна скорости изменения этого тока:
Аналогично, при изменении тока i2 э. д. с. взаимоиндукции
В том и другом случае коэффициентом пропорциональности является взаимоиндуктивность системы М.
Правило Ленца в применении к такой системе указывает на то, что изменение тока в одной катушке встречает противодействие со стороны другой катушки.
Из выражения (10.11) видно, что э. д. с. взаимоиндукции е2м, а следовательно, и индуктированный ток i2 имеют знак, противоположный скорости изменения тока i1. Это значит, что при увеличении тока i1 и его магнитного потока Ф1.2 индуктированный ток i2 создает магнитный поток Ф2.1, направленный встречно потоку Ф1.2; при уменьшении i1 поток Ф2.1 направлен согласно с уменьшающимся потоком Ф1.2.
Рис. 10.11. Схема трансформатора
Аналогичное рассуждение можно привести из выражения (10.12). Направление магнитных потоков в обоих случаях, как обычно, определяется по правилу буравчика.
Взаимоиндуктивность, так же как и индуктивность, характеризует электромагнитную инерцию, но в системе катушек (контуров), имеющих магнитную связь.
Принцип действия трансформатора
Наглядным примером практического использования явления взаимоиндукции является работа трансформатора. Трансформатор — статический электромагнитный аппарат для изменения величины напряжения или тока.
Принципиальная схема трансформатора (рис. 10.11) имеет магнитопровод 3 из электротехнической стали и две обмотки на магнитопроводе: первичную 1 с числом витков N1 и вторичную 2 с числом витков N2. Обмотки выполняют из медного провода.
Первичной обмоткой трансформатор включается в сеть переменного напряжения U1 и в ней возникает ток i1. К вторичной обмотке подключается приемник электрической энергии.
Рассмотрим трансформатор с разомкнутой цепью вторичной обмотки, т. е. в режиме холостого хода.
При переменном токе в первичной обмотке создается переменный магнитный поток Ф, который замыкается по стальному сердечнику и образует потокосцепление с обеими обмотками. Таким образом, в трансформаторе обмотки электрически между собой не связаны, а связаны переменным магнитным потоком.
В обеих обмотках наводится э. д. с.:
Отношение э. д. с.
Отношение чисел витков обмоток трансформатора называется коэффициентом трансформации.
Отношение э. д. с. при холостом ходе можно заменить отношением напряжений на зажимах обмоток, учитывая, что u2 = е2 и u1 ≈ е1 (u1 > е1 на величину падения напряжения в обмотке, которое при холостом ходе мало).
Следовательно,
Отсюда видно, что при N2 > N1 (u2 > u1) трансформатор повышает, а при N2
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Формула ЭДС индукции
ЭДС – это аббревиатура от электродвижущей силы индукции (.) Электромагнитная индукция возникает в проводнике, который находится в переменном магнитном поле. Если в качестве проводника выступает замкнутый проводящий контур, то в нем появляется электрический ток, который называется током индукции.
Закон Фарадея – Максвелла для электромагнитной индукции
Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:
где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.
В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:
Частные случаи формул ЭДС индукции
Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:
где – потокосцепление.
При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:
где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .
При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:
где S – площадь, которую ограничивает виток; – поток самоиндукции витка;
— угловая скорость; (
) – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля
.
Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:
В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:
Примеры решения задач по теме «ЭДС индукции»
Задание | Какова электродвижущая сила магнитной индукции в соленоиде, который находится в магнитном поле, индукция которого изменяется со скоростью ![]() ![]() ![]() ![]() |
Решение | За основу решения задачи примем закон Фарадея – Максвелла: |
Поток магнитной индукции через N витков соленоида будет равен:
где площадь ограниченная каждым витком соленоида составляет:
Далее мы будем рассматривать модуль ЭДС индукции. Подставляем выражения (1.2) и (1.3) в закон электромагнитной индукции (1.1), получаем:
где – скорость изменения индукции магнитного поля.
Задание | Какова угловая скорость (![]() ![]() |
Решение | На рис.1 изобразим схематично то, что происходит в задаче. |
В качестве основы для решения задачи используем основной закон электромагнитной индукции (закон Фарадея – Максвелла):
Поток магнитной индукции равен:
где , так как нормаль к площади, которая получается при вращении стержня, параллельна направлению вектора магнитного поля (см. рис.1).
Далее будем рассматривать модуль ЭДС индукции. Подставим выражение для магнитного потока в закон (2.1), имеем:
В выражении (2.3) мы учли, что магнитное поле не изменяется, переменной величиной является площадь S (см. рис.1). Элементарный угол поворота стержня () выразим как
так как по условию задачи;
– время поворота стержня. Элемент площади сектора круга (
), который получается при движении стержня, может быть выражен как:
Разность потенциалов на концах нашего проводящего стержня равна по модулю ЭДС индукции:
ЭДС индукции. Направление индукционного тока
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток магнитного поля через замкнутую поверхность
, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре
Индукцио́нный ток — электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и правилом Ленца.
Правило Ленца определяет направление индукционного тока и гласит:
Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.
Правило сформулировано в 1833 году Э. Х. Ленцем. Позднее оно было обобщено на все физические явления в работах Ле Шателье (1884 год) и Брауна (1887 год), это обобщение известно как принцип Ле Шателье — Брауна.
Эффектной демонстрацией правила Ленца является опыт Элиу Томсона.
Физическая суть правила
Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением [1] :
где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.
Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменением величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.
Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.