Маленький ликбез любителям пересветки, часть 2
И снова всем привет!
Как и обещал, в этот раз я в двух словах расскажу о правилах включения светодиодов в электрическую цепь, о расчете режима работы светодиодов, выборе токоограничительных резисторов для них, а также о расшифровке цветового кода выводных резисторов.
О питании светодиодов в интернете информации масса, но, к сожалению, многие авторы собственных конструкций часто допускают ошибки, главная из которых допускается при включении в общую цепь нескольких светодиодов одновременно. Для начала разберем включение одного светодиода для работы от напряжения 12В, но перед этим определимся в терминологии.
Как я успел заметить, народ часто путает последовательное и параллельное соединение каких-либо элементов электрической цепи. Рассмотрим, ху из ху.
1. Последовательное соединение
Последовательно — это цепочкой, друг за другом, когда один вывод предыдущей детали соединен только с одним выводом следующей. Наглядный пример — хоровод:)
Рисунок 1 — последовательное соединение. Лампочки следуют одна за другой и за батареей
Главные особенности такого соединения:
— в случае с лампочками или светодиодами, они должны быть одинаковыми, рассчитанными на одно и то же напряжение и ток, иначе одни из них гореть не будут, а другие станут гореть слишком ярко, вплоть до перегорания;
— сумма напряжений, на которые рассчитана каждая лампочка, должна быть равна (в идеале) или примерно равна (на практике) напряжению батареи. Или же, с другой стороны, на каждой лампочке будет напряжение, равное напряжению батареи, деленному на число лампочек. Или же с третьей стороны: сумма напряжений на всех элементах последовательной цепи равна напряжению питания;
— в любом участке цепи будет протекать один и тот же ток;
— при перегорании любой лампочки погаснут все сразу, потому как цепь разорвется.
2. Параллельное соединение — все элементы цепи соединены так, что из двух выводов одни соединяются в один проводник, другие в другой. Наглядный пример — девушка и молодой человек держат друг друга за руки, стоя лицом к лицу:))) Ну, или дети, играющие в "паровозик".
Рисунок 2 — параллельное соединение. Левые выводы в одну кучу, правые — в другую.
Главные особенности:
— лампочки могут быть разной мощности, на разные токи, но на одинаковое напряжение, равное (в идеале) или примерно равное (на практике) напряжению батареи;
— на любом элементе будет одно и то же напряжение;
— ток, потребляемый от батареи равен сумме токов всех лампочек;
— при перегорании любой лампочки остальные продолжат гореть.
Есть еще и третий вариант соединения — соединение смешанное, когда несколько последовательных цепей соединены параллельно и наоборот.
Рисунок 3 — смешанное соединение: слева три последовательные цепи соединены параллельно, справа — наоборот
В таком соединении каждый тип цепи имеет те же главные особенности, что и по отдельности. Кстати, если присмотреться, то цепь, показанная на рисунке 1, тоже является примером смешанного соединения: последовательная цепь лампочек подключена параллельно батарее:)))
Переходим к главному — к светодиодам. Лампочки в подсветке, например, приборной панели VDO 2110, соединены параллельно, каждая лампа рассчитана на напряжение 12В (для лампочки ее рабочее напряжение — определяющий параметр, мощность и число их зависит только от мощности источника питания) и может подключаться к питанию напрямую. Со светодиодом все иначе. При работе светодиода в расчетном, штатном режиме напряжение на нем обычно равно 3…3,3В, но определяющим параметром для него является не напряжение, а ток. Свойства полупроводника таково, что при плавном подъеме напряжения на нем, скажем, с помощью реостата регулировки подсветки, оно начинает расти от нуля до определенной величины (для светодиода это упомянутые 3…3,3В), после чего напряжение остается практически неизменным, дальше растет только ток. И когда он превысит некоторую величину, светодиод перегорает. Если подать на светодиод напряжение прямо с аккумулятора, оно-таки будет составлять 12 вольт, но срок жизни диода будет определяться секундами, если не долями секунд.
Чтобы светодиод стал работать от 12В, необходимо ограничить его ток, чтобы он не превышал максимально допустимого для светодиода значения. Это можно сделать несколькими способами: с помощью токоограничивающего резистора, стабилизатора тока, широтно-импульсной модуляции. Так как все это я пишу в расчете на начинающих, два последних способа мы опустим — тем, кто "в танке", это все уже не нужно — и рассмотрим метод расчета токоограничивающего резистора.
Для того, чтобы уменьшить, ограничить ток в цепи светодиода, нам нужно увеличить сопротивление этой цепи. Вспоминаем закон господина Ома:
где: I — ток, U — напряжение, R — сопротивление
Напряжение у нас всегда одно — 12В. Кто-то возразит — не 12, а 14,4В. Скажем, так: напряжение у нас всегда равно напряжению бортовой сети автомобиля, но чтобы уберечь светодиоды от выхода из строя, все расчеты будем делать для максимального напряжения — 14,4В. Так вот, напряжение у нас всегда одно и то же — 14,4В. Номинальный ток современных светодиодов обычно составляет 10…20 мА. Это (как, впрочем, и рабочее прямое падение напряжения на светодиоде — 3…3,3В величина, усредненная для основной массы белых-синих-красных-зеленых-RGB светодиодов в SMD исполнении) лучше уточнить по даташиту, если известен тип светодиода. Если же тип неизвестен, лучше принять значение 10 мА — светить будет послабее, зато точно не сгорит от перегрузки по току.
Чтобы увеличить сопротивление цепи светодиода, последовательно с ним включается токоограничивающий резистор:
Для определения его номинала узнаем, сколько вольт должно упасть на резисторе. Вспоминаем правило последовательной цепи: сумма напряжений на всех элементах равна напряжению питания. Питание у нас 14,4В. Номинальное напряжение на светодиоде — 3,3В.
14,4В — 3,3В = 11,1В
Именно такое напряжение должно быть на резисторе — 11,1В. Ток, протекающий в цепи (в том числе, и через светодиод) равен 10…20 мА. Например, для SMD-светодиода типоразмера 3528 номинальный ток равен обычно 20 мА, но для пущей сохранности возьмем немного меньше — 15мА. Выведем сопротивление из формулы закона Ома:
Напряжение на резисторе мы посчитали — 11,1В, ток через светодиод, а следовательно, и через резистор, мы выбрали — 15мА. Сопротивление резистора R = 11,1В / 15мА = 0,74 кОм. Вообще, если делать все по всем правилам, ток должен быть задан в амперах, при этом значение сопротивления получится в омах: 11,1В / 0,015А = 740 Ом. Что, по сути, то же самое:) Ближайший стандартный номинал к рассчитанной величине — 750 Ом. Расчет закончен.
Полезно бывает посчитать мощность резистора для уверенности, что он выдержит. Для этого нужно ток через резистор (на этот раз удобнее уже в амперах:) ) умножить на напряжение на нем: 11,1В * 0,015А = 0,17 Вт (округленно). Теперь расчет совсем закончен — чтобы запитать один светодиод, нам нужен резистор мощностью 0,25 Вт (ближайшее вверх стандартное значение) сопротивлением 750 Ом.
Для удобства сведу все в одну кучу, пусть шпаргалка будет:
Полный расчет токоограничивающего резистора
Вместо резистора в цепь можно включить стабилизатор тока, простых схем сейчас много в сети. Может быть, когда-нибудь руки дойдут до их описания.
Чаще всего при пересветке всяческих панелей (приборных, печек и т.п.) светодиоды объединяют в группы (обычно по три, реже — по два), при этом экономятся резисторы. И вот тут самое главное правило: светодиоды в группе необходимо соединять только последовательно!
Почему? Все просто. В последовательной цепи через все элементы течет один и тот же ток, который мы можем точно определить и задать с помощью резистора. В параллельной же мы можем задать только общий ток всей цепи, он будет равен сумме токов через светодиоды. Идеального на свете ничего нет, светодиоды тоже имеют разброс параметров: одни потребляют меньший ток, другие больший и может получиться так, что при токе через три "неправильных" светодиода 45 мА (по 15 мА на каждого — вроде справедливо, правда?), но сильном разбросе их параметров на два из диодов может прийтись по 10 мА, а вот третьему достанутся оставшиеся 25, он обидится один раз — и все. А в сумме получатся те же 45 мА.
Так что вот оно, самое железное правило: несколько светодиодов с одним резистором — только последовательно. А вот эти группы между собой соединяем уже параллельно, потому как каждая из них будет рассчитана на 14,4В.
Расчет для группы из двух-трех диодов ничем не отличается от приведенного, только при расчете напряжения на резисторе из напряжения питания нужно вычитать сумму напряжений всех светодиодов в группе (6,6В — для двух, 9,9 — для трех). Сопротивление и мощность вычисляются одинаково.
На этом, собственно, все:)
Ну и напоследок, обещанная таблица цветовой кодировки резисторов и онлайн-сервис для ее расшифровки.
Спасибо за внимание! Всем правильных схем и хорошего настроения:) До новых встреч в эфире!
Расчет резистора для светодиода. Онлайн калькулятор
Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.
Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.
Расчет резистора для светодиода
Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:
- V — напряжение источника питания
- VLED — напряжение падения на светодиоде
- I – рабочий ток светодиода
Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:
Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.
Давайте, на примере выполним расчет сопротивления резистора для светодиода.
- источник питания: 12 вольт
- напряжение светодиода: 2 вольта
- рабочий ток светодиода: 30 мА
Рассчитаем токоограничивающий резистор, используя формулу:
Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).
Последовательное соединение светодиодов
Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.
Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.
Пример расчета сопротивления резистора при последовательном подключении.
В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.
Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.
Используя закон Ома для участка цепи, вычисляем значение сопротивления ограничительного резистора:
Резистор должен иметь значение не менее 183,3 Ом.
Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)
Параллельное соединение светодиодов
Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.
Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.
И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.
Онлайн калькулятор расчета резистора для светодиода
Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:
примечание: разделителем десятых является точка, а не запятая
Формула расчета сопротивления резистора онлайн калькулятора
Сопротивление резистора = (U – UF)/ I F
- U – источник питания;
- UF – прямое напряжение светодиода;
- IF – ток светодиода (в миллиамперах).
Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.
Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.
Расчет светодиодов — калькулятор
Внимание! При подключении соблюдайте полярность светодиодов. О том, как определить полярность читайте здесь и здесь.
Светодиоды большой мощности необходимо питать через LED драйвер. Читайте форум по питанию светодиодов и источников света.
Комментарии (166)
| Подписаться
+1
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+1
0
0
0
0
0
0
600-700mAh.
Подавать питание хочу через блок питания от ноутбука или любой другой. Я так полагаю, что данные, указанные на них — это пиковые данные, например 4,6ампер на 95W, где ПОСТОЯННОЕ напряжение
19,5 (зависит от блока).
Можно ли вообще так сделать? Или всё равно нужно паять по резистору на линию?
Хочу взять блок питания с запасом, разумеется. Не будут ли пытаться резисторы брать на себя с блока питания оставшийся «запас»? Или они просто отрегулируют потребление тока на каждую линию из последовательно подключенных диодов?
Всё ли правильно я понял, и можно ли брать резистор «с запасом»? Я так понимаю, что запас кроется в его мощности?
0
0
0
0
+1
Как рассчитать резистор для светодиодов — формулы с примерами + онлайн калькулятор
Светодиоды разных оттенков цвета имеют разные по величине прямые рабочие напряжения. Они задаются выбором токоограничивающего сопротивления светодиода. Чтобы вывести световой прибор на номинальный режим, нужно запитать p-n переход рабочим током. Для этого производят расчет резистора для светодиода.
Таблица напряжения светодиодов в зависимости от цвета
Рабочие напряжения светодиодов разные. Они зависят от материалов полупроводникового p-n перехода и связаны с длиной волны излучения света, т.е. оттенка цвета свечения.
Таблица номинальных режимов разных оттенков цвета для расчета гасящего сопротивления приведена ниже.
Цвет свечения | Прямое напряжение, В |
---|---|
Оттенки белого | 3–3,7 |
Красный | 1,6-2,03 |
Оранжевый | 2,03-2,1 |
Желтый | 2,1-2,2 |
Зеленый | 2,2-3,5 |
Синий | 2,5-3,7 |
Фиолетовый | 2,8-4,04 |
Инфракрасный | Не более 1,9 |
Ультрафиолетовый | 3,1-4,4 |
Из таблицы видно, что на 3 вольта можно включать излучатели всех видов свечения, кроме устройств с белым оттенком, частично фиолетовых и всех ультрафиолетовых. Это вязано с тем, что нужно какую-то часть напряжения источника питания «израсходовать» на ограничение тока через кристалл.
При источниках питания 5, 9 или 12 В можно питать единичные диоды или последовательные их цепочки из 3 и 5-6 штук.
Последовательные цепочки снижают надежность устройств, в которых они используются, примерно в число раз, соответствующее количеству светодиодов. А параллельное включение повышает надежность в той же пропорции: 2 цепочки – в 2 раза, 3 – в 3 раза и т.д.
Онлайн калькулятор для расчета светодиодов
Для автоматического расчета понадобятся следующие данные:
- напряжение источника или блока питания, В;
- номинальное прямое напряжение устройства, В;
- прямой номинальный рабочий ток, мА;
- количество светодиодов в цепочке или включенных параллельно; (ов).
Исходные данные можно взять из паспорта диода.
После введения их в соответствующие окна калькулятора нажмите на кнопку «Рассчитать» и получите номинальное значение резистора и его мощность.
Расчет величины резистора-токоограничителя
На практике используют два вида расчета – графический, по ВАХ – вольтамперной характеристике конкретного диода, и математический – по его паспортным данным.
Принципиальная электрическая схема подключения излучателя к источнику питания.
- Е – источник питания, имеющий на выходе величину Е;
- «+»/«–» – полярность подключения светодиода: «+» – анод, на схемах показывается треугольником, «-» – катод, на схемах – поперечная черточка;
- R – токоограничивающее сопротивление;
- Uled – прямое, оно же рабочее напряжение;
- I – рабочий ток через прибор;
- напряжение на резисторе обозначим как UR.
Тогда схема для расчета примет вид:
Схема для расчета резистора.
Рассчитаем сопротивление для ограничения тока. Напряжение U в цепи распределится так:
U = UR + Uled или UR + I × Rled, в вольтах,
где Rled – внутреннее дифференциальное сопротивление p-n перехода.
Математическими преобразованиями получаем формулу:
R = (U-Uled)/I, в Ом.
Величину Uled можно подобрать из паспортных значений.
Проведем расчет величины токоограничивающего резистора для LED производства компании Cree модели Cree XM–L, имеющий бин T6.
Его паспортные данные: типовое номинальное ULED = 2,9 В, максимальное ULED = 3,5 В, рабочий ток ILED=0,7 А.
Для расчета используем ULED = 2,9 В.
R = (U-Uled)/I = (5-2,9)/0,7 = 3 Ом.
Рассчитанная величина равна 3 Ом. Выбираем элемент с допуском точности ± 5%. Этой точности с избытком хватит чтобы установить рабочую точку на 700 мА.
Округлять величину сопротивления следует в большую сторону. Это уменьшит ток, световой поток диода и повысит надежность работы более щадящим тепловым режимом кристалла.
P = I² × R = 0,7² × 3 = 1,47 Вт
Для надежности округлим ее до ближайшей большей величины – 2 Вт.
Схемы последовательного и параллельного включения LED широко используются и показывают особенности этих видов соединения. Последовательное включение одинаковых элементов делит напряжение источника поровну между ними. При разных внутренних сопротивлениях – пропорционально сопротивлениям. При параллельном соединении напряжение одинаковое, а ток – обратно пропорционален внутренним сопротивлениям элементов.
При последовательном соединении LED
При последовательном соединении первый в цепочке диод анодом соединен с «+» источника питания, а катодом – с анодом второго диода. И так до последнего в цепочке, катод которого соединен с «-» источника. Ток в последовательной цепи один и тот же во всех ее элементах. Т.е. через любой световой прибор он одной и той же величины. Внутреннее сопротивление открытого, т.е. излучающего свет кристалла, составляет десятки или сотни ом. Если через цепочку течет 15-20 мА при сопротивлении 100 Ом, то на каждом элементе будет по 1,5-2 В. Сумма напряжений на всех приборах должна быть меньше, чем у источника питания. Разницу обычно гасят специальным резистором, который выполняет две функции:
- ограничивает номинальный рабочий ток;
- обеспечивает номинальное прямое напряжение на светодиоде.
При параллельном соединении
Параллельное включение может быть выполнено двумя способами.
Электрическая схема параллельного соединения.
Верхняя картинка показывает как включать не желательно. При таком подключении одно сопротивление обеспечит равенство токов только при идеальных кристаллах и одинаковой длине подводящих проводников. Но разброс параметров полупроводниковых приборов при изготовлении не позволяет сделать их одинаковыми. А подбор одинаковых – резко увеличивает цену. Разница может достигать 50-70% и более. Собрав конструкцию, получите разницу в свечении не менее 50-70%. Кроме того, выход из строя одного излучателя изменит работу всех: при обрыве цепи один погаснет, остальные станут светить ярче на 33% и станут больше греться. Перегрев будет способствовать их деградации – изменению оттенка свечения и уменьшению яркости.
В случае короткого замыкания в результате перегрева и сгорания кристалла возможен выход из строя токоограничивающего сопротивления.
Схема последовательно-параллельного соединения устройств.
На напряжение 4,5 В последовательно подсоединяют по три LED-элемента и одно токоограничивающее сопротивление. Получившиеся цепочки соединяют параллельно. Через каждый диод течет 20 мА, а через все вместе – 60 мА. На каждом из них получается меньше, чем 1,5 В, а на токоограничителе – не менее, чем 0,2-0,5 В. Интересно, что если использовать источник питания 4,5 В, то с ним работать смогут только инфракрасные диоды с прямым напряжением менее 1,5 В, или нужно увеличивать питание хотя бы до 5 В.
Непосредственно параллельное соединение LED-элементов (верхняя часть схемы) использовать не рекомендуется из-за разброса параметров в 30-50% и более. Используют схему с индивидуальными сопротивлениями на каждый диод (нижняя часть) и соединяют уже пары диод-резистор параллельно.
Когда один светодиод
Резистор для одиночного LED используется только при их мощностях до 50-100 мВт. При больших значениях мощности заметно уменьшается КПД схемы питания.
Если прямое рабочее напряжение диода значительно меньше напряжения источника питания, применение ограничительного резистора ведет к большим потерям. Электроэнергия высокого качества и стабильности, с тщательно отфильтрованными пульсациями, обеспеченная 3-5 видами защиты блока питания не преобразуется в свет, а просто пассивно рассеивается в виде тепла.
На больших мощностях в ход идут драйверы – стабилизаторы тока номинальной величины.
Видео-примеры простейшего расчета сопротивления.
Но при мощности диода более сотни милливатт нужно применять автономные или встроенные источники стабилизации тока или драйверы.
Инженер-электрик. Специалист по проектированию и эксплуатации электротехнических изделий.