Что такое электротехническая сталь
Перейти к содержимому

Что такое электротехническая сталь

  • автор:

Электротехническая сталь и ее свойства

Являясь разновидностью черного металла, электротехническая сталь выделяется улучшенными электромагнитными свойствами, что достигается добавлением в железо кремния, доля которого может быть от 1 до 5%. В качестве легирующей добавки также может использоваться алюминий, с долей до 0,5%.

Виды и особенности

Низкоуглеродистые электротехнические стали выплавляются в мартеновской печи и, с учетом необходимых магнитных свойств, могут содержать разные объемы кремния. По виду используемого метода производства, сталь бывает холоднокатаной и горячекатаной, выпускаемой в виде ленты либо листа, толщиной от 0,05 до 1 миллиметра.

По содержанию легирующего элемента, которым выступает кремний, стали электротехнические разделяют на:

— низколегированные, с содержанием кремния от 0,5 до 1,8%;

— среднелегированные, с долей кремния от 1,8 до 2,8%;

— легированные, с содержанием кремния от 2,8 до 3,8%;

— высоколегированные с долей кремния от 3,8 до 4,8%.

Более значительное содержание кремния приводит к хрупкости металла.

Низко- и среднелегированные стали получили условное название динамных, а легированные и высоколегированные – трансформаторных.

Основные свойства и характеристики

Добавление в железо кремния способствует увеличению электрического сопротивления материала, уменьшению удельной потери энергии на вихревые токи и гистерезис, снижению индукции насыщения и пластичности. С повышением доли легирующей добавки, растут и эти показатели.

Улучшение магнитных показателей достигается и путем формирования кубообразной структуры кристаллов металла и рафинирования от побочных примесей.

Качество сталей определяется:

— электромагнитными свойствами, включающими показатели удельных потерь, коэрцитивной силы и магнитной индукции;

— изотропностью магнитных свойств, характеризуемой разницей показателей поперек и по вектору прокатки;

— механическими свойствами проката;

— параметрами электроизолирующего покрытия;

— уровнем исполнения листового и ленточного проката.

Области применения

Электротехническая сталь имеет хорошие магнитные характеристики, включающие высокий уровень индукции насыщения, минимальную коэрцитивную силу и небольшие потери на гистерезис. Это способствует широкому использованию материала в электротехнике, для выполнения роторных и статорных сердечников электромашин, элементов силовых трансформаторов, магнитопроводов и токовых трансформаторов для всевозможных электроаппаратов и гидрогенераторов переменного тока.

При этом, уровень легирования, не редко, определяет область применения материала. Так, например, для изготовления роторов и статоров электромашин используется динамная сталь, а трансформаторная идет на гидрогенераторы, сердечники магнитопроводов и трансформаторов.

Кроме того, стали используются не только как металлы с минимальным электрическим сопротивлением, но для преобразования электроэнергии в энергию тепловую.

Где можно купить

Приобрести электротехническую сталь, с необходимыми характеристиками, всегда может помочь компания «А-Синтез», представляющая высококачественный прокат ведущих зарубежных и отечественных металлургических предприятий.

Возможности компании позволяют купить прокат по доступной цене в любых объемах, с поставкой на объект заказчика в кратчайшие сроки. Возможна любая форма оплаты.

Вся поставляема продукция соответствует действующим стандартам и обеспечивается полной гарантией производителя.

Электротехническая сталь и ее свойства

Электротехническая сталь и ее свойстваНаибольшее применение в электротехнике получила листовая электротехническая сталь . Эта сталь является сплавом железа с кремнием, содержание которого в ней 0,8 — 4,8%. Такие стали, в которые вводятся в малом количестве какие-либо вещества для улучшения их свойства, называются легированными.

Кремний вводится в железо в виде ферросилиция (сплав сислицида железа FeSi с железом) и находится в нем в растворенном состоянии . Кремний реагирует с наиболее вредной (для магнитных свойств железа) примесью — кислородом, восстанавливая железо из его окислов FеО и образуя кремнезем SiO2, который переходит частично в шлак.

Электротехническая стальКремний также способствует выделению углерода из соединения Fе3С (цементит) с образованием графита. Таким образом, кремний устраняет химические соединения железа (FеО и Fе3С), которые вызывают увеличение коэрцитивной силы и увеличивают — потери на гистерезис. Кроме того, наличие кремния в железе в количестве 4 % и более увеличивает удельное электрическое сопротивление по сравнению с чистым железом, в результате чего уменьшаются потери на вихревые токи.

Несмотря на то что индукция насыщения Вs железа с увеличением кремния в нем з начительно повышается и достигает при 6,4% кремния большой величины (Вs = 2800 гс), все же кремния вводят не более 4,8%. Увеличение содержания кремния более 4,8% приводит к тому, что стали приобретают повышенную хрупкость, т. е. механические свойства их ухудшаются.

Выплавляется электротехническая сталь в мартеновских печах. Листы изготовляют прокаткой стального слитка в холодном или горячем состоянии. Поэтому различают холодно- и горячекатаную электротехническую сталь .

Электротехническая стальЖелезо имеет кубическую кристаллическую структуру. По исследованию намагничивания оказалось, что оно может быть неодинаково по различным направлениям этого куба. Наибольшим намагничиванием кристалл обладает в направлении ребра куба, меньшим — по диагонали грани и самым малым — по диагонали куба. Поэтому желательно, чтобы все кристаллики железа в листе выстроились в процессе прокатки в ряды по направлению ребер куба.

Это достигается повторными прокатками листов стали, с сильным обжатием (до 70%) и последующим отжигом в атмосфере водорода. Это способствует очищению стали от кислорода и углерода, а также укрупнению кристаллов и ориентировке их таким образом, чтобы ребра кристаллов совпадали с направлением прокатки. Такие стали называются текстурованными . У них магнитные свойства по направлению прокатки выше, чем у обычной горячекатаной стали.

Листы текстурованной стали изготовляются холодной прокаткой. Магнитная проницаемость их выше, а потери на гистерезис меньше, чем у горячекатаных листов. Кроме того, у холоднокатаной стали индукция в слабых магнитных полях возрастает сильнее, чем у горячекатаной, т. е. кривая намагничивания в слабых полях располагается значительно выше кривой горячекатаной стали.

Процесс производства листовой электротехнической стали

Рис. 1. Процесс производства листовой электротехнической стали

Следует, однако, отметить, что в результате ориентировки зерен текстурованной стали по направлению прокатки магнитная проницаемость по другим направлениям меньше, чем у горячекатаных. Так, при индукции 6 = 1,0 тл в направлении прокатки магнитная проницаемость μ м=50000, а в направлении перпендикулярно прокатке μ м — 5500. В связи с этим при сборке Ш-образных сердечников трансформаторов применяют отдельные полосы стали, вырезанные вдоль прокатки, которые затем шихтуют так, чтобы направление магнитного потока совпадало с направлением прокатки стали или составляло бы с ним угол 180°.

На рис. 2 приведены кривые намагничивания электротехнических сталей ЭЗЗОА и Э41 для трех диапазонов напряженностей магнитного поля: 0 — 2,4, 0 — 24 и 0 — 240 а/с м .

Кривые намагничивания электротехнических сталей

Рис. 2. Кривые намагничивания электротехнических сталей: а — сталь Э330А (текстурированная), б — сталь Э41 (нетекстурированная)

Электротехническая листовая сталь обладает хорошими магнитными характеристиками — высокой индукцией насыщения, малой коэрцитивной силой и малыми потерями на гистерезис. Благодаря этим свойствам она широко используется в электротехнике для изготовления сердечников статоров и роторов электрических машин, сердечников силовых трансформаторов, трансформаторов тока и магнитопроводов различных электрических аппаратов.

Отечественная электротехническая сталь различается по содержанию в ней кремния, по способу изготовления листов, а также по магнитным и электрическим свойствам.

Буква Э в обозначении стали означает » электротех ническая сталь » , первая за буквой цифра (1, 2, 3 и 4) означает степень легирования стали кремнием, причем содержание кремния находится в следующих пределах в %: для слаболегированной стали (Э1) от 0,8 до 1,8, для среднелегированной стали (Э2) от 1,8 до 2,8, для повышеннолегированной стали (ЭЗ) от 2,8 до 3,8, для высоколегированной стали (Э4) от 3,8 до 4,8.

Средняя величина удельного электрического сопротивления электротехнической стали ρ тоже зависит от количества кремния. О н о тем выше, чем больше содержание кремния в стали. Стали мирок Э1 имеют сопротивление ρ = 0,25 ом х мм 2 / м , марок Э2 — 0,40 ом х мм2/м, марок ЭЗ — 0,5 ом х мм 2 /м и марок Э4 — 0,6 ом х мм 2 /м.

п еремагничивании (вт/кг). Эти потери тем меньше, чем больше цифра, т. е. больше степень легирования стали кремнием. Нули после этих цифр о зн ачают, что сталь холоднокатаная текстурованная (0) и холоднокатаная малотекстурованная (00). Буква А указывает на особо низкие удельные потери при перемагничивании стали.

Электротехническая сталь выпускается в виде листов шириной от 240 до 1000 мм, длиной от 720 до 2000 мм и толщиной 0,1, 0,2, 0,35, 0,5 и 1,0 мм. Наибольшее применение имеют текстурованные стали, поскольку они обладают наибольшими значениями магнитных характеристик.

Электротехническая сталь

Рис. 3. Электротехническая сталь

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Электротехнические стали. Марки, свойства и области применения

Электротехнические стали (ЭТС) – класс ферромагнитных материалов, применяющихся для изготовления магнитно-активных частей электромашин и приборов, вырабатывающих и преобразующих электрическую энергию: генераторов, трансформаторов, электродвигателей, реле, электромагнитов. По способу изготовления ЭТС делятся на горячекатаные и холоднокатаные. Несмотря на то что химический состав ЭТС обычно не нормируется, они распределяются на группы в зависимости от массовой доли главного легирующего элемента (кремний или кремний совместно с алюминием), как это показано в табл. 1.

Стали могут изготовляться с незащищённой металлической поверхностью или иметь электроизоляционное покрытие. Термостойкость обозначается в марке буквой Т, улучшение штампуемости – буквой Ш, нетермостойкое покрытие – буквой Н. Если для листовой стали проводился контроль внутренних дефектов, то добавляется буква У.

Обозначение марки стали состоит из четырёх- пяти цифр с возможным добавлением одной-двух букв.

Первая цифра означает класс по структурному состоянию и виду прокатки:

  • 1 – горячекатаная изотропная,
  • 2 – холоднокатаная изотропная,
  • 3 – холоднокатаная анизотропная.

Вторая цифра – группа стали по содержанию кремния (см. табл. 1).

Третья цифра – вид стали по основным нормируемым характеристикам магнитных свойств.

  • при цифре 0 – это величина удельных магнитных потерь при частоте тока в 50 Гц и индукции 1,7 Тл, а также индукция при напряжённости поля 100 А/м;
  • при цифре 1 – величина удельных магнитных потерь при частоте тока в 50 Гц и индукции 1 и 1,5 Тл, а также индукция при напряжённости поля 2500 А/м;
  • при цифре 2 – величина удельных магнитных потерь при частоте тока от 200 Гц и индукции 0,75, 1 и 1,5 Тл;
  • при цифре 6 – величина индукции в слабых полях при напряжённости поля 0,4 А/м;
  • при цифре 7 – величина индукции в сильных полях при напряжённости поля 10 А/м;
  • цифра 8 характеризует релейные стали.

Таким образом, первые три цифры определяют тип стали. Для всех сталей, кроме релейных, четвёртая (последняя) цифра означает уровень основных нормируемых характеристик: 1 – нормальный, 2 – повышенный, 3 – высокий, 4 и более – высшие уровни.

Для релейных сталей четвёртая и пятая цифры задают величину их характеристики (значение коэрцитивной силы в А/м).

По сортаменту и видам продукции ЭТС подразделяются следующим образом:

  • для электромашин промышленной частоты тока (трансформаторы, генераторы, электродвигатели) они выпускаются в виде рулонов, листов и резаных лент;
  • для аппаратов, работающих при повышенных частотах тока, – в виде лент;
  • для магнитопроводов машин и приборов, работающих в режиме включение – отключение (реле, пускатели, электромагниты), – в виде листов, рулонов, лент и профилей из релейных сталей.

Ниже (табл. 2–5) приводятся основные показатели магнитных свойств (удельные магнитные потери, индукция и её разброс) ЭТС различных типов. Здесь и далее частота задаётся в герцах, магнитная индукция – в теслах. Таким образом, например, Р1,5/50 означает величину удельных магнитных потерь в Вт/кг при магнитной индукции, равной 1,5 Тл, и частоте тока 50 Гц.

Для релейных сталей содержание основных элементов обычно не должно превышать: 0,04% углерода; 0,3% кремния; 0,3% марганца.

В настоящий момент производятся 20 марок таких сталей, их магнитные свойства должны соответствовать нормам, приведённым в табл. 5.

Электротехническая сталь: виды, свойства и применение

Электротехническая (или трансформаторная) сталь позволяет снижать потери тока на перемагничивание. Поэтому ее используют при изготовлении частей трансформаторов, реле, электродвигателей, звонков. Высокая магнитная проводимость достигается благодаря повышенному содержанию кремния в сплавах. Он имеется в молекулах ферросилиция – этим веществом легируют стали. Содержание кремния в трансформаторных сплавах может достигать нескольких процентов от общей массы изделия.

Такая сталь стоит даже дороже нержавейки. Это объясняется высоким удельным электрическим сопротивлением электротехнических сплавов. Благодаря ему перегрев электрической техники снижается, а КПД – возрастает.

Электрический трансформатор

Электротехническая сталь – основной материал при производстве трансформаторов

Свойства трансформаторных сталей

Если сравнивать легированный каленый сплав и электротехнический с высоким содержанием кремния, второй позволит сократить потери на вихревое перемагничивание на 30 %. Это делает его прекрасным магнитопроводом. Чем больше содержание кремния, тем меньше потери. Но если его добавить слишком много, деталь станет очень ломкой, а значительного положительного эффекта не будет. Поэтому стоит соблюдать предельные значения.

Благодаря использованию кремния в сплаве можно уменьшить затраты железа до 1/5 от массы изделия. Вихревые потери можно сократить, если истончить пластины из трансформаторной стали. Например, в питающей сети трансформатора на 50–60 Гц их толщина всего 0,5 мм. В трансформаторах на 400 Гц используются пластины на 1 мм.

Виды электротехнических сталей

При любом составе трансформаторных сплавов сначала производятся заготовки. Они представляют собой раскаленные докрасна слитки одинаковой формы и размера. Далее способы производства делятся на горячую и холодную прокатку. Расскажем о каждом из них подробнее.

Горячая прокатка трансформаторной стали

У горячекатаных электротехнических сплавов нет особых свойств. Их отличает лишь высокая процентная доля кремния (4,5 % от массы детали) и алюминий, который используется для легирования (0,5 %). Такой сплав применяется для изготовления динамо. Горячекатаные стали без алюминия называются релейными. Из них делают пластины генераторов.

При производстве раскаленные заготовки трансформаторной стали прокатывают через специальные валки. Иногда это повторяется несколько раз. Так регулируют толщину листов и их размеры. После остывания получившиеся пластины разрезают на равные фрагменты и упаковывают для отправки заказчику.

Холодная прокатка электротехнической стали

Горячекатаные трансформаторные сплавы медленно отходят в прошлое. По характеристикам они сильно уступают аналогам холодной прокатки. Детали из холоднокатаных сплавов значительно лучше преобразуют электрическую энергию в механическую и наоборот. Все дело в упорядочивании связей кристаллической решетки. При правильном направлении холодной прокатки ячейки увеличивают, повышая магнитную проницаемость стали.

Перед холодной прокаткой также заливают заготовки. Сначала их раскатывают в горячем виде, а после остывания дополнительно пропускают через валки. Опытный прокатчик верно подбирает направление, чтобы оно совпадало с направляющими жесткости кристаллической решетки.

Горячая прокатка стальной заготовки

Горячекатаная трансформаторная сталь отходит в прошлое

Маркировка и применение электротехнических сталей

Все трансформаторные сплавы делятся на изотропные и неизотропные. Первые представлены марками 2011, 2012 и десятками наименований далее по порядку. Неизотропные стали обозначают марками 3311, 3411 и далее по порядку.

От маркировки электротехнического сплава зависят его свойства, соответственно и область применения. Например, марки 1311 и 1312 используют для производства пластин трехфазных асинхронных двигателей мощностью 100–400 кВт. Из сплавов 1211, 1212 и т. д. делают роторы, пластины статорных сборок. Также их используют для производства аппаратов МРТ, триммеров для стрижки волос.

Марки электротехнических сплавов 1411, 1412 и 2411 применяют для 400-герцовых двигателей мощностью до 1 мВт. Из них делают также пластины сердечников и трансформаторы. При этом тонкие детали достаточно хрупки. Они ломаются при малейших механических нагрузках. Однако пластины сохраняют целостность при сборке-разборке устройств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *