Что такое электролитический конденсатор
Перейти к содержимому

Что такое электролитический конденсатор

  • автор:

Какие бывают электролитические конденсаторы

Важнейшие электронные компоненты техники, стоящие в одном ряду с микросхемами и резисторами, — это, конечно же, конденсаторы.

Конденсатор — это электронное устройство, которое накапливает электрический заряд. Он состоит из двух проводящих пластин, разделенных изолирующим материалом, называемым диэлектриком. В зависимости от области применения для изготовления диэлектрика используются различные типы изоляционных материалов.

Все современные конденсаторы делятся на две большие группы: полярные и неполярные. Полярность или неполярность того или иного емкостного компонента зависит главным образом от вещества, примененного в качестве диэлектрика между его обкладками.

Стоит отметить, что конденсаторы выпускаются на разное рабочее напряжение и в широком диапазоне емкостей. Конденсаторы тех или иных серий, в рамках одного типа, отличающиеся внутренней конструкцией, предназначаются для работы в различных режимах (в зависимости от характера тока, протекающего по цепи, в которой предполагается использовать данный конденсатор) и могут различаться сроком службы. Далее речь пойдет об электролитических конденсаторах.

Электролитические конденсаторы

Что такое электролитический конденсатор?

Электролитические конденсаторы отличаются от конденсаторов других типов возможностью достижения высоких емкостей по отношению к своему размеру. Именно по этой причине в качестве накопительных, фильтрующих конденсаторов в источниках питания обычно применяют именно электролитические конденсаторы.

В электролитических конденсаторах жидкий электролит выступает в роли одного из электродов (чаще всего в роли катода). Электролит представляет собой жидкость или гель с большим количеством ионов.

Высокое емкостное реактивное сопротивление электролитических конденсаторов имеет свои преимущества и недостатки.

Они характеризуются высоким током утечки, эквивалентным последовательным сопротивлением и ограниченным сроком службы. Электролитические конденсаторы могут быть жидкими или полимерными. Обычно они изготавливаются из алюминия или тантала, но могут использоваться и другие материалы.

Существует три основных типа электролитических конденсаторов: алюминиевые, танталовые и полимерные. Давайте их рассмотрим.

Электролитические алюминиевые конденсаторы

Алюминиевые конденсаторы имеют самую большую емкость по отношению к своему размеру. Такие конденсаторы полярны, то есть они включаются в цепь строго с соблюдением полярности напряжения, прикладываемого к клеммам.

Выпускаются алюминиевые конденсаторы в цилиндрических корпусах; они бывают рассчитаны на рабочее напряжение от 4 до 630 вольт; производятся на емкости из диапазона от 0,1 мкф до 2,7 Ф.

У конденсаторов данного типа положительная (анодная) обкладка изготовлена из алюминиевой фольги толщиной до 100 мкм. Фольга имеет протравленную поверхность, так что активная площадь увеличивается до 200 раз в сравнении с гладкой необработанной фольгой. Тонкий слой оксида алюминия на поверхности анодной пластины выступает здесь в качестве диэлектрика между обкладками.

Далее идет пропитанная электролитом бумага, предназначенная для предотвращения прямого контакта между обкладками. Ее толщина составляет от 30 до 75 мкм, а если напряжение между обкладками более 100 вольт — слой бумаги не один.

Электролитические алюминиевые конденсаторы

В качестве электролита, обеспечивающего ионную проводимость, здесь, как правило, используют состав на основе этиленгликоля и борной кислоты, либо электролит на водной основе (до 20% воды), способный обеспечить функционирование электронного компонента при максимальной температуре 85 или 105°C.

Конденсатор серии low ESR

Конденсаторы серии low ESR (с низким эквивалентным последовательным сопротивлением, для более сильных токовых пульсаций) содержат в своем электролите до 70% воды. Разрушительное действие воды на алюминиевые обкладки предотвращают внедрением в состав специальных добавок.

Второй обкладкой конденсатора (отрицательной, катодной) служит, по сути, жидкий электролит, прилегающий к шероховатой поверхности анодной обкладки. Но далее идет снова слой фольги — катодной фольги — предназначенной для соединения с соответствующей клеммой.

Алюминиевые электролитические конденсаторы SMD

Алюминиевые электролитические конденсаторы типа SMD имеют аналогичное внутреннее устройство, они предназначены для поверхностного монтажа на печатную плату, имеют миниатюрные габариты, рассчитаны на напряжение в пределах 50 вольт.

Электролитические танталовые конденсаторы

Здесь анодная алюминиевая фольга заменена танталом. Подобно тому, как это происходит с алюминием, танталовый анод также легко поддается покрытию оксидной пленкой.

Классический чиповый танталовый конденсатор представляет собой спеченный порошок (размер исходных частиц — до 10 мкм) тантала в качестве пористого анода, покрытый диэлектрической пленкой пентоксида тантала в электролитической ванне, затем — твердым диоксидом марганца, играющим роль электролита и катода. Диоксид марганца получается путем пиролиза жидкого нитрата марганца, в который погружают покрытую оксидом тантала гранулу.

Далее идет создание контактного вывода: покрытую диоксидом марганца гранулу последовательно погружают в графит, затем в серебро, а к серебру припаивают внешний катодный вывод.

Электролитические танталовые конденсаторы

Таким образом тантал позволяет получить полярный конденсатор с высокой удельной емкостью при сравнительно малых габаритах.

Эквивалентное последовательное сопротивление танталовых электролитических конденсаторов не изменяется при увеличении частоты, а импеданс компонента на частоте 100 кГц достигает минимального значения. По этой причине танталовые конденсаторы широко применяются в сильноточных высокочастотных низковольтных (в пределах 50 вольт) цепях.

Используя танталовые конденсаторы, необходимо строго соблюдать полярность и не превышать номинальное рабочее напряжение компонента, поскольку при нарушении нормальных условий эксплуатации разрушение конденсатора сопровождается возгоранием.

Электролитические полимерные конденсаторы

В электролитических полимерных конденсаторах жидкий электролит заменен на твердый токопроводящий полимер или на полимеризованный органический полупроводник.

Конденсаторы данного типа отличаются более низким эквивалентным последовательным сопротивлением, практически не зависящим от температуры.

Характеристики полимерных компонентов в целом более стабильны, чем у конденсаторов с жидким электролитом на водной основе, и срок службы у них, конечно, сильно дольше.

Электролитический полимерный конденсатор

Обычно полимеры являются изоляторами. Но здесь в качестве электролита используется особый проводящий полимер с двойными связями, легированный, допускающий в итоге движение носителей заряда — дырок.

Технологически прекурсоры полимера в форме порошка проникают в поры протравленного алюминиевого анода, затем осуществляется полимеризация.

Проводящие полимеры, наиболее широко используемые в полимерных конденсаторах, это: полипиррол и политиофен. Полимерные конденсаторы выводного и планарного форматов весьма востребованы сегодня в производстве различных электронных гаджетов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Свойства электролитического конденсатора

Устройство и особенности электролитических конденсаторов

Электролитические конденсаторы

Главная особенность электролитических конденсаторов, наверняка, состоит в том, что они по сравнению с остальными обладают большой ёмкостью и довольно небольшими габаритами.

Широко распространённые алюминиевые конденсаторы по сравнению с другими имеют некоторые специфические свойства, которые следует учитывать при их использовании.

За счёт того, что алюминиевые обкладки электролитических конденсаторов скручивают для помещения в цилиндрический корпус, образуется индуктивность. Эта индуктивность во многих случаях нежелательна. Также алюминиевые электролитические конденсаторы обладают так называемым эквивалентным последовательным сопротивлением (ЭПС или на зарубежный манер, ESR). Чем ниже ESR конденсатора, тем он качественнее и более пригоден для работы в цепях, где требуется фильтрация высокочастотных пульсаций. Примером может служить рядовой импульсный блок питания компьютера или адаптер питания ноутбука.

В основном электролитические конденсаторы служат для сглаживания пульсаций тока в цепях выпрямителей переменного тока. Кроме этого они активно используются в звуковоспроизводящей технике для разделения пульсирующего тока (ток звуковой частоты + постоянная составляющая) на постоянную и переменную составляющую тока звуковой частоты, которая подаётся на следующий каскад усиления. Такие конденсаторы называют разделительными.

Алюминиевые электролитические конденсаторы

В практике ремонта можно встретить неисправность, когда разделительный конденсатор "высыхает", а, следовательно, теряет изначальную ёмкость. При этом он плохо разделяет ток звуковой частоты от пульсирующего и не пропускает звуковой сигнал на последующий каскад усиления.

Амплитуда звукового сигнала в соответствующем каскаде усиления резко снижается либо вносятся существенные искажения. Поэтому при ремонте усилителей и прочей звуковоспроизводящей аппаратуры стоит внимательно проверять исправность разделительных электролитических конденсаторов.

В связи с тем, что электролитические конденсаторы имеют полярность, то при работе на их обкладках должно поддерживаться постоянное напряжение. Это является их недостатком. В результате их можно применять в цепях с пульсирующим или постоянным током.

Кроме алюминиевых электролитических конденсаторов в современной электронике легко обнаружить и танталовые. У них нет жидкого электролита, он у них твёрдотельный. Также танталовые конденсаторы имеют достаточно низкое ESR, благодаря чему активно применяются в высокочастотной электронике. Из минусов можно отметить высокую стоимость и низкое номинальное напряжение, обычно не превышающее 75V. Более подробно о танталовых конденсаторах я рассказывал здесь.

Устройство алюминиевого электролитического конденсатора.

Чтобы узнать, как устроены алюминиевые электролитические конденсаторы, давайте распотрошим одного из них. На фото показан разобранный экземпляр ёмкостью 470 мкФ и на номинальное напряжение 400V.

Электролитический конденсатор изнутри

Взял я его из промышленного частотника. Надо сказать, весьма неплохой конденсатор с низким ESR.

Вскрытый алюминиевый электролитический конденсатор

Конденсатор состоит из двух тонких алюминиевых пластин, к которым крепятся выводы. Между алюминиевыми пластинами помещается бумага. Она служит диэлектриком. Но это ещё не всё. В данном случае получается обычный бумажный конденсатор с малой ёмкостью.

Устройство электролитического конденсатора

Для того чтобы получить большую ёмкость и уменьшить размеры готового прибора, бумагу пропитывают электролитом. На фотках можно разглядеть желтоватый электролит на дне алюминиевого стакана.

Далее, пропитанную электролитом бумагу помещают между алюминиевыми обкладками. В результате электрохимических процессов алюминиевая фольга окисляется под действием электролита. На поверхности фольги образуется тонкий слой окисла – оксида алюминия (Al2O3). На вид можно легко определить сторону обкладки с тонким слоем окисла — она темнее.

Алюминиевая обкладка конденсатора со слоем окисла

Оксид алюминия является отличным диэлектриком и обладает свойством односторонней проводимости. Поэтому электролитические конденсаторы полярны и способны работать лишь в цепях с пульсирующим, либо постоянным током.

А что будет, если на электролитический конденсатор подать напряжение обратной полярности?

Если так произойдёт, то начнётся бурная электрохимическая реакция, которая сопровождается сильным нагревом. Электролит моментально вскипает и конденсатор "бабахает". Именно поэтому при установке такого конденсатора в схему нужно строго соблюдать полярность его включения.

Кроме оксида алюминия (Al2O3), благодаря которому удаётся изготавливать конденсаторы с большой электрической ёмкостью, применяются и другие уловки, чтобы увеличить ёмкость и уменьшить размеры готового изделия. Известно, что ёмкость зависит не только от толщины слоя диэлектрика, но и от площади обкладок. Чтобы её увеличить применяют метод травления, аналогичный тому, что используют в своей практике радиолюбители для изготовления печатных плат. На поверхности алюминиевой обкладки вытравливают канавки. Размеры этих канавок малы и их очень много. За счёт этого активная площадь обкладки увеличивается, а, следовательно, и ёмкость.

Если присмотреться, то на алюминиевой обкладке можно заметить еле заметные полоски, наподобие дорожек на грампластинке. Это и есть те самые канавки.

В неполярных электролитических конденсаторах окисляются обе алюминиевые обкладки. В результате он становиться неполярным.

Особенности применения электролитических конденсаторов.

Нетрудно заметить, что на верхней части цилиндрического корпуса у большинства радиальных электролитических конденсаторов нанесена защитная насечка – клапан.

Электролитические конденсаторы с радиальными выводами

Дело в том, что если на электролит воздействует переменное напряжение, то конденсатор сильно разогревается и жидкий электролит начинает испаряться, давить на стенки корпуса. Из-за этого он может "хлопнуть". Поэтому на корпусе и наноситься защитный клапан, чтобы под действием избыточного давления он открылся и предотвратил "взрыв" конденсатора, выпустив закипающий электролит наружу.

"Взорвавшийся" электролитический конденсатор

"Взорвавшийся" электролитический конденсатор

Отсюда исходит правило, которое необходимо учитывать при самостоятельном конструировании электроники и ремонте радиоаппаратуры. При диагностике неисправности, а также при первом включении конструируемого или ремонтируемого аппарата, необходимо держаться на расстоянии от электролитических конденсаторов.

В случае если при сборке в схеме была допущена ошибка, приводящая к завышению предельного рабочего напряжения конденсатора, либо воздействию на него переменного тока, конденсатор нагреется и "хлопнет". При этом сработает защитный клапан, и электролит под давлением рванёт наружу. Нельзя допускать, чтобы электролит попадал на кожу и тем более в глаза!

Выход из строя электролитического конденсатора не редкость. По внешнему виду можно сразу определить его неисправность. Вот лишь несколько примеров. Все эти конденсаторы пострадали из-за превышения допустимого напряжения.

Автомобильный усилитель. Как видим, «хлопнула» целая грядка электролитов во входном фильтре. Видимо на усилитель подали 24V вместо положенных 12.

Вздувшиеся конденсаторы на плате автомобильного усилителя

Далее — жертва «сетевой атаки». В электросети 220V резко подскочило напряжение из-за обледенения вводов. Как результат, полная неработоспособность блока питания ноутбука. Кондик просто испустил пар. Насечка на корпусе вскрылась.

Электролитический конденсатор после превышения допустимого напряжения

Помнится, в студенческую пору была распространена известная забава. Брался электролитический конденсатор, к его выводам подпаивались проводки и в таком виде конденсатор кратковременно подключался к розетке электроосветительной сети 220 Вольт. Он заряжался, накапливая заряд. Далее, ради "прикола" выводами кондёра касались руки ни в чем не подозревающего человека. Тот, естественно, ничего не подозревает и его дёргает небольшой электрический удар. Так вот, делать это крайне опасно!

Как сейчас помню, когда перед началом практики старший мастер строго запретил данную забаву, аргументировав это тем, что был случай, когда парнишке сильно повредило кисть руки, когда тот решил "зарядить" электролитический конденсатор от розетки 220 В. Конденсатор, не выдержав поданного переменного напряжения, взорвался в его руке!

Электролитический конденсатор может выдержать несколько "экспериментальных" попыток заряда от электросети, но может и хлопнуть в любой момент. Всё зависит как от конструкции конденсатора, так и от приложенного напряжения. Данная информация приведена лишь с целью предупредить о крайней опасности таких экспериментов, которые могут закончиться печально.

При ремонте радиоаппаратуры не стоит забывать о том, что после выключения прибора электролитические конденсаторы некоторое время сохраняют электрический заряд. Перед проведением работ их необходимо разряжать. Особенно это стоит учитывать при ремонте всевозможных импульсных блоков питания и выпрямителей, электролитические конденсаторы в которых имеют значительную ёмкость и рабочее напряжение, достигающее 100 – 400 вольт.

Если нечаянно коснуться его выводов, то можно получить неприятный электрический удар. Иногда после таких случаев можно заметить лёгкий ожог кожного покрова в месте касания электродов. О том, как разрядить конденсатор перед проведением работ или измерений уже упоминалось в статье как проверить конденсатор.

Электролитические конденсаторы в блоке питания

Мощные электролитические конденсаторы ёмкостью 10000 мкФ. в блоке питания усилителя Marantz

При использовании электролитических конденсаторов стоит помнить, что рабочее напряжение на них должно соответствовать 80% от номинального рабочего напряжения. Это правило стоит учитывать, если вы хотите обеспечить долгую и стабильную работу конденсатора. Так, если в схеме на конденсатор будет действовать напряжение в 50 вольт, то его стоит выбирать на рабочее напряжение 63 вольта или более. Если установить конденсатор с меньшим рабочим напряжением, то он скоро выйдет из строя.

Как и у любой другой радиодетали, у электролитического конденсатора есть допустимый диапазон рабочей температуры. На его корпусе обычно указывается верхний порог, например +85 или +105.

Маркировка максимальной рабочей температуры конденсатора

Для разных моделей конденсаторов диапазон рабочей температуры может простираться от -60 до +85°C. Или же от -25 до +105°C. Более конкретно узнать допустимый диапазон температур для конкретного изделия можно из документации на него.

Поскольку в электролитических конденсаторах присутствует жидкий электролит, то он со временем высыхает. При этом теряется его ёмкость. Именно поэтому их не рекомендуется размещать рядом с сильно нагревающимися элементами, например, радиаторами охлаждения или же в плохо вентилируемом корпусе.

Стоит отметить тот факт, что электролиты – это ахиллесова пята любой электроники. По своему опыту скажу, что это одна из самых ненадёжных, некачественных и, при этом, дорогих деталей. Качество во многом зависит от производителя. Но это уже другой разговор.

Кроме электролитических конденсаторов в аппаратуре можно встретить и другой элемент, который обладает куда большей ёмкостью и меньшими габаритами, чем классический электролит. Это – ионистор.

Электролитические конденсаторы: особенности применения

Yageo

Алюминиевые электролитические конденсаторы широко используются в различных электро- и радиотехнических приборах (теле-, радио-, аудиоустройствах, стиральных машинах, кондиционерах воздуха и т.д.), в компьютерном оборудовании (материнских платах, устройствах вывода изображений и периферийных устройствах, таких как принтеры, графические устройства, сканеры и т.д.), в оборудовании связи, в строительном оборудовании, в измерительных приборах, а также в промышленном инструменте, в вооружениях и авиакосмической технике и т.д.

Применение на постоянном напряжении:

  1. Высоковольтные емкостные накопители энергии с быстрым разрядом, используемые в электрофизике, импульсных источниках света, для намагничивания магнитотвердых материалов, в импульсных генераторах для испытания мощных электрических машин на стойкость к ударным нагрузкам и в других установках при длительности разрядных импульсов от десятков микросекунд до десятков миллисекунд.
  2. Для обеспечения большого тока: в сварочных аппаратах, рентгеновских установках, копировальной технике и устройствах электроэрозионной обработки.
  3. Для постоянного тока высокого напряжения: вместе с выпрямителем, электролитический конденсатор образует источник постоянного напряжения для использования в устройствах силовой электроники, частотно-регулируемых электроприводах и источниках питания.
  4. В схемах интеграторов и устройствах выборки-хранения: для любой схемы аналоговой памяти или схем аналоговой развертки.

Применение на постоянном напряжении с наложенной переменной составляющей (пульсирующее напряжение):

  1. В полосовых фильтрах: в комбинации с резисторами и катушками индуктивности образуют фильтры для выделения из сигнала определенной полосы частот, фильтрации постоянной составляющей и т.п. задач.
  2. Для шунтирования компонентов электронных схем по переменному току.
  3. Для связи участков цепи по переменному току с отделением постоянной составляющей.
  4. В релаксационных генераторах: вместе с резисторами и активными компонентами для генерации пилообразного и прямоугольного напряжения.
  5. В составе выпрямителей.

Для переменного напряжения:

  1. Для улучшения качества энергии, потребляемой из сети переменного тока, и коэффициента мощности оборудования: запасая и отдавая электрическую энергию, алюминиевый электролитический конденсатор развязывает нагрузку и питающую сеть по мгновенной и реактивной мощности. Это улучшает качество питания нагрузки и, одновременно, создает предпосылки для получения коэффициента мощности оборудования, близкого к 1.0.
  2. Для силовых LC-фильтров низких частот: улучшает электромагнитную обстановку в схемах, использующих тиристорные выпрямители и инверторы.
  3. В качестве пускового конденсатора: для улучшения пусковой характеристики асинхронного двигателя, питаемого от однофазной сети переменного тока.

Конструкция и технические характеристики (концепция)

Материал и структура электролитических конденсаторов

Алюминиевый электролитический конденсатор имеет простую конструкцию. Две ленты из конденсаторной бумаги проложены между двумя лентами из специальным образом обработанной алюминиевой фольги и эта комбинация из четырех лент свернута в рулон. Бумага, служащая сепаратором для алюминиевых электродов, пропитана электропроводящим раствором. К электродам присоединены выводы, образуя активный элемент конденсатора. Он помещается в цилиндрический алюминиевый корпус с торцевым уплотнением выводов.

Варианты конструкции алюминиевых электролитических конденсаторов показаны на рисунке 1:

рис. 2. Варианты конструкции алюминиевых электролитических конденсаторов

Рис. 1. Варианты конструкции алюминиевых электролитических конденсаторов

а) малогабаритный конденсатор с однонаправленным расположением выводов для монтажа в отверстия на печатной плате (Miniature Aluminum Electrolytic Capacitors / Radial);

в) конденсатор для поверхностного монтажа (Surface Mount Aluminum Electrolytic Capacitors / SMD).

Основные технологические производственные процессы при изготовлении алюминиевых электролитических конденсаторов:

  1. Травление фольги — это процесс для увеличения эффективной площади поверхности алюминиевой фольги с помощью химической эрозии или электрохимической коррозии. Стандартный метод электрохимической коррозии фольги использует обработку пульсирующим током, в сочетании с определенными составом и температурой электролита для достижения желаемых размера, формы и количества микроскопических каналов в поверхностном слое алюминиевой фольги.
  2. Формирование оксидного слоя — это процесс анодного окисления травленной анодной алюминиевой фольги электролитических конденсаторов. Производство катодной алюминиевой фольги иногда также включает окисление, выполняемое в специальных целях. Этот процесс наращивания слоя оксида алюминия называется формовкой. При производстве фольги для высоковольтных конденсаторов используются борная кислота или органические кислоты. Для формирования анодного электрода низковольтных алюминиевых электролитических конденсаторов применяются фосфорная кислота или раствор солей аммония жирных кислот, чтобы получить стабильный оксидный слой из Al2O3 на сильно изрезанной каналами поверхности анодной фольги.
  3. Резка — алюминиевая фольга и бумажный сепаратор нарезается на полосы необходимой ширины и длины.
  4. Выводы конденсатора присоединяются к электродам (анодной и катодной фольге) точечной или холодной сваркой. Электроды разделяются бумажным сепаратором и сворачиваются в рулон, образуя «конденсаторный элемент».
  5. Пропитка: процесс вытеснения воды из «конденсаторного элемента» под давлением или под вакуумом и заполнения пор бумажного сепаратора электролитом, называется пропиткой. Конденсаторные элементы, полностью заполненные электролитом, затем обрабатываются на центрифуге для удаления его избытка.
  6. Сборка: «конденсаторные элементы», уплотненные резиновыми прокладками, предотвращающими утечку электролита, помещаются в алюминиевые корпуса. Окончательный продукт получается после покрытия корпуса конденсатора изолирующей оболочкой.
  7. Тренировка: цель тренировки — восстановление оксидного слоя в местах, где он поврежден.

Основные электрические характеристики алюминиевых электролитических конденсаторов

Упрощенная последовательная схема замещения алюминиевых электролитических конденсаторов изображена на рисунке 2.

Рис. 3. Упрощенная последовательная схема замещения алюминиевого электролитического конденсатора

Рис. 2. Упрощенная последовательная схема замещения алюминиевого электролитического конденсатора

Емкость (ESC-equivalent series capacitance)

Емкостной компонент эквивалентной электрической схемы определяется при приложении к конденсатору переменного напряжения амплитудой 500 мВ и частотой 120 Гц.

Зависимость емкости от температуры

Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) возрастает вязкость электролита и его удельное электрическое сопротивление, что ведет к уменьшению емкости конденсатора. Наибольший вклад в это явление дает возрастание сопротивления в микропорах анодной фольги. Кроме того, температурный рост вызывает линейное расширение деталей конденсатора, с соответствующим увеличением емкости (до +20% при увеличении температуры от 0°C до 80°C, в зависимости от серии алюминиевых электролитических конденсаторов Yageo). Этот эффект более явно проявляется для алюминиевых электролитических конденсаторов по сравнению с другими типами электрических конденсаторов. Типичная зависимость емкости алюминиевых электролитических конденсаторов от температуры показана на рисунке 3.

Рис. 4. Типичная зависимость емкости алюминиевого электролитического конденсатора от температуры

Рис. 3. Типичная зависимость емкости алюминиевого электролитического конденсатора от температуры

Зависимость емкости от частоты

Эффективная величина емкости определяется на основе экспериментальной зависимости импеданса (полного сопротивления) алюминиевого электролитического конденсатора от частоты для диапазона частот, в котором емкостная составляющая доминирует. Типичная зависимость емкости алюминиевых электролитических конденсаторов от частоты показана на рисунке 4.

Рис. 5. Типичная зависимость емкости алюминиевого электролитического конденсатора от частоты

Рис. 4. Типичная зависимость емкости алюминиевого электролитического конденсатора от частоты

Коэффициент потерь алюминиевых электролитических конденсаторов («тангенс потерь», (tan δ), D.F. — Dissipation Factor).

Это – отношение активной мощности (мощности потерь) к реактивной мощности при синусоидальной форме напряжения на конденсаторе. Векторная диаграмма напряжения алюминиевого электролитического конденсатора (в области достаточно низких частот, где можно пренебречь индуктивной составляющей последовательной схемы замещения согласно рис. 2) показана на рисунке 5.

Рис. 6. Векторная диаграмма реального конденсатора

Рис. 5. Векторная диаграмма реального конденсатора

Угол δ отсчитывается между векторами напряжений на реальном алюминиевом электролитическом конденсаторе и на идеальной емкости.

Зависимость коэффициент потерь алюминиевого электролитического конденсатора от температуры показана на рисунке 6, а зависимость от частоты – на рисунке 7.

Рис. 7. Типичная зависимость коэффициента потерь алюминиевого электролитического конденсатора от температуры

Рис. 6. Типичная зависимость коэффициента потерь алюминиевого электролитического конденсатора от температуры

Рис. 8. Типичная зависимость коэффициента потерь алюминиевого электролитического конденсатора от частоты

Рис. 7. Типичная зависимость коэффициента потерь алюминиевого электролитического конденсатора от частоты

Equivalent Series Resistance (ESR)

Эквивалентное последовательное сопротивление – это активная составляющая в последовательной схеме замещения алюминиевого электролитического конденсатора (рис. 2). Величина ESR зависит от частоты и температуры и связана с (tan δ) выражением ESR=(tan δ)/(2*π*f* ESС). При расчете ESR следует принимать во внимание величины допуска на емкость алюминиевого электролитического конденсатора. Типичная зависимость ESR от температуры алюминиевого электролитического конденсатора на частотах от долей до десятков килогерц показана на рисунке 8.

Рис. 9. Типичная зависимость ESR алюминиевого электролитического конденсатора от температуры

Рис. 8. Типичная зависимость ESR алюминиевого электролитического конденсатора от температуры

Уменьшение ESR с температурой обусловлено сильным улучшением удельной электропроводности электролита. На рисунке 9 приведена типичная зависимость ESR алюминиевого электролитического конденсатора от частоты.

Рис. 10. Типичная зависимость ESR алюминиевого электролитического конденсатора от частоты

Рис. 9. Типичная зависимость ESR алюминиевого электролитического конденсатора от частоты

Impedance (Z)

Полное сопротивление алюминиевого электролитического конденсатора (импеданс) получается как результат действия всех составляющих последовательной схеме замещения (рис. 2). Более точно поведение реальных алюминиевых электролитических конденсаторов отражает схема замещения, изображенная на рисунке 10.

Рис. 11. Уточненная последовательная схема замещения алюминиевого электролитического конденсатора

Рис. 10. Уточненная последовательная схема замещения алюминиевого электролитического конденсатора

C0 – емкость оксидного слоя, определяемая эффективной площадью электрода и толщиной окисла;

Re – активное сопротивление электролита и бумажного сепаратора (другие составляющие активного сопротивления относительно малы, не зависят от частоты и в данном контексте не обсуждаются: сопротивление выводов алюминиевого электролитического конденсатора, отводов, мест присоединений их к фольговым электродам и т.д.);

Ce – емкость бумажного сепаратора, пропитанного электролитом;

L – индуктивность обмоток и выводов алюминиевого электролитического конденсатора.

Рис. 12. Типичная зависимость импеданса алюминиевого электролитического конденсатора в соответствии с уточненной последовательной схемой замещения

Рис. 11. Типичная зависимость импеданса алюминиевого электролитического конденсатора в соответствии с уточненной последовательной схемой замещения

Полное сопротивление электролитического конденсатора изменяется в зависимости от частоты и температуры. Зависимость импеданса от частоты (при приложении напряжения синусоидальной формы) и определенном значении температуры, показанная на рисунке 11, имеет несколько характерных участков:

  1. на низких частотах доминирующее влияние оказывает емкостное сопротивление оксидного слоя анодного электрода (1/(ω*C0));
  2. с увеличением частоты емкостное сопротивление уменьшается, пока не станет одного порядка с активным сопротивлением электролита Re (точка «А» на рисунке 11);
  3. при дальнейшем увеличении частоты преобладает сопротивление электролита, а импеданс сохраняется примерно постоянным и равным Re (участок между точками «А» и «В» на рисунке 11);
  4. на частотах выше, чем (1/(2*π*Re*Ce) (правее точки «В» на рисунке 11), импеданс вновь имеет емкостной характер и уменьшается с частотой вплоть до достижения резонанса между Ce и L;
  5. выше резонансной частоты f0=(Ce*L) -0.5 /(2*π) импеданс имеет индуктивный характер и примерно равен (ω*L).

Для ориентировочных оценок можно полагать, что Ce=0.01*C0.

Типичная зависимость импеданса от частоты (при приложении напряжения синусоидальной формы) для различных значений температуры показана на рисунке 12 (на примере алюминиевого электролитического конденсатора емкостью 10 мкФ и с номинальным напряжением 450 В).

Рис. 13. Зависимость импеданса алюминиевого электролитического конденсатора 10мкФ*450В от частоты при разных значениях температур

Рис. 12. Зависимость импеданса алюминиевого электролитического конденсатора 10мкФ*450В от частоты при разных значениях температур

Активное сопротивление электролита Re представляет собой наиболее температуро-зависимый компонент в последовательной схеме замещения. Оно сильно уменьшается при увеличении температуры. Для того чтобы получить низкий импеданс алюминиевого электролитического конденсатора во всем диапазоне рабочих температур, Re должно быть настолько малым, насколько возможно. Но это предполагает применение слишком химически активного, агрессивного рабочего электролита и, соответственно, не приемлемо-малый срок службы алюминиевого электролитического конденсатора при высоких температурах. Конкретный выбор определяется предпочтительным компромиссом характеристик конденсатора.

Leakage Current (L.C.)

Ток утечки алюминиевого электролитического конденсатора представляет собой ток через диэлектрический слой оксида алюминия на анодном электроде. В установившемся режиме работы ток утечки алюминиевого электролитического конденсатора достаточно мал, но все же больше, чем у других типов конденсаторов. Если электролитический конденсатор продолжительное время хранился без приложения к нему постоянного напряжения, особенно при повышенных температурах, оксидный слой частично повреждается (растворяется в электролите) и в первое время (несколько минут) после подачи напряжения на такой конденсатор, ток утечки будет значительно больше, чем в установившемся состоянии. Зависимость тока утечки алюминиевого электролитического конденсатора от величины поданного на него постоянного напряжения показана на рисунке 13.

Рис. 14. Типичная зависимость тока утечки алюминиевого электролитического конденсатора от приложенного постоянного напряжения

Рис. 13. Типичная зависимость тока утечки алюминиевого электролитического конденсатора от приложенного постоянного напряжения

Величина Vf соответствует напряжению формирования оксидного слоя при изготовлении данного конденсатора. Приложение к конденсатору рабочего напряжения, равного или превышающего Vf, ведет к протеканию через него большого тока с выделением значительного количества тепла и газов, с быстрым разрушением алюминиевого электролитического конденсатора. Величина Vrпредставляет собой номинальное напряжение (максимально-допустимое постоянное напряжение, которое можно длительно подавать на конденсатор в оговоренных условиях работы). Напряжение Vs представляет собой промежуточную величину между Vr и Vf. Это максимальное постоянное напряжение, которое разрешается подавать на конденсатор лишь в течение короткого времени. Для обеспечения повышенного срока службы конденсатора уменьшают величину номинального напряжения по сравнению с напряжением формовки.

Надежность алюминиевых электролитических конденсаторов

Типичная зависимость изменения интенсивности отказов алюминиевых электролитических конденсаторов в течение их срока службы показана на рисунке 14.

Рис. 15. Типичная зависимость изменения интенсивности отказов алюминиевого электролитического конденсатора в течение жизненного цикла

Рис. 14. Типичная зависимость изменения интенсивности отказов алюминиевого электролитического конденсатора в течение жизненного цикла

Первый участок соответствует периоду приработки, когда происходит отказ потенциально не надежных экземпляров конденсаторов, имеющих явные или скрытые дефекты, вызванные отклонениями в свойствах примененных материалов или при выполнении технологических операций изготовления, хранения и монтажа. Второй участок кривой интенсивности отказов соответствует штатному сроку службы алюминиевых электролитических конденсаторов: величина интенсивности отказов находится на стабильном, низком уровне. Третий участок кривой соответствует эксплуатации алюминиевых электролитических конденсаторов за пределами их проектного ресурса, когда все более сильно проявляются процессы старения и интенсивности отказов нарастает.

В таблице 1 представлены основные первопричины ухудшения характеристик и отказов алюминиевых электролитических конденсаторов и то, как они проявляют себя при эксплуатации.

Классификация первопричин и видов отказов алюминиевых электролитических конденсаторов

Табл.1. Классификация первопричин и видов отказов алюминиевых электролитических конденсаторов

Требования монтажа алюминиевых электролитических конденсаторов в оборудование и условия их работы

Пожалуйста, убедитесь, что требования монтажа алюминиевых электролитических конденсаторов и условия их работы в составе оборудования соответствуют спецификациям на них, представленным в этом каталоге.

Рабочая температура, эквивалентное последовательное сопротивление (ESR), пульсации тока (Ripple Current) и срок службы алюминиевых электролитических конденсаторов

MTTF (Mean-Time-To-Failure) — среднее время наработки алюминиевых электролитических конденсаторов до отказа — означает срок службы при комнатной температуре 25ºC. Под отказом понимается либо явное повреждение конденсатора с невозможностью его дальнейшей работы, либо ухудшение основных параметров (уменьшение емкости, увеличение тока утечки или коэффициента потерь) сверх установленных пределов годности.

Срок службы алюминиевого электролитического конденсатора ограничен процессами его старения и, в первом приближении, определяется температурой в наиболее горячей области внутри него, а также величиной приложенного напряжения (в меньшей мере, чем влияние температуры, пока напряжение не превышает номинальное для данного типа конденсатора). Изготовитель нормирует срок службы конденсатора в определенном «базовом», опорном режиме его применения.

  1. Срок службы на постоянном токе (при приложении к конденсатору только номинального (рабочего) постоянного напряжения W.V. (work voltage); отсутствует переменный ток через конденсатор и, соответственно, нет каких-либо пульсаций напряжения) при максимально-допустимой температуре окружающей среды (воздуха) To (в зависимости от типа конденсатора, это — либо 85ºC, либо — 105ºC) обозначается L0.
  2. Срок службы на постоянном напряжении под токовой нагрузкой (при приложении к конденсатору номинального (рабочего) постоянного напряжения (W.V.) и, одновременно, номинального переменного тока (Ripple Current) через конденсатор) при максимально-допустимой температуре окружающей среды To (в зависимости от типа конденсатора, это — либо 85ºC, либо — 105ºC) обозначается Lr.

Номинальный действующий ток (и, соответственно, пульсации напряжения) нормируется т.о., чтобы перегрев конденсатора свыше температуры окружающей среды составлял при этом примерно 5ºC. Перегревом конденсатора, не несущего нагрузку переменным током (срок службы L0), можно пренебречь (фактически в нем имеются только потери от тока утечки, равные (W.V.)*(L.C.), которые для тренированного исправного конденсатора достаточно малы). При значительных перегревах конденсаторов следует различать температуру наиболее горячей области внутри него Tx (определяет износ и, соответственно, ресурс, но не доступна для прямого измерения) и температуру корпуса конденсатора Tc (не влияет непосредственно на ресурс, но доступна для измерения и позволяет косвенно оценить температуру внутри). Зона (точка) на корпусе алюминиевого электролитического конденсатора, в которой следует производить измерение температуры, показана на рисунке 15.

Рис. 16. Измерение температуры корпуса алюминиевого электролитического конденсатора

Рис. 15. Измерение температуры корпуса алюминиевого электролитического конденсатора

Оценку не доступной для измерения величины температуры внутри конденсатора Tx можно выполнить по выражению

где Kc – коэффициент, зависящий от диаметра корпуса алюминиевого электролитического конденсатора, согласно таблице 2;

To — температура окружающей среды;

Tc — температура корпуса.

Табл.2. Зависимость коэффициента Кс от диаметра корпуса алюминиевых электролитических конденсаторов

Диаметр ≤8мм 10мм 12.5мм 13мм 16мм 18мм 22мм 25мм 30мм 35мм
Кс 1.1 1.15 1.20 1.20 1.25 1.30 1.35 1.40 1.50 1.65

Перегрев алюминиевого электролитического конденсатора (Tx-To) в первом приближении пропорционален рассеиваемой им мощности

где Iэфф – среднеквадратичная величина переменного тока через конденсатор;

ESR — соответствует частоте протекающего переменного тока.

В большинстве случаев слагаемым (W.V.)*(L.C.) можно пренебречь.

Величина ESR определяется через коэффициент потерь (D.F.), который для алюминиевых электролитических конденсаторов нормируется при частоте 120 Гц и температуре 20ºC. Для пересчета на другие значения рабочей частоты и температуры, следует использовать зависимости (D.F.) и ESR от частоты и температуры, подобные приведенным на рис.6…рис.9. Если через конденсатор в рабочем режиме протекают значительные переменные токи на нескольких, сильно отличающихся между собой, частотах, следует учитывать соответствующие изменения ESR с частотой. Например, при использовании алюминиевого электролитического конденсатора в составе импульсного источника питания, он нагружен переменными токами удвоенной сетевой частоты (100/120 Гц или 300/360 Гц) и ее гармониками и, одновременно, токами высокой частоты импульсного преобразования (десятки…сотни килогерц). Полная выделяемая мощность получается суммированием мощностей потерь по всем частотам протекающего переменного тока с учетом зависимости ESR от частоты.

Перегрев алюминиевых электролитических конденсаторов при произвольной нагрузке равен ΔTx=(Tx-Tо.с.)=Pрасс*(5ºC)/((ESR)0*(I0)²),

где Pрасс – рассеиваемая мощность в актуальном режиме;

Tо.с. — температура окружающей среды;

(ESR)0 — эквивалентное последовательное сопротивление в номинальном режиме, для которого нормирована действующая величина переменного тока (I0) (Arms).

Ожидаемый срок службы алюминиевого электролитического конденсатора в актуальном режиме, при произвольной токовой нагрузке и реальной температуре окружающей среды Tо.с., равен

где ΔTo=5ºC — перегрев конденсатора в номинальном режиме;

Tx=(Tо.с+ΔTx) – температура наиболее нагретой области конденсатора;

а коэффициент К отражает степень влияния перегрева на срок службы.

Как следует из вышеуказанного выражения, срок службы экспоненциально зависит от температуры внутренних областей алюминиевого электролитического конденсатора, уменьшаясь вдвое при каждом увеличении температуры на 10ºC. Поскольку базовая величина срока службы (Lr или L0) получена испытаниями для максимально–допустимой температуры конденсатора (85ºC или 105ºC), возможно его применение только при более низких температурах и, соответственно, с бОльшим сроком службы (или большей токовой нагрузкой). В любом случае, указанная выше зависимость увеличения ресурса при понижении рабочей температуры справедлива только при температурах выше 40ºC (при еще более низких температурах роста срока службы нет).

Срок службы алюминиевых электролитических конденсаторов корректируется в зависимости от реального перегрева. Эта зависимость в общем также экспоненциальная, но состоящая из нескольких участков. При реальной токовой нагрузке Iэфф меньше номинальной, К=2. Т.е. выигрыш в части увеличения ресурса при снижении действующего переменного тока через конденсатор не очень большой. Да и эта зависимость действует только при 0.8*(I0)<Iэфф<(I0), а при Iэфф<0.8*(I0) срок службы не растет (т.е. К=1). При реальной токовой нагрузке Iэфф больше номинальной, К=4. Т.о., при большой нагрузке и, соответственно, перегреве, срок службы алюминиевых электролитических конденсаторов довольно быстро снижается.

Условия работы

Не допускается применение алюминиевых электролитических конденсаторов в следующих условиях:

  1. Когда конденсатор подвергается воздействию высокой влажности, выпадению росы, брызг воды, солевых растворов, масел или пара.
  2. Когда конденсатор подвергается воздействию химически активных и ядовитых газов, таких как сероводород, сернистый газ, окислы азота, хлор, аммиак и т.п.
  3. Когда конденсатор подвергается воздействию озона, ультрафиолета и ионизирующих излучений.
  4. Когда конденсатор подвергается воздействию механических вибраций и ударов, превышающих допустимые уровни, установленные в каталогах и технических условиях (datasheet) на них.
  5. Выводы алюминиевых электролитических конденсаторов, их алюминиевые корпуса (а также вспомогательные выводы крепления у конденсаторов «snap-in») должны быть электрически изолированы от цепей, с которыми они не соединяются согласно принципиальной электрической схеме оборудования.

Рекомендации, которые необходимо учитывать при проектировании оборудования с применением алюминиевых электролитических конденсаторов

  1. Расстояние между отверстиями в печатной плате для установки алюминиевых электролитических конденсаторов должно совпадать с номинальным значением расстояния между выводами конденсатора.
  2. В непосредственной близости от конденсатора не д.б. каких-либо компонентов или проводников.
  3. Если алюминиевый электролитический конденсатор устанавливается на печатную плату т.о., что предохранительный клапан обращен в сторону поверхности платы, следует предусмотреть отверстие в ней для отвода газов, которые могут выделиться из конденсатора.
  4. Не устанавливайте большие алюминиевые электролитические конденсаторы с выводами под винт (screw terminal capacitor) в вертикальном положении «вверх ногами». Если такой конденсатор монтируется горизонтально, положительный вывод д.б. сверху относительно отрицательного.
  5. Не располагайте какие-либо компоненты или проводники в непосредственной близости от вентиляционного отверстия алюминиевого электролитического конденсатора.

Вопросы, на которые следует обратить внимание перед сборкой оборудования с применением алюминиевых электролитических конденсаторов

  1. Если алюминиевые электролитические конденсаторы изымаются из оборудования для измерения их электрических характеристик при периодических инспекциях, они могут быть затем возвращены на свои прежние места. Однако не допустимо устанавливать алюминиевые электролитические конденсаторы в оборудование, если на него уже подано электропитание.
  2. В некоторых случаях, в процессе хранения алюминиевых электролитических конденсаторов на них может накапливать электрический заряд. Их следует предварительно разряжать, замыкая выводы через резистор сопротивлением примерно 1 кОм.
  3. Ток утечки алюминиевых электролитических конденсаторов может значительно возрастать в процессе хранения, поэтому такие конденсаторы следует перед использованием «тренировать» подачей постоянного напряжения через токоограничивающий резистор сопротивлением примерно 1 кОм.

Рекомендации, которые необходимо учитывать при сборке оборудования с применением алюминиевых электролитических конденсаторов

  1. Пожалуйста, проверяйте классификационные параметры алюминиевых электролитических конденсаторов (емкость и номинальное напряжение) перед их монтажом в оборудование.
  2. Пожалуйста, проверяйте полярность алюминиевых электролитических конденсаторов перед их монтажом в оборудование.
  3. Не роняйте алюминиевые электролитические конденсаторы на пол и не применяйте конденсаторы с помятыми корпусами.
  4. Будьте осторожны, чтобы не повредить алюминиевый электролитический конденсатор в процессе монтажа.
  5. Алюминиевые электролитические конденсаторы конструкции «snap-in» должны плотно устанавливаться на печатную плату, без люфта или зазора между корпусом конденсатора и поверхностью платы.
  6. Исключите опасность чрезмерных усилий на выводы алюминиевого электролитического конденсатора при их изгибе в процессе установки на плату.
  7. Исключите опасность чрезмерно сильных ударов алюминиевых электролитических конденсаторов со стороны машины для автоматической набивки компонентов в процессе операций монтажа, инспекции компонентов и центрирования.
  8. Пожалуйста, используйте соответствующие материалы и компоненты, например, скобы или клей, для надежного крепления алюминиевых электролитических конденсаторов к печатной плате, если ожидается, что оборудование будет подвержено вибрациям или ударам.

Пайка алюминиевых электролитических конденсаторов

  1. Покрытие выводов у всех алюминиевых электролитических конденсаторов, производимых Yageo, не содержит свинца.
  2. Режимы пайки (продолжительность операций и температуры при их проведении) должны соответствовать спецификациям, указанным в этом каталоге или specification sheets на алюминиевые электролитические конденсаторы.
  3. Если необходима формовка выводов конденсаторов вследствие не совпадения расстояний между отверстиями на печатной плате и между выводами, операцию гибки следует выполнять до пайки, не допуская возникновения механических нагрузок на конденсатор.
  4. Если требуется выпаять алюминиевый электролитический конденсатор из печатной платы с помощью паяльника, необходимо обеспечить полное расплавление припоя на выводах конденсатора перед его извлечением, чтобы исключить механические усилия на конденсатор и его выводы.
  5. Никогда не касайтесь паяльником корпусов алюминиевых электролитических конденсаторов.

Пайка волной

  1. Не опускайте корпус алюминиевого электролитического конденсатора в расплавленный припой.
  2. Режим пайки д.б. ограничен 260°C и 10 секундами.
  3. Поток припоя д.б. направлен на выводы алюминиевых электролитических конденсаторов, но не на их корпуса.
  4. Другие компоненты, смонтированные вблизи, не должны касаться корпусов алюминиевых электролитических конденсаторов.

Групповая пайка оплавлением пасты в печи

  1. Для групповой пайки алюминиевых электролитических конденсаторов оплавлением пасты, используйте печи с конвекционным или инфракрасным нагревом. Применение пайки в паровой фазе не рекомендуется.
  2. Соблюдайте правильные режимы пайки (длительности и температуры на каждой операции).
  3. Не превышайте специфицированных пределов режимов пайки.
  4. Повторное оплавление:

Если возможно, исключите двойное оплавление из технологического процесса пайки оборудования, имеющего в своем составе алюминиевые электролитические конденсаторы.

Если повторного оплавления избежать невозможно, консультируйтесь с инженерами по применению Yageo относительно допустимого режима пайки.

Типовые профили пайки алюминиевых электролитических конденсаторов при использовании групповой пайки оплавлением пасты в печи показаны на рисунках 16 и 17. Особенности режима пайки алюминиевых электролитических конденсаторов, выводы которых имеют бессвинцовое покрытие, в зависимости от диаметров их корпусов, представлены в таблице 3.

Рис. 17. Параметры режима групповой пайки оплавлением пасты алюминиевых электролитических конденсаторов

Рис. 16. Параметры режима групповой пайки оплавлением пасты алюминиевых электролитических конденсаторов

Рис.18. Параметры режима групповой пайки оплавлением пасты алюминиевых электролитических конденсаторов бессвинцовыми припоями

Рис.17. Параметры режима групповой пайки оплавлением пасты алюминиевых электролитических конденсаторов бессвинцовыми припоями

Табл.3. Параметры режима групповой пайки оплавлением пасты алюминиевых электролитических конденсаторов с различными диаметрами корпусов бессвинцовыми припоями

Очистка печатной платы с установленными на ней алюминиевыми электролитическими конденсаторами после пайки

  1. Технология должна соответствовать требованиям JIS C 5101.
  2. Алюминиевые электролитические конденсаторы могут быть повреждены коррозией, вызванной применением для очистки растворителей на основе галогенированных углеводородов, например, дихлорметана. Поэтому их применение не допустимо.

Для очистки плат с установленными на них алюминиевыми электролитическими конденсаторами рекомендуется использовать следующие растворители (применимы для всех типов алюминиевых электролитических конденсаторов), использующие многоосновные спирты:

  • pine Alpha ST-100S(производство Arakawa chemicals),
  • Clean Through 750H/750L/710M (производство Kao),
  • Techno Care FRW14

а также Sanelek B-12, Aqua Cleaner 210SEP и изопропиловый спирт.

Режимы очистки плат:

Температура растворителя д.б. не выше 60°C, а время очистки – не менее 5 минут при иммерсионной, ультразвуковой или других методах очистки. После завершения процесса очистки, алюминиевые электролитические конденсаторы д.б. высушены продувкой печатной платы сухим горячим воздухом в течение не менее 10 минут. При этом температура горячего воздуха не должна превышать максимально-допустимую рабочую температуру для обрабатываемых алюминиевых электролитических конденсаторов. Если конденсаторы высушены не достаточно, это может вызвать ряд проблем: местные разрывы и оползание изоляционного покрытия корпуса, выпучивание прокладки, уплотняющей выводы и т.п.

Пожалуйста, заблаговременно информируйте Yageo о наименовании растворителя, применяемом на Вашем производстве для очистки плат, и режимах технологического процесса.

Предупреждение об опасности

Если Вы видите «дым», выходящий из предохранительного клапана алюминиевого электролитического конденсатора, выключите рубильник или выдерните вилку цепи питания оборудования.

Не приближайте Ваше лицо к предохранительному клапану алюминиевого электролитического конденсатора. Газы, выбрасываемые из конденсатора, могут иметь температуру свыше 100°C. Если эти газы попали Вам в глаза, пожалуйста, немедленно промойте их большим количеством воды. Если Вы вдохнули этот газ, пожалуйста, немедленно промойте рот и горло водой. Ни в коем случае, не проглатывайте электролит. Если электролит попал на кожу, немедленно промойте ее водой с мылом.

Условия хранения алюминиевых электролитических конденсаторов

  1. Алюминиевые электролитические конденсаторы не должны храниться при повышенной температуре или в условиях высокой влажности воздуха. Наиболее подходящими условиями хранения являются диапазон температур от 5 до 35°C и относительная влажность не более 75%.
  2. Алюминиевые электролитические конденсаторы не должны храниться в условиях, когда на них попадает вода, брызги солевых растворов или капли масла.
  3. Алюминиевые электролитические конденсаторы не должны храниться при воздействии агрессивных и токсичных газов, таких как сероводород, сернистый газ, окислы азоты, хлор, аммиак и т.п.
  4. Алюминиевые электролитические конденсаторы не должны храниться в условиях, когда на них действует озон, ультрафиолетовое или ионизирующее излучение.
  5. Если алюминиевый электролитический конденсатор хранился более года в нормальных условиях (или более короткое время при повышенной температуре) и показывает завышенный ток утечки, его следует подвергнуть тренировке подачей постоянного напряжения через токоограничивающий резистор.

Воздействие на окружающую среду

Все алюминиевые электролитические конденсаторы Yageo соответствуют требованиям директивы RoHS (Restriction of Hazardous Substances).

Утилизация алюминиевых электролитических конденсаторов

Пожалуйста, утилизируйте конденсаторы одним из следующих путей:

  1. Сжигайте алюминиевые электролитические конденсаторы при температуре не ниже 1200°C, предварительно пробив отверстия в их корпусе.
  2. Привлеките к работе специалиста по процедуре утилизации алюминиевых электролитических конденсаторов.

Результаты испытаний алюминиевых электролитических конденсаторов на срок службы

Рис. 19. Типичные зависимости изменений основных параметров алюминиевых электролитических конденсаторов в процессе испытаний на срок службы

Рис. 18. Типичные зависимости изменений основных параметров алюминиевых электролитических конденсаторов в процессе испытаний на срок службы

На рисунке 18 приведены результаты испытаний алюминиевых электролитических конденсаторов в течение наработки 2000ч. Показано изменение со временем емкости, коэффициента потерь и тока утечки для трех различных номиналов (100мкФ*25В, 4.7мкФ*350В и 10мкФ*160В).

Меры предосторожности при использовании алюминиевых электролитических конденсаторов

Обратите внимание на следующие рекомендации при использовании конденсаторов:

  1. При использовании электролитических конденсаторов в задачах, где к ним прикладывается постоянное напряжение, необходимо соблюдать правильную полярность. В противном случае, при установке конденсатора в обратной полярности, может уменьшиться его срок службы или, даже, конденсатор может быть поврежден. В цепях с неизвестной полярностью или если имеется возможность изменения полярности в цепи, следует использовать неполярные конденсаторы. Также нельзя применять полярные электролитические конденсаторы в задачах, где к ним прикладывается переменное напряжение.
  2. Не подавайте на конденсатор напряжение, длительно превышающее номинальное напряжение. Это приведет к повреждению конденсатора вследствие повышенного тока утечки.
  3. Используйте электролитический конденсатор при величине пульсаций тока через него в допустимых пределах.
  4. Используйте электролитические конденсаторы в разрешенном диапазоне рабочих температур. Эксплуатация конденсаторов при комнатной температуре обеспечит более длительный срок службы.
  5. Электролитические конденсаторы не подходят для схем с многократно повторяющимися циклами заряда и разряда. Их использование в схемах, в которых происходит многократно повторяющиеся глубокий разряд и заряд конденсатора, может приводить к уменьшению емкости или, даже, повреждению конденсатора. Если необходимо применить электролитический конденсатор для такой задачи, пожалуйста, обратитесь в наш инженерный отдел для технической консультации.
  6. Если электролитические конденсаторы в течение длительного времени хранились в разряженном состоянии, используйте их только после предварительной тренировки. Продолжительное хранение без подачи постоянного напряжения может увеличить ток утечки конденсатора. В таких случаях перед использованием необходимо выполнить процедуру предварительной «подформовки» конденсатора подачей постоянного напряжения заданной величины.
  7. Следует обратить особое внимание на соблюдение температурного режима и длительностей операций при пайке алюминиевых электролитических конденсаторов. Если температура пайки слишком высокая или время окунания выводов в припой слишком продолжительное, возможны деградация электрических характеристик конденсаторов и повреждение изоляционной оболочки, обтягивающей корпус. При пайке малогабаритных алюминиевых электролитических конденсаторов окунанием в припой, его температура не должна превышать 260°С, а продолжительность операции — не более 10 секунд .
  8. Очистка печатных плат после пайки. Не рекомендуется использовать растворители на основе галогенированных углеводородов для очистки плат, на которых смонтированы алюминиевые электролитические конденсаторы с открытым уплотнением выводов. Если для очистки печатных плат необходимо использовать растворители на основе галогенированных углеводородов, следует применять конденсаторы с эпоксидным покрытием торцевых уплотнений.
  9. Не следует допускать приложения чрезмерных усилий к выводам алюминиевого электролитического конденсатора. Это может привести к обрыву его выводов или внутренних присоединений. (Для определения допустимых механических нагрузок на выводы, пожалуйста, обратитесь к руководящим документам JIS C5102 и JIS C5141.)
  10. Следует обеспечивать достаточный зазор между корпусом конденсатора и стенкой корпуса прибора (Рис.19).

Рис. 1. Минимально-допустимое расстояние между корпусом алюминиевого электролитического конденсатора и стенкой корпуса оборудования

Рис. 19. Минимально-допустимое расстояние между корпусом алюминиевого электролитического конденсатора и стенкой корпуса оборудования

Не препятствуйте работе вентиляционных систем, если иное не оговорено в каталогах или технических характеристиках оборудования. Слишком малый зазор между корпусом конденсатора и корпусом прибора может негативно повлиять на работу вентиляционной системы и привести к взрыву конденсатора.

Электролитический конденсатор: основные параметры прибора, как работает и от чего зависит большая емкость

В РЭА и приборах применяют разнообразные конденсаторы. Конденсаторами называют элементы, у которых проводники обладают электрической емкостью, а сами проводники называют обкладками. Номинальная емкость конденсатора зависит от геометрических размеров его обкладок, расстояния между ними и материала диэлектрика. При увеличении диэлектрической проницаемости диэлектрика повышается емкость конденсатора.

Для каждого типоразмера номинальную емкость выбирают в соответствии со специальной шкалой, являющейся общесоюзным стандартом. Эта величина обозначается на корпусе конденсатора. Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, значение которого уменьшается с ростом частоты.

По конструкции и назначению различают конденсаторы постоянной емкости, переменной емкости, подстроечные и вариконды. Наиболее широко используют конденсаторы постоянной емкости.

Конденсаторы постоянной емкости. В качестве элементов колебательных контуров, различных фильтров, блокировочных элементов, а также для разделения цепей постоянного и переменного токов применяют конденсаторы постоянной емкости. В конденсаторах этого типа в качестве диэлектрика используют конденсаторную бумагу, полистироловую пленку, слюду, керамику или оксид алюминия. В зависимости от конструкции, параметров и назначения конденсаторы постоянной емкости делят на низкочастотные и высокочастотные.

К низкочастотным относят конденсаторы с бумажными диэлектриками (рис. 81, а) БМ, БГИ, КБГ, МБМ, МБГ, электролитические КЭ, ЭМ, ЭФ, ЭТО, ЭГЦ, к высокочастотным — слюдяные (рис. 81,б) конденсаторы, стеклоэмалевыс (рис. 81, в, г) КСО, СГМ, КСГ, КС; керамические (рис. 81. д) КТН, КТП, КТК, КДС, КОБ, КДК, КДО, КДУ, пленочные и металлопленочные.

Рис. 81. Основные типы конденсаторов постоянной емкости (а — д) и их условное обозначение (е)

Условное графическое обозначение конденсатора постоянной емкости состоит из двух коротких параллельных линий, обозначающих его две обкладки и диэлектрик между ними (рис. 81, е).

На электрической схеме рядом с изображением конденсатора указывают его номинальную емкость, а иногда и номинальное напряжение. Единицей измерения емкости является фарада (Ф) — емкость эталонного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон. Это очень большая величина, которая на практике не применяется. В производстве РЭА используют конденсаторы емкостью от долей пикофарады (пФ) до нескольких тысяч микрофарад (мкФ); применяют также конденсаторы емкостью в одну и более нанофарад (Н): 1 Ф = 10 6 мкФ = 10 12 пФ; 1 мкФ = 10 6 пФ; 1 Н = 1000 пФ = 0,001 мкФ.

По ГОСТ 2.702 — 69 емкость конденсаторов на схемах обозначается следующим образом: менее 1 пФ — соответствующим дробным числом с буквой П после него, например, 0,01 П; от 1 до 9999 пФ — в пикофарадах без обозначения единицы измерения, например, 270; от 0,01 мкФ (10000 пФ) до 9999 мкФ — в микрофарадах без обозначения единицы измерения, причем емкость указывают в виде дробного числа, например 0,047; 0,5 или числа с нулем через запятую — 20, 50 и т. д.

Номинальную емкость и допустимое отклонение от нее указывают на корпусах конденсаторов, иногда там же указывают номинальное рабочее напряжение. Маркировка единицы измерения емкости производится в сокращенном виде: П — пикофарада, М — микрофарада, Н — нанофарада. При этом емкости от 0 до 100 пФ маркируют буквой П либо после числа (если оно целое), либо на месте запятой, например 10 пФ = 10П; 1,8пФ = 1П8.

Емкости от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах, а от 0,1 мкФ и выше — в микрофарадах. Если емкость выражена в нанофарадах или микрофарадах, соответствующую единицу измерения пишут на месте нуля или запятой, например, 150 пФ=15Н; 0,33 мкФ = МЗЗ; 1,55 пФ = 1Н5.

Емкости конденсаторов, выраженные целым числом соответствующих единиц, записывают обычным способом, например 0,01 мкФ = 10Н; 30 мкФ = 30М.

В зависимости от условий работы к конденсаторам предъявляют соответствующие требования. Так, конденсатор, включенный в колебательный контур, должен иметь очень малые потери на рабочей частоте и стабильную емкость во время его работы.

Потери в конденсаторах, определяемые потерями в диэлектрике, возрастают в основном при повышении температуры, влажности и частоты, в результате этого конденсатор нагревается. Потери в конденсаторах оцениваются тангенсом угла диэлектрических потерь (tgδ), который дополняет угол сдвига фаз φ между переменным напряжением и током до 90°. Величина, обратная tgδ , называется добротностью конденсатора (Qс). Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, а наибольшими — конденсаторы с бумажным и сегнетокерамическим диэлектриками. Это следует учитывать при замене конденсаторов.

Изменение емкости конденсаторов под воздействием окружающей среды (в основном за счет изменения температуры) происходит за счет изменения размеров обкладок, зазоров между ними и свойств диэлектрика. Наиболее подвержены этому бумажные и металлобумажные конденсаторы широкого применения. Специальные теплоустойчивые конденсаторы этого типа могут работать в широком диапазоне температур (от 18° до 100 °С).

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются температурным коэффициентом емкости (ТКЕ), показывающим относительное изменение емкости при изменении температуры на один градус, т. е. ТКЕ = ΔС/(СΔt), где ΔС — изменение емкости при изменении температуры на Δt°С; С — емкость при нормальной температуре.

Конденсаторы со слюдяным и керамическим диэлектриками могут иметь ТКЕ примерно 50-10 -6 /°С, а с бумажным — (1-3) • 10 -3 /°С, ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы постоянной емкости разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса. Для сохранения стабильной работы колебательных контуров, настроенных на определенную частоту, в широком интервале температур часто применяют последовательное и параллельное соединения конденсаторов, у которых ТКЕ имеют противоположные знаки. Вследствие этого частота настройки колебательного контура при изменении температуры окружающей среды остается неизменной.

Электрическая прочность конденсаторов характеризуется номинальным и испытательным напряжениями.

Номинальное напряжение — эта наибольшее напряжение, приложенное к обкладкам конденсатора, при котором он надежно работает в заданных условиях.

Испытательное напряжение — это максимальное напряжение, которое конденсатор выдерживает, не теряя электрических свойств в течение небольшого промежутка времени (от нескольких секунд до нескольких минут).

Пробивное напряжение — это максимальное рабочее напряжение, при котором происходит пробой диэлектрика.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников. Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде лент из фольги, свернутых вместе с диэлектриком. Собственная индуктивность конденсаторов ограничивает верхний предел частоты, на которой их можно применять, т. е. значение максимальной рабочей частоты определяется резонансной частотой колебательного контура, образованного емкостью и собственной индуктивностью конденсатора. Конденсаторы можно применять на частоте в 2 — 3 раза меньшей, чем их собственная резонансная частота.

Предельная частота для бумажных конденсаторов колеблется от 1 до 1,5 МГц, специальных бумажных (малых габаритов) — от 30 до 80 МГц, специальных слюдяных — от 150 до 250 МГц, специальных керамических — от 2000 до 3000 МГц.

Для защиты от помех, которые могут проникнуть в аппаратуру или прибор через цепь питания, а также для различных блокировочных устройств применяют специальные проходные конденсаторы (рис. 82).

Рис. 82. Проходной конденсатор (а) и его условное обозначение (б)

Проходной конденсатор имеет три вывода, два из которых представляют собой сплошной токопроводящий стержень, проходящий через корпус конденсатора. К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а провод питания припаивают к его среднему выводу. Благодаря такой конструкции токи высокой частоты (помехи) замыкаются на шасси или на экране прибора, и сигналы постоянного тока проходят беспрепятственно.

Электролитические конденсаторы применяют в низкочастотных цепях и в цепях фильтрации питания, где требуются конденсаторы с емкостью в десятки, сотни, а иногда и тысячи микрофарад. В электролитических конденсаторах роль одной обкладки (анода — положительного электрода) выполняет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой обкладки (катода — отрицательного электрода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора. Включать электролитические конденсаторы можно только в цепи постоянного или пульсирующего напряжения и в той полярности, которая на нем указана: анод присоединяется к зажиму со знаком « + », а катод к зажиму (шасси) со знаком «-». Электролитические конденсаторы очень чувствительны к перенапряжению, поэтому на схемах рекомендуется рядом с их графическим изображением указывать их номинальные емкости и напряжение.

Промышленность выпускает электролитические конденсаторы КЭ (рис. 83, а), которые по способу крепления изготовляют в двух вариантах КЭ-1а и КЭ-16. Для печатного монтажа изготовляют специальные малогабаритные конденсаторы (рис. 83,б).

Рис. 83. Электролитические конденсаторы (а, б) и их условное обозначение (в)

Конденсаторы переменной емкости. В тех узлах РЭА, где требуется плавно изменять емкость, применяют конденсаторы переменной емкости (рис. 84, а). Наибольшее распространение имеют конденсаторы переменной емкости, в которых подвижная группа пластин при повороте оси входит в воздушные зазоры между пластинами неподвижной группы. Такие конденсаторы отличаются большой точностью установки емкости, высокой стабильностью и незначительными потерями. Благодаря этому их широко применяют для настройки высокоточных колебательных контуров. Диэлектриком в конденсаторах переменной емкости служит воздух.

Рис. 84. Конденсатор переменной емкости (а) и его условное обозначение (б)

В малогабаритной аппаратуре широкое применение нашли конденсаторы переменной емкости с твердым диэлектриком, в качестве которого используют фторопласт, полиэтилен. Графическое изображение конденсаторов переменной емкости приведено на рис. 84,б. Чтобы показать на схеме, какая из обкладок является ротором, на обозначении ротора ставится точка. Основными параметрами таких конденсаторов являются минимальная и максимальная емкости, которые указывают на схеме рядом с графическим изображением конденсатора.

По характеру изменения емкости в зависимости от угла поворота оси и формы пластин конденсаторы разделяют на четыре вида: прямоемкостные, прямоволновые, прямочастотные и среднелинейные (логарифмические). У прямоемкостных конденсаторов, имеющих полукруглые подвижные пластины, емкость изменяется пропорционально углу поворота оси; их применяют в специальной измерительной аппаратуре. Прямо волновые конденсаторы, имеющие специальную форму пластин, применяют в аппаратуре, где требуется изменять длину волны колебательного контура пропорционально углу поворота оси. Более широко применяют прямочастотные конденсаторы, дающие равномерное изменение частоты контура по диапазону, а также среднелинейные, у которых процентное изменение емкости, приходящееся на градус поворота оси, остается постоянным в любом месте шкалы.

Подстроенные конденсаторы. Для установки начальной емкости колебательного контура, которая определяет максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых изменяется от единиц до двух-трех десятков пикофарад. Все конденсаторы этого типа разделяют на две основные группы: с воздушным (плоские и цилиндрические) и твердым диэлектриком. Наибольшее распространение среди конденсаторов с твердым диэлектриком получили керамические, которые в зависимости от конструкции разделяют на плоские поворотные и цилиндрические.

Керамические подстроечные конденсаторы КПК (рис. 85,а) предназначены для работы в цепях постоянного и переменного тока. Статором у них служит керамическое основание с нанесенным на его поверхность тонким серебряным сектором, ротором — керамический диск с таким же сектором. Емкость конденсатора изменяют поворотом диска. В простейшей аппаратуре иногда применяют проволочный подстроечный конденсатор, который состоит из отрезка медной проволоки диаметром 1 — 2 мм и длиной 15 — 20 мм, с плотно намотанным, виток к витку, изолированным проводом диаметром 0,2 — 0,3 мм (рис. 85,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползала, ее пропитывают каким-либо изоляционным составом (лаком, клеем, парафином и т. п.).

Рис. 85. Подстроечные металлокерамический (а) и проволочный (б) конденсаторы, их условное обозначение (с)

Вариконды. Конденсаторы, в которых в качестве диаэлектрика применяется специальная керамика, называются варикондами. Диэлектрическая проницаемость таких конденсаторов зависит от напряженности электрического поля, а емкость — от напряжения на его обкладках.

При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3 — 6 раз. Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Перед измерением емкости тестером или специальным индикатором прежде всего убеждаются в исправности конденсатора и отсутствии в нем короткого замыкания. При исправном конденсаторе стрелка прибора не отклоняется.

Если емкость конденсатора велика, то в момент подключения стрелка несколько отклоняется, а затем возвращается в прежнее положение. Для определения утечки конденсатора омметром при подключении электролитических конденсаторов соблюдают полярность. Наиболее просто и быстро можно измерить емкость специальными приборами — фарадометрами с непосредственным отсчетом емкости.

В конструкциях подавляющего количества электроприборов присутствует электролитический конденсатор. Телевизоры, радио, аудиотехника, стиральные машины, кондиционеры, компьютеры, принтеры — вот далеко не полный перечень приборов, оснащённых таким конденсатором. Достаточно широкое применение прибор нашёл не только в бытовых устройствах, используемых в повседневной жизни, но также в промышленной, военной и строительной сфере.

Особенности конструкции

Широкий спектр применения электролитических конденсаторов обусловлен их высокими функциональными свойствами и простотой конструкции. При относительно небольших размерах они обладают достаточно большой ёмкостью. Система стандартного конденсатора из алюминия состоит из:

  1. Двух бумажных лент. Для их изготовления используется особая конденсаторная бумага, пропитанная составом, проводящим электрический ток.
  2. Двух алюминиевых полосок. Фольга для их производства обрабатывается специальным образом.

Все полоски скручены в единый рулон. Роль активного элемента выполняют выводы, соединённые с электродами и оснащённые уплотнителем. Вся конструкция заключена в имеющий форму цилиндра алюминиевый корпус. На основе этой системы производится несколько видов моделей:

  • с выводами, расположенными в одном направлении;
  • с повышенной механической прочностью крепления;
  • для поверхностного монтажа.

Стадии производства

Все электролитические конденсаторы большой ёмкости изготавливаются в соответствии с выверенной технологией. Производственный процесс состоит из нескольких важных этапов:

Виды электролитических конденсаторов

  1. Травление фольги. Таким термином принято обозначать процедуру увеличения эффективной площади поверхности. Увеличение площади становится возможным за счёт электрохимической коррозии либо химической эрозии. Пульсирующий ток в совокупности с определённой температурой и составом электролита меняет форму, размер фольги и число микроскопических каналов на её поверхности.
  2. Образование оксидного слоя. Анодная фольга, прошедшая процедуру травления, подвергается окислению, т. е. на неё воздействуют раствором солей аммония, фосфорной или борной кислотой (в случае с высоковольтными конденсаторами). В некоторых случаях на катодной фольге тоже наращивают слой оксида алюминия Al2O3.
  3. Нарезка. Из бумаги и прошедшей необходимую обработку фольги вырезают полоски заданной длины и ширины.
  4. Присоединение выводов. С электродами их соединяют с помощью холодной или точечной сварки.
  5. Пропитывание. Производится с целью заполнения электролитом пор конденсаторной бумаги. Перед этим электролитический конденсатор под давлением освобождается от влаги. В порах должен находиться определённый объём электролита. Его избыток удаляют, поместив элементы в центрифугу. Во избежание потери электролита внутрь устройства устанавливают резиновые уплотнители.

Заключительная стадия производства представляет собой сборку всех деталей в единый прибор, покрытый защитным корпусом из алюминия и изолирующей оболочкой. Ещё одним обязательным этапом является проверка на наличие повреждений оксидного слоя и его восстановление.

Основные характеристики

Устройство конденсатора легче всего представить в виде упрощённого описания. На нём можно увидеть основные параметры электролитических конденсаторов:

  1. Ёмкость. Этот показатель находится в прямой зависимости от температуры. Падение температуры (до нулевого значения и ниже) приводит к тому, что вязкость электролитного состава (как и сопротивление в микроскопических порах фольги) увеличивается, приводя к уменьшению объёма. Увеличение температуры выше 20 градусов, наоборот, ведёт к расширению деталей и общей ёмкости прибора. Также величина этого показателя зависит от частоты. Частота и амплитуда переменного напряжения, поданного на прибор, помогают определить его ёмкость.
  2. Эквивалентное последовательное сопротивление (ESR). Его размер и взаимосвязь с другими величинами определяется по формуле ESR=(tan δ)/(2*π*f* ESС). Угол δ образуется между вектором напряжения конкретного конденсатора и вектором напряжения на идеальной ёмкости. Tan δ представляет собой частное от деления активной мощности на реактивную мощность (при синусоидальной форме напряжения).
  3. Полное сопротивление (импеданс) получается в результате суммарного действия ёмкости оксидного слоя, активного сопротивления бумажного сепаратора и электролита, ёмкости пропитанного электролитом сепаратора, индуктивности обмоток и выводов конденсатора.

Еще одна важная характеристика — это показатель тока, пропущенного через диэлектрический слой оксида на положительном электроде. Если конденсатор долгое время не получал напряжения, величина тока утечки будет высокой. Это свидетельствует о разрушении слоя оксида алюминия.

Разновидности конденсаторов

Неотъемлемой составляющей прибора и залогом его эффективной работы является наличие электролита между пластинами. В зависимости от того, какой состав выполняет эту функцию, конденсаторы бывают:

  • сухие;
  • жидкостные;
  • оксидно-металлические;
  • оксидно-полупроводниковые.

Как проверить конденсатор

Отличительная особенность оксидно-полупроводниковых устройств заключается в том, что роль катода в них выполняет полупроводник, нанесённый непосредственно на оксид алюминия. Анод может быть изготовлен как из алюминия, так и из тантала, ниобия или спечённого порошка.

Наличие катода и анода свидетельствует о том, что электролитический конденсатор относится к разряду полярных приборов. Его работа возможна при прохождении тока только в одну сторону. Для работы в электрических цепях с синусоидным током были разработаны неполярные электролиты. В ходе их производства используются дополнительные элементы, значительно увеличивающие размеры и цену готовых устройств.

Отдельной разновидностью устройства, обеспечивающего протекание электрохимических процессов, считается ионистор. Его принцип действия основывается на соприкосновении электролита с обкладкой, в результате чего образуется двойной электрический слой. Подобная конструкция позволяет использовать ионистор не только по его прямому назначению, но и как химический источник электроэнергии.

Разновидности конденсаторов

Набранная за короткое время ёмкость ионистора может сохраняться долго. При напряжении около десяти вольт ёмкость может доходить до нескольких фарад. При оптимально подобранном сочетании напряжения и температурного режима его рабочий ресурс может достичь 40 тысяч часов. Однако колебание заданных изначально характеристик спровоцирует снижение срока службы в несколько десятков раз (до 500 часов).

Область использования ионисторов широка. Их задействуют для резервирования разных источников питания. Они успешно применяются в солнечных батареях, радиоаппаратуре для автомобилей и «умных домах».

Элементная база для конструирования электронных устройств усложняется. Приборы объединяются в интегральные схемы с заданным функционалом и программным управлением. Но в основе разработок — базовые приборы: конденсаторы, резисторы, диоды и транзисторы.

Что такое конденсатор

Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

Что такое конденсатор, виды конденсаторов и их применение

Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

Где применяются конденсаторы

Работа электронных, радиотехнических и электрических устройств невозможна без конденсаторов.

В электротехнике их используют для сдвига фаз при запуске асинхронных двигателей. Без сдвига фаз трехфазный асинхронный двигатель в переменной однофазной сети не функционирует.

Конденсаторы с ёмкостью в несколько фарад — ионисторы, используются в электромобилях, как источники питания двигателя.

Что такое конденсатор, виды конденсаторов и их применение

Для понимания, зачем нужен конденсатор, нужно знать, что 10-12% измерительных устройств работают по принципу изменения электрической ёмкости при изменении параметров внешней среды. Реакция ёмкости специальных приборов используется для:

  • регистрации слабых перемещений через увеличение или уменьшение расстояния между обкладками;
  • определения влажности с помощью фиксирования изменений сопротивления диэлектрика;
  • измерения уровня жидкости, которая меняет ёмкость элемента при заполнении.

Трудно представить, как конструируют автоматику и релейную защиту без конденсаторов. Некоторые логики защит учитывают кратность перезаряда прибора.

Ёмкостные элементы используются в схемах устройств мобильной связи, радио и телевизионной техники. Конденсаторы применяют в:

  • усилителях высоких и низких частот;
  • блоках питания;
  • частотных фильтрах;
  • усилителях звука;
  • процессорах и других микросхемах.

Что такое конденсатор, виды конденсаторов и их применение

Легко найти ответ на вопрос, для чего нужен конденсатор, если посмотреть на электрические схемы электронных устройств.

Принцип работы конденсатора

В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.

Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.

При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.

Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.

Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.

В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.

В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.

В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.

«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.

Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.

Основные характеристики и свойства

Что такое конденсатор, виды конденсаторов и их применение

К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

  1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
  2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
  3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
  4. Полярность. При неверном подключении произойдет пробой и выход из строя.
  5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
  6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
  7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

Виды и типы конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Что такое конденсатор, виды конденсаторов и их применение

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Что такое конденсатор, виды конденсаторов и их применение

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Что такое конденсатор, виды конденсаторов и их применение

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Что такое конденсатор, виды конденсаторов и их применение

Полимерные

В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:

  • увеличивается срок эксплуатации до 50 тыс. часов;
  • сохраняются параметры при нагреве;
  • расширяется диапазон допустимых пульсаций тока;
  • сопротивление обкладок и выводов не шунтирует ёмкость.

Что такое конденсатор, виды конденсаторов и их применение

Пленочные

Диэлектрик в этих моделях — пленка из тефлона, полиэстера, фторопласта или полипропилена.

Обкладки — фольга или напыление металлов на пленку. Конструкция используется для создания многослойных сборок с увеличенной площадью поверхности.

Пленочные конденсаторы при миниатюрных размерах обладают ёмкостью в сотни мкФ. В зависимости от размещения слоев и выводов контактов делают аксиальные или радиальные формы изделий.

Что такое конденсатор, виды конденсаторов и их применение

В некоторых моделях номинальное напряжение 2 кВ и выше.

В чем отличие полярного и неполярного

Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.

Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.

Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.

Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.

У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *