Что такое эффективная длина пути утечки
Перейти к содержимому

Что такое эффективная длина пути утечки

  • автор:

1.8. Перекрытие изоляции

Перекрытием называют разряд по границе раздела двух сред, чаще всего это граница твердый диэлектрик – газ. Напряжение перекрытия U пер всегда существенно меньше пробивного напряжения U пр чисто газового промежутка с теми же электродами. Основными причинами этого эффекта считают влияние газовых включений между металлом электрода и твердым диэлектриком, влияние микрокапель влаги и накопление объемных зарядов на боковой поверхности изолятора.

Газовые включения между твердой изоляцией и металлом электродов характеризуются повышенной напряженностью электрического поля в газовом включении, определяемой условиями на границе раздела твердый диэлектрик – воздух (рис. 1.5а):

и, поскольку диэлектрическая проницаемость твердого диэлектрика больше, чем диэлектрическая проницаемость воздуха, постольку напряженность поля в воздухе больше напряженности поля в твердом диэлектрике. Ионизация в газовых включениях начинается при сравнительно небольшом напряжении, продукты ионизации выходят на боковую поверхность, накапливаются там, повышают напряженность электрического поля в оставшемся промежутке и облегчают разряд.

Рис. 1.5. Влияние воздушных включений и структура электрического поля

Наличие микрокапель влаги приводит к повышению напряженности поля на краях капель и к перекрытию промежутков между ними при меньшем напряжении, чем при сухой поверхности.

Для увеличения U пер применяют ребристые конструкции изоляторов, увеличивающие разрядный путь.

В опорном изоляторе (рис. 1.5б) электрическое поле часто неоднородно, что дополнительно снижает разрядные напряжения.

Напряжение перекрытия проходного изолятора (рис. 1.5в) обычно в несколько раз меньше напряжения перекрытия опорного изолятора при одинаковой длине пути перекрытия. Связано это с близким расстоянием между разнопотенциальными электродами в проходном изоляторе и большой составляющей напряженности электрического поля, перпендикулярной поверхности твердой изоляции, из-за чего ионизация на фланце изолятора начинается при весьма небольшом напряжении. Большая емкость между каналом разряда и близким внутренним электродом приводит к сравнительно большому емкостному току между каналом разряда и внутренним электродом, что приводит к нагреву канала и большей его стабильности.

РЕЗЮМЕ

Превышение напряжения на изоляции выше критического значения приводит к пробою изоляции. Значение пробивного напряжения зависит от

свойств изоляционного материала, структуры электрического поля в изоляционном промежутке и скорости нарастания пробивного напряжения на промежутке.

Пробой изоляции происходит из-за явлений ударной ионизации, фотоионизации в объеме газа, термической ионизации, эмиссии электронов из катода. В жидкостях особое значение имеют тепловые процессы и наличие примесей, в твердой изоляции при пробое происходят электрические, тепловые и электрохимические процессы.

Пробивное напряжение газового промежутка с однородным и слабонеоднородным электрическим полем зависит от произведения относительной плоскости газа на расстояние между электродами. Эта зависимость характеризуется снижением электрической прочности при увеличении расстояния между электродами при условиях, близких к нормальным и имеет минимум при очень низких давлениях или очень малых расстояниях между электродами.

Разрядный промежуток с электродами типа стержень – плоскость характеризуется существенно меньшей электрической прочностью по сравнению с промежутком с однородным и слабонеоднородным электрическим полем, наличием явления короны и двойным эффектом полярности. При отрицательном стержне корона начинается при существенно меньшем напряжении, чем при положительном, а пробивное напряжение при положительном стержне меньше, чем при отрицательном.

При быстром подъеме напряжения разрядное напряжение оказывается связанным с предразрядным временем, эта зависимость называется вольт-секундной характеристикой изоляционного промежутка. Вольтсекундная характеристика определяется на стандартных грозовых импульсах.

Напряжение перекрытия проходных изоляторов существенно меньше напряжения перекрытия опорных изоляторов при одинаковой длине пути перекрытия.

Контрольные вопросы

1. Дайте определение пробоя и приведите основные величины, его характеризующие.

2. Приведите отличия понятий «пробой диэлектрика» и «пробой изоляции» и отличия их количественных характеристик.

3. Перечислите механизмы пробоя диэлектриков.

4. Сформулируйте закон Пашена. Каковы причины такой зависимости?

5. Почему существует зависимость разрядного напряжения от предразрядного времени?

Электрическая изоляция в районах с загрязненной атмосферой — Понятие о длине пути утечки

ИЗОЛЯТОРЫ ДЛЯ ЗАГРЯЗНЯЕМЫХ РАЙОНОВ

II. ИЗОЛЯТОРЫ ДЛЯ ЗАГРЯЗНЯЕМЫХ РАЙОНОВ
По накоплению опыта в энергетике было принято пользоваться как основной характеристикой, определяющей пригодности изолятора для работы в условиях загрязнения, — величиной «длина пути утечки». Длина (пути утечки изолятора является кратчайшим геометрическим расстоянием (огибающей) по поверхности от одного металлического электрода до другого, находящихся под разными потенциалами.
Измерение длины пути утечки может производиться наложением шнура, нити и т. д. на поверхность изолятора от электрода до электрода с последующим измерением длины нити. Определение длины пути утечки должно обеспечить точность измерения: 3% для электрооборудования классов напряжения до 35 кВ включительно и 2% — классов напряжения 110 кВ и выше.

Разрядное напряжение изолятора, находящегося в загрязненном состоянии, не только определяется длиной пути утечки, но также зависит от ряда других факторов (формы ребер, диаметра изолятора, качества глазури и т. д.). Вместе с тем относительное однообразие форм современных высоковольтных изоляторов позволяет в настоящее время пользоваться как основной величиной «длиной пути утечки». Зачастую пользуются значением удельной длины пути утечки, т. е. величиной, отнесенной на 1 квдейств наибольшего для данного класса рабочего напряжения. Ныне в ряде стран и СССР длина пути утечки изоляторов нормирована. В Советском Союзе действует стандарт, устанавливающий минимальную удельную длину пути утечки (ГОСТ 9920-61) для изоляторов наружной установки аппаратов и трансформаторов, за исключением некоторых видов специальных аппаратов (например, вентильных разрядников, штанг и т. д.), а также и линий электропередач.
Для внешней изоляции аппаратов и трансформаторов установлены две категории исполнения изоляторов по длине пути утечки:
А — нормального исполнения для изоляторов, работающих в местностях со слабой загрязненностью атмосферы, не оказывающей существенного влияния на электрические разрядные напряжения (лесистые районы, сельские местности, наличие пыли, содержащей в малом количестве растворимые в воде соли, и т. п.).
Б — усиленного исполнения для изоляторов, работающих в условиях загрязненной атмосферы, когда на поверхности изоляторов отлагается пыль, имеется воздействие газов и т. д.
Длина пути утечки у изоляторов усиленного исполнения (Б) в 1,5 раза больше по сравнению с изоляторами нормального исполнения (А).
В Советском Союзе были приняты лишь две градации выполнения изоляции аппаратов (А и Б), что должно позволить более легко освоить обе модификации промышленностью.
В линейной изоляции можно регулировать изменение длины пути утечки путем увеличения или уменьшения числа единичных элементов в гирлянде, что и практикуется в энергосистемах Союза. Вместе с тем создание классов изоляции, по исполнению отличающихся друг от друга по длине пути утечки менее чем на 40—50%, признается нецелесообразным, поскольку трудно установить границы различных условий работы электроустановок.
Хотя практика и показала, что изоляция ЛЭП в незагрязненной атмосфере работает удовлетворительно при длине утечки порядка 1,1 см/кВ, в Советском Союзе при разработке нормативов для аппаратуры были приняты иные, несколько большие минимальные величины. Так, например, для аппаратуры (ГОСТ 0920-61):

Нейтраль не заземлена

Нормальная изоляция (А), см/кВ Усиленная изоляция (Б), с.м,кВ

Для класса усиленной изоляции аппаратуры верхний уровень длины шути утечки 2,6 см/кВ установлен исходя из того, что было бы весьма трудным освоить изоляторы с еще большей длиной пути утечки, а ранее выпускавшиеся (порядка 2,5 — 2,6 см/кВ) оправдали себя при наличии достаточного ухода.
Таблица 2

Наибольшее рабочее напряжение,

Длина пути утечки, см, не менее для класса
А | Б

С изолированной нейтралью

С заземленной нейтралью

*В необходимых случаях указывается в технических условиях.
Исходя из приведенных отношений длины пути утечки внешней изоляции к наибольшему рабочему линейному напряжению длина пути утечки изоляторов электрооборудования должна соответствовать величинам, -приведенным в табл. 2.

Министерство энергетики и электрификации СССР (Минэнерго) выпустило руководящие указания по проектированию и эксплуатации ЛЭП и РУ, расположенных в загрязненной атмосфере, в которых указан порядок выбора длины пути утечки внешней изоляции для разных условий эксплуатации (см. разд. III).
Как указывалось ранее, разрядные напряжения загрязненных и увлажненных изоляторов пропорциональны длине пути утечек лишь для относительно простых по форме изоляторов.
В ряде случаев путь разряда проходит не только по поверхности изолятора, но и по воздуху; поверхностное сопротивление меняется в ходе развития разряда, что вызывает непропорциональность длины пути утечки и разрядных напряжений. Таким образом путь утечки изоляторов сложной конфигурации используется не полностью. Поэтому возникает необходимость ввести понятие об эффективной длине шути утечки (/.действ):

где К — •поправочный коэффициент. Величина К определяется многими факторами: диаметром тарелки и электродов (шапки и пестика), длиной шути утечки в отдельности по верхней и нижней поверхности и в совокупности, конфигурацией ребер и расстоянием между ними и т. д. Исследования НИИПТ показали, что для изоляторов тарельчатого типа при L/Д^>1,4 величина К может ориентировочно "подсчитана по зависимости

где Д — диаметр тарелки изолятора.
Рекомендованные коэффициенты К для основных типов подвесных и опорных изоляторов нормального исполнения приведены в табл. 3.

Значение поправочных коэффициентов (К) ка развитость поверхности изоляторов для подсчета эффективной длины пути утечки

Как следует из табл. 3, подтверждаемой обобщенными данными по эксплуатации линейных изоляторов обычных и специальных типов для загрязняемых районов, не видны особые преимущества последних. Поэтому по полученным за последнее время данным не может быть рекомендовано применение указанных в ПУЭ норм для различных ступеней номинального напряжения по количеству изоляторов специального типа (например, НС-2) вместо увеличенного числа изоляторов нормального типа (например, П). В свете сказанного ряд выпускаемых в настоящее время промышленностью специальных изоляторов (НС-2, НЗ-З, ПР-3,5) не может быть рекомендован для массового использования.
Помимо зависимости разрядного напряжения загрязненного изолятора от (присущих ему характеристик имеется также зависимость и от конфигурации (размерности) гирлянды — строительной длины. В этих случаях сопоставление может вестись по соотношению

где Яф — строительная высота сопоставляемых гирлянд изоляторов.
Нормированные данные еще отсутствуют, и уточнение значения /.действ/Нф следует производить путем специальных исследований «по ГОСТ 10390-63 при искусственном и естественном загрязнениях. Так, например, имеются данные, что увеличение числа элементов гирлянды с 18 до 24 (на 33%) может увеличить разрядное напряжение всего на 23%. Но все же заранее можно считать, что на ЛЭП целесообразно применять тарелочные изоляторы с малыми значениями Иф/Д (Н,»— строительная высота элемента и Д — диаметр тарелки) и большими значениями ЦД\ при этом более эффективно уменьшение отношения Н*/Д.
В силу сказанного и по ряду других соображений в ФРГ и ГДР предпочитают применять стержневые линейные изоляторы вместо тарельчатых. В этих случаях при равной длине пути утечки разрядное напряжение стержневых изоляторов может быть больше на 10—15%. Опыт Узбекэнерго по (применению стержневых изоляторов при солончаковых загрязнениях также подтверждает их большую надежность.
Как у стержневых изоляторов, так и у крупногабаритных аппаратных изоляторов, исходя из наиболее благоприятной разрядной характеристики, одновременно с максимальным использованием пути утечки, рекомендуется применять вылет юбок (ребер), превышающий 60 мм, и расстояние между ними в пределе 1 —1,3 от величины вылета. Не рекомендуется применять изоляторы, у которых промежутки между ребрами малы (узкие, глубокие), так как это ухудшает естественную очистку изоляторов и, следовательно, снижает использование пути утечки. Поэтому длинностержневые изоляторы 110 кВ с 27 ребрами показали себя в работе менее удовлетворительными по сравнению с изоляторами, имеющими 21 ребро (тип VKNL-75).
Наблюдения, проведенные в Японии, показали, что необходимая длина пути утечки для сохранения разрядных характеристик должна возрастать и по мере роста эквивалентного диаметра изолятора. В силу отмеченного обстоятельства изделия с большим диаметром фарфора (например, измерительные трансформаторы) должны иметь для сохранения разрядных характеристик большие значения удельной длины утечки по сравнению с малогабаритными изделиями (стержневые изоляторы и т. п.).

82.Что такое «Эффективная длина пути утечки»?

Googleplay Apple Windows

Разделы сайта

Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.

Билеты

На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.

Полезнае ссылки

«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.

В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.

  • Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
  • Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
  • Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
  • Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.

Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Селектор тестов все вопросыСелектор Тестов один вопросПоследняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.

Билеты

На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.

Глава 1.9. Изоляция электроустановок

1.9.1. Настоящая глава распространяется на выбор изоляции электроустановок переменного тока на номинальное напряжение 6–750 кВ.

1.9.2. Длина пути утечки изоляции (изолятора) или составной изоляционной конструкции (L) — наименьшее расстояние по поверхности изоляционной детали между металлическими частями разного потенциала.

1.9.3. Эффективная длина пути утечки — часть длины пути утечки, определяющая электрическую прочность изолятора или изоляционной конструкции в условиях загрязнения и увлажнения.

Удельная эффективная длина пути утечки (λэ) — отношение эффективной длины пути утечки к наибольшему рабочему межфазному напряжению сети, в которой работает электроустановка.

1.9.4. Коэффициент использования длины пути утечки (k) — поправочный коэффициент, учитывающий эффективность использования длины пути утечки изолятора или изоляционной конструкции.

1.9.5. Степень загрязнения (СЗ) — показатель, учитывающий влияние загрязненности атмосферы на снижение электрической прочности изоляции электроустановок.

1.9.6. Карта степеней загрязнения (КСЗ) — географическая карта, районирующая территорию по СЗ.

Общие требования

1.9.7. Выбор изоляторов или изоляционных конструкций из стекла и фарфора должен производиться по удельной эффективной длине пути утечки в зависимости от СЗ в месте расположения электроустановки и ее номинального напряжения. Выбор изоляторов или изоляционных конструкций из стекла и фарфора может производиться также по разрядным характеристикам в загрязненном и увлажненном состоянии.

Выбор полимерных изоляторов или конструкций в зависимости от СЗ и номинального напряжения электроустановки должен производиться по разрядным характеристикам в загрязненном и увлажненном состоянии.

1.9.8. Определение СЗ должно производиться в зависимости от характеристик источников загрязнения и расстояния от них до электроустановки (табл. 1.9.3–1.9.18). В случаях, когда использование табл. 1.9.3–1.9.18 по тем или иным причинам невозможно, определение СЗ следует производить по КСЗ.

Вблизи промышленных комплексов, а также в районах с наложением загрязнений от крупных промышленных предприятий, ТЭС и источников увлажнения с высокой электрической проводимостью определение СЗ, как правило, должно производиться по КСЗ.

1.9.9. Длина пути утечки L (см) изоляторов и изоляционных конструкций из стекла и фарфора должна определяться по формуле

где λэ — удельная эффективная длина пути утечки по табл. 1.9.1, см/кВ;

U — наибольшее рабочее междуфазное напряжение, кВ (по ГОСТ 721);

k — коэффициент использования длины пути утечки (1.9.44–1.9.53).

Изоляция ВЛ

1.9.10. Удельная эффективная длина пути утечки поддерживающих гирлянд изоляторов и штыревых изоляторов ВЛ на металлических и железобетонных опорах в зависимости от СЗ и номинального напряжения (на высоте до 1000 м над уровнем моря) должна приниматься по табл. 1.9.1.

Таблица 1.9.1. Удельная эффективная длина пути утечки поддерживающих гирлянд изоляторов и штыревых изоляторов ВЛ на металлических и железобетонных опорах, внешней изоляции электрооборудования и изоляторов ОРУ
Степень загрязнения λэ, см/кВ (не менее), при номинальном напряжении, кВ
до 35 включительно 110–750
1 1,90 1,60
2 2,35 2,00
3 3,00 2,50
4 3,50 3,10

Удельная эффективная длина пути утечки поддерживающих гирлянд и штыревых изоляторов ВЛ на высоте более 1000 м над уровнем моря должна быть увеличена по сравнению с нормированной в табл. 1.9.1:

  • от 1000 до 2000 м — на 5%;
  • от 2000 до 3000 м — на 10%;
  • от 3000 до 4000 м — на 15%.

1.9.11. Изоляционные расстояния по воздуху от токоведущих до заземленных частей опор должны соответствовать требованиям гл. 2.5.

1.9.12. Количество подвесных тарельчатых изоляторов в поддерживающих гирляндах и в последовательной цепи гирлянд специальной конструкции (V-образных, Λ-образных, -образных, Y-образных и др., составленных из изоляторов одного типа) для ВЛ на металлических и железобетонных опорах должно определяться по формуле

Глава 1.9. Изоляция электроустановок,

где Lи — длина пути утечки одного изолятора по стандарту или техническим условиям на изолятор конкретного типа, см. Если расчет m не дает целого числа, то выбирают следующее целое число.

1.9.13. На ВЛ напряжением 6–20 кВ с металлическими и железобетонными опорами количество подвесных тарельчатых изоляторов в поддерживающих и натяжных гирляндах должно определяться по 1.9.12 и независимо от материала опор должно составлять не менее двух.

На ВЛ напряжением 35–110 кВ с металлическими, железобетонными и деревянными опорами с заземленными креплениями гирлянд количество тарельчатых изоляторов в натяжных гирляндах всех типов в районах с 1–2-й СЗ следует увеличивать на один изолятор в каждой гирлянде по сравнению с количеством, полученным по 1.9.12.

На ВЛ напряжением 150–750 кВ на металлических и железобетонных опорах количество тарельчатых изоляторов в натяжных гирляндах должно определяться по 1.9.12.

1.9.14. На ВЛ напряжением 35–220 кВ с деревянными опорами в районах с 1–2-й СЗ количество подвесных тарельчатых изоляторов из стекла или фарфора допускается принимать на один меньше, чем для ВЛ на металлических или железобетонных опорах.

На ВЛ напряжением 6–20 кВ с деревянными опорами или деревянными траверсами на металлических и железобетонных опорах в районах с 1–2-й СЗ удельная эффективная длина пути утечки изоляторов должна быть не менее 1,5 см/кВ.

1.9.15. В гирляндах опор больших переходов должно предусматриваться по одному дополнительному тарельчатому изолятору из стекла или фарфора на каждые 10 м превышения высоты опоры сверх 50 м по отношению к количеству изоляторов нормального исполнения, определенному для одноцепных гирлянд при λэ = 1,9 см/кВ для ВЛ напряжением 6–35 кВ и λэ = 1,4 см/кВ для ВЛ напряжением 110–750 кВ. При этом количество изоляторов в гирляндах этих опор должно быть не менее требуемого по условиям загрязнения в районе перехода.

1.9.16. В гирляндах тарельчатых изоляторов из стекла или фарфора, подвешенных на высоте более 100 м, должны предусматриваться сверх определенного в соответствии с 1.9.12 и 1.9.15 два дополнительных изолятора.

1.9.17. Выбор изоляции ВЛ с изолированными проводами должен производиться в соответствии с 1.9.10–1.9.16.

Внешняя стеклянная и фарфоровая изоляция электрооборудования и ОРУ

1.9.18. Удельная эффективная длина пути утечки внешней фарфоровой изоляции электрооборудования и изоляторов ОРУ напряжением 6–750 кВ, а также наружной части вводов ЗРУ в зависимости от СЗ и номинального напряжения (на высоте до 1000 м над уровнем моря) должна приниматься по табл. 1.9.1.

Удельная эффективная длина пути утечки внешней изоляции электрооборудования и изоляторов ОРУ напряжением 6–220 кВ, расположенных на высоте более 1000 м, должна приниматься: на высоте до 2000 м — по табл. 1.9.1, а на высоте от 2000 до 3000 м — на одну степень загрязнения выше по сравнению с нормированной.

1.9.19. При выборе изоляции ОРУ изоляционные расстояния по воздуху от токоведущих частей ОРУ до заземленных конструкций должны соответствовать требованиям гл. 4.2.

1.9.20. В натяжных и поддерживающих гирляндах ОРУ число тарельчатых изоляторов следует определять по 1.9.12–1.9.13 с добавлением в каждую цепь гирлянды напряжением 110–150 кВ — одного, 220–330 кВ — двух, 500 кВ — трех, 750 кВ — четырех изоляторов.

1.9.21. При отсутствии электрооборудования, удовлетворяющего требованиям табл. 1.9.1 для районов с 3–4-й СЗ, необходимо применять оборудование, изоляторы и вводы на более высокие номинальные напряжения с изоляцией, удовлетворяющей табл. 1.9.1.

1.9.22. В районах с условиями загрязнения, превышающими 4-ю СЗ, как правило, следует предусматривать сооружение ЗРУ.

1.9.23. ОРУ напряжением 500–750 кВ и, как правило, ОРУ напряжением 110–330 кВ с большим количеством присоединений не должны располагаться в зонах с 3–4-й СЗ.

1.9.24. Удельная эффективная длина пути утечки внешней изоляции электрооборудования и изоляторов в ЗРУ напряжением 110 кВ и выше должна быть не менее 1,2 см/кВ в районах с 1-й СЗ и не менее 1,5 см/кВ в районах с 2–4-й СЗ.

1.9.25. В районах с 1–3-й СЗ должны применяться КРУН и КТП с изоляцией по табл. 1.9.1. В районах с 4-й СЗ допускается применение только КРУН и КТП с изоляторами специального исполнения.

1.9.26. Изоляторы гибких и жестких наружных открытых токопроводов должны выбираться с удельной эффективной длиной пути утечки по табл. 1.9.1: λэ = 1,9 см/кВ на номинальное напряжение 20 кВ для токопроводов 10 кВ в районах с 1–3-й СЗ; λэ = 3,0 см/кВ на номинальное напряжение 20 кВ для токопроводов 10 кВ в районах с 4-й СЗ; λэ = 2,0 см/кВ на номинальное напряжение 35 кВ для токопроводов 13,8–24 кВ в районах с 1–4-й СЗ.

Выбор изоляции по разрядным характеристикам

1.9.27. Гирлянды ВЛ напряжением 6–750 кВ, внешняя изоляция электрооборудования и изоляторы ОРУ напряжением 6–750 кВ должны иметь 50%-ные разрядные напряжения промышленной частоты в загрязненном и увлажненном состоянии не ниже значений, приведенных в табл. 1.9.2.

Удельная поверхностная проводимость слоя загрязнения должна приниматься (не менее):

для 1-й СЗ — 5 мкСм, 2-й СЗ — 10 мкСм, 3-й СЗ — 20 мкСм, 4-й СЗ — 30 мкСм.

Таблица 1.9.2. 50%-ные разрядные напряжения гирлянд ВЛ 6–750 кВ, внешней изоляции электрооборудования и изоляторов ОРУ 6–750 кВ в загрязненном и увлажненном состоянии
Номинальное напряжение электроустановки, кВ 50%-ные разрядные напряжения, кВ (действующие значения)
6 8
10 13
35 42
110 110
150 150
220 220
330 315
500 460
750 685

Определение степени загрязнения

1.9.28. В районах, не попадающих в зону влияния промышленных источников загрязнения (леса, тундра, лесотундра, луга), может применяться изоляция с меньшей удельной эффективной длиной пути утечки, чем нормированная в табл. 1.9.1 для 1-й СЗ.

1.9.29. К районам с 1-й СЗ относятся территории, не попадающие в зону влияния источников промышленных и природных загрязнений (болота, высокогорные районы, районы со слабозасоленными почвами, сельскохозяйственные районы).

1.9.30. В промышленных районах при наличии обосновывающих данных может применяться изоляция с большей удельной эффективной длиной пути утечки, чем нормированная в табл. 1.9.1 для 4-й СЗ.

1.9.31. Степень загрязнения вблизи промышленных предприятий должна определяться по табл. 1.9.3–1.9.12 в зависимости от вида и расчетного объема выпускаемой продукции и расстояния до источника загрязнений.

Расчетный объем продукции, выпускаемой промышленным предприятием, определяется суммированием всех видов продукции. СЗ в зоне уносов действующего или сооружаемого предприятия должна определяться по наибольшему годовому объему продукции с учетом перспективного плана развития предприятия (не более чем на 10 лет вперед).

1.9.32. Степень загрязнения вблизи ТЭС и промышленных котельных должна определяться по табл. 1.9.13 в зависимости от вида топлива, мощности станции и высоты дымовых труб.

Таблица 1.9.3. СЗ вблизи химических предприятий и производств
Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 2000 от 2000 до 2500 от 2500 до 3000 от 3000 до 5000 от 5000
До 10 1 1 1 1 1 1 1 1
От 10 до 500 2 1 1 1 1 1 1 1
От 500 до 1500 3 2 1 1 1 1 1 1
От 1500 до 2500 3 3 2 1 1 1 1 1
От 2500 до 3500 4 3 3 2 2 1 1 1
От 3500 до 5000 4 4 3 3 3 2 2 1
Таблица 1.9.4. СЗ вблизи нефтеперерабатывающих и нефтехимических предприятий и производств
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 2000 от 2000 до 3500 от 3500
Нефтеперерабатывающие заводы До 1000 1 1 1 1 1 1
От 1000 до 5000 2 1 1 1 1 1
От 5000 до 9000 3 2 1 1 1 1
От 9000 до 18 000 3 3 2 1 1 1
Нефтехимические заводы и комбинаты До 5000 3 2 1 1 1 1
От 5000 до 10 000 3 3 2 1 1 1
От 10 000 до 15 000 4 3 3 2 1 1
От 15 000 до 20 000 4 4 3 3 2 1
Заводы синтетического каучука До 50 1 1 1 1 1 1
От 50 до 150 2 1 1 1 1 1
От 150 до 500 3 2 1 1 1 1
От 500 до 1000 3 3 2 1 1 1
Заводы резинотехнических изделий До 100 1 1 1 1 1 1
От 100 до 300 2 1 1 1 1 1
Таблица 1.9.5. СЗ вблизи предприятий по производству газов и переработке нефтяного газа
Подотрасль Расчетный объем выпускаемой продукции СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000
Производство газов Независимо от объема 2 1 1
Переработка нефтяного газа Независимо от объема 3 2 1
Таблица 1.9.6. СЗ вблизи предприятий по производству целлюлозы и бумаги
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000 до 1500 от 1500
Производство целлюлозы и полуцеллюлозы До 75 1 1 1 1
От 75 до 150 2 1 1 1
От 150 до 500 3 2 1 1
От 500 до 1000 4 3 2 1
Производство бумаги Независимо от объема 1 1 1 1
Таблица 1.9.7. СЗ вблизи предприятий и производств черной металлургии
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 2000 от 2000 до 2500 от 2500
1 2 3 4 5 6 7 8
Выплавка чугуна и стали До 1500 2 1 1 1 1 1
От 1500 до 7500 2 2 2 1 1 1
От 7500 до 12 000 3 2 2 2 1 1
Горнообогатительные комбинаты До 2000 1 1 1 1 1 1
От 2000 до 5500 2 1 1 1 1 1
От 5500 до 10 000 3 2 1 1 1 1
От 10 000 до 13 000 3 3 2 1 1 1
Коксохимпроизводство До 5000 2 2 2 2 2 1
От 5000 до 12 000 2 2 2 2 2 1
Ферросплавы До 500 1 1 1 1 1 1
От 500 до 700 2 2 1 1 1 1
От 700 до 1000 3 3 2 1 1 1
Производство магнезиальных изделий Независимо от объема 3 2 2 2 1 1
Прокат и обработка чугуна и стали Независимо от объема 2 1 1 1 1 1
Таблица 1.9.8. СЗ вблизи предприятий и производств цветной металлургии
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 2000 от 2000 до 2500 от 2500 до 3500 от 3500
Производство алюминия До 100 1 1 1 1 1 1 1
От 100 до 500 2 2 1 1 1 1 1
От 500 до 1000 3 3 2 2 1 1 1
От 1000 до 2000 3 3 3 2 2 1 1
Производство никеля От 1 до 5 1 1 1 1 1 1 1
От 5 до 25 2 2 1 1 1 1 1
От 25 до 1000 3 2 2 1 1 1 1
Производство редких металлов Независимо от объема 4 4 3 3 2 2 1
Производство цинка Независимо от объема 3 2 1 1 1 1 1
Производство и обработка цветных металлов Независимо от объема 2 1 1 1 1 1 1
Таблица 1.9.9. СЗ вблизи предприятий по производству строительных материалов
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 250 от 250 до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 2000 от 2000 до 3000 от 3000
Производство цемента До 100 1 1 1 1 1 1 1
От 100 до 500 2 2 1 1 1 1 1
От 500 до 1500 3 3 2 1 1 1 1
От 1500 до 2500 3 3 3 2 1 1 1
От 2500 до 3500 4 4 3 3 2 1 1
От 3500 4 4 4 3 3 2 1
Производство асбеста и др. Независимо от объема 3 2 1 1 1 1 1
Производство бетонных изделий и др. Независимо от объема 2 1 1 1 1 1 1
Таблица 1.9.10. СЗ вблизи машиностроительных предприятий и производств
Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 500 от 500
Независимо от объема 2 1
Таблица 1.9.11. СЗ вблизи предприятий легкой промышленности
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 250 от 250 до 500 от 500
Обработка тканей Независимо от объема 3 2 1
Производство искусственных кож и пленочных материалов Независимо от объема 2 1 1
Таблица 1.9.12. СЗ вблизи предприятий по добыче руд и нерудных ископаемых
Подотрасль Расчетный объем выпускаемой продукции, тыс. т/год СЗ при расстоянии от источника загрязнения, м
до 250 от 250 до 500 от 500
Железная руда и др. Независимо от объема 2 1 1
Уголь* Независимо от объема 3 2 1
* Распространяется на определение СЗ вблизи терриконов.
Таблица 1.9.13. СЗ вблизи ТЭС и промышленных котельных
Вид топлива Мощность, МВт Высота дымовых труб, м СЗ при расстоянии от источника загрязнения, м
до 250 от 250 до 500 от 500 до 1000 от 1000 до 1500 от 1500 до 3000 от 3000
ТЭС и котельные на углях при зольности менее 30%, мазуте, газе Независимо от мощности Любая 1 1 1 1 1 1
ТЭС и котельные на углях при зольности более 30% До 1000 Любая 1 1 1 1 1 1
От 1000 До 180 2 2 2 1 1 1
до 4000 От 180 2 2 1 1 1 1
ТЭС и котельные на сланцах До 500 Любая 3 2 2 2 1 1
От 500 До 180 4 3 2 2 2 1
до 2000 От 180 3 3 2 2 2 1

1.9.33. При отсчете расстояний по табл. 1.9.3– 1.9.13 границей источника загрязнения является кривая, огибающая все места выбросов в атмосферу на данном предприятии (ТЭС).

1.9.34. В случае превышения объема выпускаемой продукции и мощности ТЭС, по сравнению с указанными в табл. 1.9.3–1.9.13, следует увеличивать СЗ не менее чем на одну ступень.

1.9.35. Объем выпускаемой продукции при наличии на одном предприятии нескольких источников загрязнения (цехов) должен определяться суммированием объемов продукции отдельных цехов. Если источник выброса загрязняющих веществ отдельных производств (цехов) отстоит от других источников выброса предприятия больше чем на 1000 м, годовой объем продукции должен определяться для этих производств и остальной части предприятия отдельно. В этом случае расчетная СЗ должна определяться согласно 1.9.43.

1.9.36. Если на одном промышленном предприятии выпускается продукция нескольких отраслей (или подотраслей) промышленности, указанных в табл. 1.9.3–1.9.12, то СЗ следует определять согласно 1.9.43.

1.9.37. Границы зоны с данной СЗ следует корректировать с учетом розы ветров по формуле

Глава 1.9. Изоляция электроустановок,

где S — расстояние от границы источника загрязнения до границы района с данной СЗ, скорректированное с учетом розы ветров, м;

S0 — нормированное расстояние от границы источника загрязнения до границы района с данной СЗ при круговой розе ветров, м;

W — среднегодовая повторяемость ветров рассматриваемого румба,%;

W0 — повторяемость ветров одного румба при круговой розе ветров,%.

Значения S/S0 должны ограничиваться пределами 0,5 < S/S0 ≤ 2.

1.9.38. Степень загрязнения вблизи отвалов пылящих материалов, складских зданий и сооружений, канализационно-очистных сооружений следует определять по табл. 1.9.14.

Таблица 1.9.14. СЗ вблизи отвалов пылящих материалов, складских зданий и сооружений, канализационно-очистных сооружений (золоотвалы, солеотвалы, шлакоотвалы, крупные промышленные свалки, предприятия по сжиганию мусора, склады и элеваторы пылящих материалов, склады для хранения минеральных удобрений и ядохимикатов, гидрошахты и обогатительные фабрики, станции аэрации и другие канализационно-очистные сооружения)
СЗ при расстоянии от источника загрязнения, м
до 200 от 200 до 600 от 600
3 2 1

1.9.39. Степень загрязнения вблизи автодорог с интенсивным использованием в зимнее время химических противогололедных средств следует определять по табл. 1.9.15.

Таблица 1.9.15. СЗ вблизи автодорог с интенсивным использованием в зимнее время химических противогололедных средств
СЗ при расстоянии от автодорог, м
до 25 от 25 до 100 от 100
3 2 1

1.9.40. Степень загрязнения в прибрежной зоне морей, соленых озер и водоемов должна определяться по табл. 1.9.16 в зависимости от солености воды и расстояния до береговой линии. Расчетная соленость воды определяется по гидрологическим картам как максимальное значение солености поверхностного слоя воды в зоне до 10 км в глубь акватории. Степень загрязнения над поверхностью засоленных водоемов следует принимать на одну ступень выше, чем в табл. 1.9.16 для зоны до 0,1 км.

Таблица 1.9.16. СЗ в прибрежной зоне морей и озер площадью более 10 000 м 2
Тип водоема Расчетная соленость воды, г/л Расстояние от береговой линии, км СЗ
Незасоленный До 2 До 0,1 1
Слабозасоленный От 2 до 10 До 0,1 2
От 0,1 до 1,0 1
Слабозасоленный От 10 до 20 До 0,1 3
От 0,1 до 1,0 2
От 1,0 до 5,0 1
Сильнозасоленный От 20 до 40 До 1,0 3
От 1,0 до 5,0 2
От 5,0 до 10,0 1

1.9.41. В районах, подверженных ветрам со скоростью более 30 м/с со стороны моря (периодичностью не реже одного раза в 10 лет), расстояния от береговой линии, приведенные в табл. 1.9.16, следует увеличить в 3 раза.

Для водоемов площадью 1000–10 000 м 2 СЗ допускается снижать на одну ступень по сравнению с данными табл. 1.9.16.

1.9.42. Степень загрязнения вблизи градирен или брызгальных бассейнов должна определяться по табл. 1.9.17 при удельной проводимости циркуляционной воды менее 1000 мкСм/см и по табл. 1.9.18 при удельной проводимости от 1000 до 3000 мкСм/см.

Таблица 1.9.17. СЗ вблизи градирен и брызгальных бассейнов с удельной проводимостью циркуляционной воды менее 1000 мкСм/см
СЗ района Расстояние от градирен (брызгального бассейна), м
до 150 от 150
1 2 1
2 3 2
3 4 3
4 4 4
Таблица 1.9.18. СЗ вблизи градирен и брызгальных бассейнов с удельной проводимостью циркуляционной воды от 1000 до 3000 мкСм/см
СЗ района Расстояние от градирен (брызгального бассейна), м
до 150 от 150 до 600 от 600
1 3 2 1
2 4 3 2
3 4 4 3
4 4 4 4

1.9.43. Расчетную СЗ в зоне наложения загрязнений от двух независимых источников, определенную с учетом розы ветров по 1.9.37, следует определять по табл. 1.9.19 независимо от вида промышленного или природного загрязнения.

Таблица 1.9.19. Расчетная СЗ при наложении загрязнений от двух независимых источников
СЗ от первого источника Расчетная СЗ при степени загрязнения от второго источника
2 3 4
2 2 3 4
3 3 4 4
4 4 4 4

Коэффициенты использования основных типов изоляторов и изоляционных конструкций (стеклянных и фарфоровых)

1.9.44. Коэффициенты использования k изоляционных конструкций, составленных из однотипных изоляторов, следует определять как

где kи — коэффициент использования изолятора;

kк — коэффициент использования составной конструкции с параллельными или последовательно-параллельными ветвями.

1.9.45. Коэффициенты использования kи подвесных тарельчатых изоляторов по ГОСТ 27661 со слабо развитой нижней поверхностью изоляционной детали следует определять по табл. 1.9.20 в зависимости от отношения длины пути утечки изолятора Lи к диаметру его тарелки D.

Таблица 1.9.20. Коэффициенты использования kи подвесных тарельчатых изоляторов со слабо развитой нижней поверхностью изоляционной детали
Lи/D kи
От 0,90 до 1,05 включ. 1,00
От 1,05 до 1,10 включ. 1,05
От 1,10 до 1,20 включ. 1,10
От 1,20 до 1,30 включ. 1,15
От 1,30 до 1,40 включ. 1,20

1.9.46. Коэффициенты использования kи подвесных тарельчатых изоляторов специального исполнения с сильно развитой поверхностью следует определять по табл. 1.9.21.

Таблица 1.9.21. Коэффициенты использования kи подвесных тарельчатых изоляторов специального исполнения
Конфигурация изолятора kи
Двукрылая 1,20
С увеличенным вылетом ребра на нижней поверхности 1,25
Аэродинамического профиля (конусная, полусферическая) 1,00
Колоколообразная с гладкой внутренней и ребристой наружной поверхностями 1,15

1.9.47. Коэффициенты использования kи штыревых изоляторов (линейных, опорных) со слабо развитой поверхностью должны приниматься равными 1,0, с сильно развитой поверхностью —1,1.

1.9.48. Коэффициенты использования kи внешней изоляции электрооборудования наружной установки, выполненной в виде одиночных изоляционных конструкций, в том числе опорных изоляторов наружной установки на номинальное напряжение до 110 кВ, а также подвесных изоляторов стержневого типа на номинальное напряжение 110 кВ, следует определять по табл. 1.9.22 в зависимости от отношения длины пути утечки изолятора или изоляционной конструкции Lи к длине их изоляционной части h.

Таблица 1.9.22. Коэффициенты использования kк одиночных изоляционных колонок, опорных и подвесных стержневых изоляторов
Lи/D менее 2,5 2,5–3,00 3,01–3,30 3,31–3,50 3,51–3,71 3,71–4,00
kк 1,00 1,10 1,15 1,20 1,25 1,30

1.9.49. Коэффициенты использования kк одноцепных гирлянд и одиночных опорных колонок, составленных из однотипных изоляторов, следует принимать равными 1,0.

1.9.50. Коэффициенты использования kк составных конструкций с параллельными ветвями (без перемычек), составленных из однотипных элементов (двухцепных и многоцепных поддерживающих и натяжных гирлянд, двух- и многостоечных колонок), следует определять по табл. 1.9.23.

Таблица 1.9.23. Коэффициенты использования kк составных конструкций с электрически параллельными ветвями (без перемычек)
Количество параллельных ветвей 1 2 3–5
kк 1,00 1,05 1,10

1.9.51. Коэффициенты использования kк Λ-образных и V-образных гирлянд с одноцепными ветвями следует принимать равными 1,0.

1.9.52. Коэффициенты использования kк составных конструкций с последовательно-параллельными ветвями, составленными из изоляторов одного типа (гирлянд типа Y или Λ, опорных колонок с различным числом параллельных ветвей по высоте, а также подстанционных аппаратов с растяжками), следует принимать равными 1,1.

1.9.53. Коэффициенты использования kи и одноцепных гирлянд и одиночных опорных колонок, составленных из разнотипных изоляторов с коэффициентами использования kи1 и kи2, должны определяться по формуле

Глава 1.9. Изоляция электроустановок,

где L1 и L2 — длина пути утечки участков конструкции из изоляторов соответствующего типа. Аналогичным образом должна определяться величина kи для конструкций указанного вида при числе разных типов изоляторов, большем двух.

1.9.54. Конфигурация подвесных изоляторов для районов с различными видами загрязнений должна выбираться по табл. 1.9.24.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *