помогите пожалуйста, срочно надо
1. Фотоэффект – это
• явление облучения вещества светом
• явление вырывания электронов из вещества под действием света
• явление распространения фотонов
2. Почему при положительном заряде пластины фотоэффект не происходит?
• вырванные электроны притягиваются к пластине и снова оседают на ней
• электроны не вырываются из вещества
• энергии фотонов не достаточно
• энергии электронов не достаточно
3. Изменяется ли заряд электрометра, подключённого к положительно заряженной пластине, если её облучать светом?
• да
• нет
• сначала увеличивается, а затем уменьшается
• сначала уменьшается, а затем увеличивается
4. Какой вид излучения вызывает фотоэффект?
• инфракрасное
• видимое
• ультрафиолетовое
5. Почему отрицательно заряженная пластина, облучаемая светом, не теряет электроны когда на пути света поставлено обыкновенное стекло?
• стекло поглощает ультрафиолетовые лучи
• стекло задерживает свет
• стекло поглощает фотоны
6. Что такое ток насыщения?
• максимальное значение тока, которое соответствует частоте 1000 Гц
• наибольшее значение силы тока, при котором напряжение не увеличивается
• значение силы тока, после которого она перестаёт увеличиваться
7. Согласно второму закону фотоэффекта
• кинетическая энергия фотоэлектронов прямо пропорциональна частоте света
• кинетическая энергия фотоэлектронов обратно пропорциональна частоте света
• кинетическая энергия фотоэлектронов не зависит от частоты света
8. Чему равна масса покоящегося фотона?
• 1000 мг
• 1 мг
• 0 кг
9. Что такое красная граница фотоэффекта?
• длина волны красного света
• наименьшая длина волны
• наибольшая длина волны
10. Длина волны голубого света 500 нм, а желтого 600 нм.Фотоны какого света имеют большую энергию?
• одинаковы
• голубого
• желтого
Ответы
1.Фотоэффект – это явление вырывания электронов из вещества под действием света
2.Почему при положительном заряде пластины фотоэффект не происходит?
вырванные электроны притягиваются к пластине и снова оседают на ней
3.Изменяется ли заряд электрометра, подключённого к положительно заряженной пластине, если её облучать светом?
4.Какой вид излучения вызывает фотоэффект?
5.Почему отрицательно заряженная пластина, облучаемая светом, не теряет электроны когда на пути света поставлено обыкновенное стекло?
стекло поглощает ультрафиолетовые лучи
6.Что такое ток насыщения?
значение силы тока, после которого она перестаёт увеличиваться
7.Согласно второму закону фотоэффекта
кинетическая энергия фотоэлектронов прямо пропорциональна частоте света
8.Чему равна масса покоящегося фотона?
9.Что такое красная граница фотоэффекта?
длина волны красного света
10.Длина волны голубого света 500 нм, а желтого 600 нм.Фотоны какого света имеют большую энергию?
Тест с ответами: «Фотоэффект»
3. Как изменится кинетическая энергия фотоэлектронов при фотоэффекте, если увеличить частоту падающего на металл света, не изменяя общую мощность излучения:
а) уменьшится
б) не изменится
в) увеличится +
4. В каком случае электрометр, заряженный отрицательным зарядом, быстрее разрядится при освещении:
1. инфракрасным излучением
2. ультрафиолетовым излучением
а) только 2 +
б) только 1
в) оба случая
5. Как изменится частота красной границы фотоэффекта, если шарику радиуса R сообщить положительный заряд:
а) уменьшится
б) не изменится
в) увеличится +
6. Может ли свободный электрон, находящийся в проводнике, полностью поглотить фотон:
а) нет
б) да +
в) нет однозначного ответа
7. Световой поток, падающий на фотокатод, увеличили в 2 раза. Как при этом изменилась сила тока насыщения фотоэлемента, если длина волны света, падающего на катод фотоэлемента, осталась прежней:
а) увеличилась в 2 раза
б) уменьшилась в 2 раза
в) увеличилась в 2 раза +
8. Чему равна работа выхода электронов для материала шарика, если при непрерывном облучении его фотонами с энергией, превышающей в 4 раза работу выхода, установившейся на шарике потенциал равен φ = 1,5 В:
а) 1 эВ
б) 1,5 эВ
в) 10 эВ
9. Для опытов по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с:
а) увеличилось в 1,5 раза
б) уменьшилось в 2 раза
в) стало равным нулю +
10. Длина волны красного света почти в 2 раза больше, чем фиолетового. Энергия фотона красного света по отношению к энергии фотона фиолетового света:
а) меньше в 4 раза
б) меньше в 2 раза +
в) больше в 2 раза
11. Фотоэффект — это явление:
а) вырывания электронов из вещества под действием света +
б) облучения вещества светом
в) распространения фотонов
12. Почему при положительном заряде пластины фотоэффект не происходит:
а) энергии электронов не достаточно
б) вырванные электроны притягиваются к пластине и снова оседают на ней +
в) электроны не вырываются из вещества
13. Изменяется ли заряд электрометра, подключённого к положительно заряженной пластине, если её облучать светом:
а) нет +
б) да
в) сначала увеличивается, а затем уменьшается
14. Какой вид излучения вызывает фотоэффект:
а) видимое
б) инфракрасное
в) ультрафиолетовое +
15. Почему отрицательно заряженная пластина, облучаемая светом, не теряет электроны когда на пути света поставлено обыкновенное стекло:
а) стекло поглощает ультрафиолетовые лучи +
б) стекло поглощает фотоны
в) стекло задерживает свет
16. Что такое ток насыщения:
а) максимальное значение тока, которое соответствует частоте 1000 Гц
б) значение силы тока, после которого она перестаёт увеличиваться +
в) наибольшее значение силы тока, при котором напряжение не увеличивается
17. Согласно второму закону фотоэффекта:
а) кинетическая энергия фотоэлектронов обратно пропорциональна частоте света
б) кинетическая энергия фотоэлектронов не зависит от частоты света
в) кинетическая энергия фотоэлектронов прямо пропорциональна частоте света +
18. Чему равна масса покоящегося фотона:
а) 100 мг
б) 0 кг +
в) 10 мг
19. Что такое красная граница фотоэффекта:
а) наименьшая длина волны
б) длина волны красного света
в) наибольшая длина волны +
20. Длина волны голубого света 500 нм, а желтого 600 нм. Фотоны какого света имеют большую энергию:
а) желтого
б) голубого +
в) одинаковы
21. Порция электромагнитной волны:
а) квант +
б) люмий
в) свет
22. Энергия кванта света расходуется на работу по вырыванию электрона и сообщение ему кинетической энергии или нет:
а) не расходуется
б) расходуется +
в) в некоторых случаях
23. Чем выше частота падающего света, тем больше максимальная кинетическая энергия фотоэлектронов:
а) в некоторых случаях
б) нет
в) да +
24. Число электронов, вырываемых с поверхности металла, пропорционально энергии световой волны или нет:
а) в некоторых случаях
б) пропорционально +
в) не пропорционально
25. Энергия кванта света пропорциональна длине волны излучения или нет:
а) да
б) иногда
в) нет +
26. Чтобы перевести эВ в Дж, необходимо значение в эВ умножить на:
а) величину сложного заряда
б) величину элементарного заряда +
в) величину мощности
27. Свет имеет прерывистую структуру, излучается и поглощается порциями, так ли это:
а) да +
б) нет
в) в некоторых случаях
28. Если длина волны падающего света меньше определенного для данного вещества величины, то фотоэффект:
а) не происходит
б) нет верного ответа
в) происходит +
29. Он обнаружил, что ультрафиолетовое излучение уменьшает отрицательный заряд пластинки электрометра и не изменяет положительный:
а) Столетов +
б) Планк
в) Ньютон
30. Он предположил, что атомы излучают свет порциями:
а) Кюри
б) Планк +
в) Столетов
Опыт Столетова А.Г.
Внешний фотоэффект был открыт в 1887 г. Г. Герцем, а исследован детально в 1888-1890 гг. А. Г. Столетовым.
Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были проведены экспериментальные исследования, которые состояли в следующем. В стеклянный баллон, из которого выкачан воздух (для того, чтобы столкновения электронов с молекулами газа не вносили осложнения в наблюдаемые явления, а также для того, чтобы предохранить пластинки от окисления), помещаются два электрода (рис. 1).
Внутрь баллона на один из электродов поступает свет через кварцевое «окошко», прозрачное не только для видимого света, но и для ультрафиолетового излучения. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду (катод К) присоединяют отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток. При малых напряжениях не все вырванные светом электроны достигают другого электрода (анод А). Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока так же увеличивается. При некотором напряжении она достигает максимального значения, после чего перестает изменяться (рис. 2).
Из графика следует, что:
1. При некотором значении напряжения между электродами Uн сила фототока перестает зависеть от напряжения.
Максимальное значение силы тока Iн называется током насыщения. Сила тока насыщения \(I_H = \dfrac
2. Сила фототока отлична от нуля и при нулевом напряжении. Это означает, что часть вырванных светом электронов достигает анода А (см. рис. 1) электрода и при отсутствии напряжения, т.е. фотоэлектроны при вылете обладают кинетической энергией.
3. Если катод соединить с положительным полюсом источника тока, а анод — с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения Uз (его называют задерживающим напряжением) фототок прекращается. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод.
Согласно теореме о кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:
Это выражение получено при условии, что скорость υ « с, где с — скорость света.
Следовательно, зная Uз, можно найти максимальную кинетическую энергию фотоэлектронов.
На рисунке 3, а приведены графики зависимости Iф(U) для различных световых потоков, падающих на фотокатод при постоянной частоте света. На рисунке 3, б приведены графики зависимости Iф(U) для постоянного светового потока и различных частот падающего на катод света.
Анализ графиков на рисунке 3, а показывает, что сила фототока насыщения увеличивается с увеличением интенсивности падающего света. Если по этим данным построить график зависимости силы тока насыщения от интенсивности света, то получим прямую, которая проходит через начало координат (рис. 4, а). Следовательно, сила фотона насыщения пропорциональна интенсивности света, падающего на катод: Iф
Как следует из графиков на рисунке 3, б, величина задерживающего напряжения увеличивается с увеличением частоты падающего света. При уменьшении частоты падающего света Uз уменьшается, и при некоторой частоте ν0) задерживающее напряжение Uз0 = 0. При ν < ν0 фотоэффект не наблюдается. Минимальная частота ν0 (максимальная длина волны ν0) падающего света, при которой еще возможен фотоэффект, называется красной границей фотоэффекта. На основании данных графика 3, б можно построить график зависимости Uз(ν) (рис. 4, б).
На основании этих экспериментальных данных были сформулированы законы фотоэффекта.
Flash-анимация опыта
Вы можете повторить описанный выше опыт при помощи flash-анимации (автор Александр Коновалов). В этой программе вы можете:
- наблюдать движение электронов;
- менять материал (металл) катода, интенсивность и частоту излучения, полярность источника;
- увидеть значения работы выхода, красная граница фотоэффекта, длины волны излучения, энергии фотона и напряжения источника.
Законы фотоэффекта
- Число фотоэлектронов, вырываемых за 1 с с поверхности катода, пропорционально интенсивности света, падающего на это вещество.
- Кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит линейно от его частоты.
- Красная граница фотоэффекта зависит только от рода вещества катода.
- Фотоэффект практически безинерционен, так как с момента облучения металла светом до вылета электронов проходит время ≈ 10 –9 с.
История физики
Описание опыта Столетовым А.Г.
«Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [4, с. 193].
Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов. В опытах ученый менял знак заряда на металлической пластине с отрицательного на положительный, на пути световых лучей помещал непрозрачный экран (пластинку из картона, металла и др.), стеклянную пластинку. При этих производимых друг за другом исследованиях фотоэффект не наблюдался. Экраны из кварца, льда вследствие поглощения длинноволновой части излучения только ослабляли наблюдаемый эффект. Отсюда ученый делает вывод, что фотоэффект вызывается главным образом ультрафиолетовыми лучами. При прочих равных условиях фототок возрастал при зачистке поверхности отрицательного электрода и повышении его температуры. Для изучения зависимости фотоэффекта от освещенности поверхности электрода Столетов использовал метод прерывистого освещения. К описанной ранее экспериментальной установке был добавлен картонный круг с вырезанными окошками. Круг помещался между источником света S и конденсатором G. Площади окошек и промежутков между ними были одинаковы. Когда круг приводился во вращение (скорость вращения можно было изменять), на конденсатор падало наполовину меньше света, чем при неподвижном круге. При этом сила фототока также уменьшалась в два раза. Следовательно, сила фототока прямо пропорциональна величине светового потока. Такой же результат ученый получил, изменяя площадь освещаемой части отрицательной пластины. Эксперименты, кроме того, позволили установить, что световые лучи действуют мгновенно: фототок возникал и прекращался практически одновременно с началом и прекращением освещения конденсатора. Увеличение напряжения вело к возрастанию силы фототока до определенного значения (ток насыщения), затем он оставался постоянным.
Выводы Столетова А.Г.
В результате проведенных в воздухе экспериментов Столетов пришел к следующим выводам:
«1. Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд.
2. Это действие лучей есть строго униполярное, положительный заряд лучами не уносится.
3. Разряжающим действием обладают — если не исключительно, то с громадным превосходством перед прочими — лучи самой высокой преломляемости, недостающие в солнечном спектре (λ = 295•10 –6 мм). Чем спектр обильнее такими лучами, тем сильнее действие.
4. Для разряда лучами необходимо, чтобы лучи поглощались поверхностью тела.
5. Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственного разряда не протекает заметного времени.
6. Разряжающее действие, при одинаковых условиях, пропорционально энергии активных лучей, падающих на разряжаемую поверхность.
7. Каков бы ни был механизм активно-электрического разряда, мы вправе рассматривать его как некоторый ток электричества.
8. Активно-электрическое действие усиливается с повышением температуры» [4, с. 238, 239].
Энергия кванта света расходуется на работу по вырыванию электрона и сообщение ему кинетической
3. Как изменится кинетическая энергия фотоэлектронов при фотоэффекте, если увеличить частоту падающего на металл света, не изменяя общую мощность излучения:
а) уменьшится
б) не изменится
в) увеличится +
4. В каком случае электрометр, заряженный отрицательным зарядом, быстрее разрядится при освещении:
1. инфракрасным излучением
2. ультрафиолетовым излучением
а) только 2 +
б) только 1
в) оба случая
5. Как изменится частота красной границы фотоэффекта, если шарику радиуса R сообщить положительный заряд:
а) уменьшится
б) не изменится
в) увеличится +
6. Может ли свободный электрон, находящийся в проводнике, полностью поглотить фотон:
а) нет
б) да +
в) нет однозначного ответа
7. Световой поток, падающий на фотокатод, увеличили в 2 раза. Как при этом изменилась сила тока насыщения фотоэлемента, если длина волны света, падающего на катод фотоэлемента, осталась прежней:
а) увеличилась в 2 раза
б) уменьшилась в 2 раза
в) увеличилась в 2 раза +
8. Чему равна работа выхода электронов для материала шарика, если при непрерывном облучении его фотонами с энергией, превышающей в 4 раза работу выхода, установившейся на шарике потенциал равен φ = 1,5 В:
а) 1 эВ
б) 1,5 эВ
в) 10 эВ
9. Для опытов по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с:
а) увеличилось в 1,5 раза
б) уменьшилось в 2 раза
в) стало равным нулю +
10. Длина волны красного света почти в 2 раза больше, чем фиолетового. Энергия фотона красного света по отношению к энергии фотона фиолетового света:
а) меньше в 4 раза
б) меньше в 2 раза +
в) больше в 2 раза
11. Фотоэффект – это явление:
а) вырывания электронов из вещества под действием света +
б) облучения вещества светом
в) распространения фотонов
12. Почему при положительном заряде пластины фотоэффект не происходит:
а) энергии электронов не достаточно
б) вырванные электроны притягиваются к пластине и снова оседают на ней +
в) электроны не вырываются из вещества
13. Изменяется ли заряд электрометра, подключённого к положительно заряженной пластине, если её облучать светом:
а) нет +
б) да
в) сначала увеличивается, а затем уменьшается
14. Какой вид излучения вызывает фотоэффект:
а) видимое
б) инфракрасное
в) ультрафиолетовое +
15. Почему отрицательно заряженная пластина, облучаемая светом, не теряет электроны когда на пути света поставлено обыкновенное стекло:
а) стекло поглощает ультрафиолетовые лучи +
б) стекло поглощает фотоны
в) стекло задерживает свет
16. Что такое ток насыщения:
а) максимальное значение тока, которое соответствует частоте 1000 Гц
б) значение силы тока, после которого она перестаёт увеличиваться +
в) наибольшее значение силы тока, при котором напряжение не увеличивается
17. Согласно второму закону фотоэффекта:
а) кинетическая энергия фотоэлектронов обратно пропорциональна частоте света
б) кинетическая энергия фотоэлектронов не зависит от частоты света
в) кинетическая энергия фотоэлектронов прямо пропорциональна частоте света +
18. Чему равна масса покоящегося фотона:
а) 100 мг
б) 0 кг +
в) 10 мг
19. Что такое красная граница фотоэффекта:
а) наименьшая длина волны
б) длина волны красного света
в) наибольшая длина волны +
20. Длина волны голубого света 500 нм, а желтого 600 нм. Фотоны какого света имеют большую энергию:
а) желтого
б) голубого +
в) одинаковы
21. Порция электромагнитной волны:
а) квант +
б) люмий
в) свет
23. Чем выше частота падающего света, тем больше максимальная кинетическая энергия фотоэлектронов:
а) в некоторых случаях
б) нет
в) да +
24. Число электронов, вырываемых с поверхности металла, пропорционально энергии световой волны или нет:
а) в некоторых случаях
б) пропорционально +
в) не пропорционально
25. Энергия кванта света пропорциональна длине волны излучения или нет:
а) да
б) иногда
в) нет +
26. Чтобы перевести эВ в Дж, необходимо значение в эВ умножить на:
а) величину сложного заряда
б) величину элементарного заряда +
в) величину мощности
27. Свет имеет прерывистую структуру, излучается и поглощается порциями, так ли это:
а) да +
б) нет
в) в некоторых случаях
28. Если длина волны падающего света меньше определенного для данного вещества величины, то фотоэффект:
а) не происходит
б) нет верного ответа
в) происходит +
29. Он обнаружил, что ультрафиолетовое излучение уменьшает отрицательный заряд пластинки электрометра и не изменяет положительный:
а) Столетов +
б) Планк
в) Ньютон
30. Он предположил, что атомы излучают свет порциями:
а) Кюри
б) Планк +
в) Столетов
В конце XIX в. было открыто явление, которое не могла объяснить классическая электродинамика Максвелла. Этим явлением оказался фотоэлектрический эффект.
Фотоэлектрическим эффектом (фотоэффектом) называют явление испускания электронов веществом под действием света. Оно было открыто Г. Герцем в 1887 г., а первые экспериментальные исследования были выполнены русским ученым А. Г. Столетовым, который установил ряд закономерностей фотоэффекта.
Для решения проблемы излучения энергии абсолютно черным телом М. Планк в 1900 г. высказал гипотезу: излучение электромагнитных волн происходит порциями. Энергия порции излучения пропорциональна частоте излучения:
где h — постоянная Планка и равна h = 6,63 • 10 -34 Дж*/с, v — частота излучения. Впоследствии эта порция излучения была названа квантом, фотоном.
В дальнейшем при изучении фотоэффекта различными учеными были открыты его законы. При этом использовалась установка, собранная по схеме (рис.110).
В стеклянный баллон, из которого выкачали воздух, помещали два электрода. Внутрь баллона через кварцевое стекло, которое пропускает ультрафиолетовые лучи, поступает свет. На электроды подается напряжение, причем освещаемый электрод подключается к отрицательному полюсу источника тока. Напряжение, подаваемое на электроды, можно изменять с помощью потенциометра и измерять вольтметром. Под действием света отрицательно заряженный электрод испускает электроны, которые, направляясь к положительно заряженному электроду, образуют электрический ток. Если, не меняя интенсивность излучения, изменять разность потенциалов между электродами, то можно получить вольт-амперную характеристику (зависимость I от U) (рис. 111).
При достижении максимального значения сила тока не меняется. Максимальное значение силы тока I В называют током насыщения . Изменяя в опыте интенсивность излучения, удалось установить первый закон фотоэффекта: количество электронов, вырываемое с поверхности металла за 1 с, прямо пропорционально поглощенной энергии световой волны .
Электроны, вылетающие с поверхности катода, имеют некоторую скорость и могут достичь анода. Чтобы ток стал равен нулю, необходимо изменить полярность батареи и подать напряжение U 3 (задерживающее напряжение), которое определяется выражением:
При изменении интенсивности света задерживающее напряжение не меняется. Оно меняется с изменением частоты падающего света.
Второй закон фотоэффекта: максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с его частотой и не зависит от интенсивности падающего света .
Если частота света меньше некоторой постоянной величины для данного вещества, то фотоэффект не наблюдается.
Третий закон фотоэффекта: для каждого вещества существует «красная граница» — минимальная частота V К (максимальная длина волны Л к ), при которой фотоэффект еще наблюдается .
Классическая электродинамика Максвелла не смогла объяснить второй и третий законы фотоэффекта и, кроме того, безынерционность этого явления. Квантовая теория легко объясняет все законы фотоэффекта.
1-й закон . Согласно квантовой теории свет испускается в виде потока квантов. Чем больше поток квантов, тем больше интенсивность света и тем большее число электронов будет выбито с поверхности металла. Если напряжение будет таким, что все электроны, выбитые фотонами, достигнут электрода (положительного), то ток насыщения будет зависеть от интенсивности света.
где hv — энергия поглощенного кванта, А вых — работа выхода электронов из вещества,
— кинетическая энергия электрона. Уравнение А. Эйнштейна представляет собой закон сохранения энергии при фотоэффекте.
= hv — А. Так как работа выхода для данного вещества постоянна, то очевидно, что максимальная кинетическая энергия фотоэлектронов (выбитшьяад дейнявием свете) линейно зависит от частоты.
3-й закон . Как видно из уравнения А. Эйнштейна, фотоэффект будет наблюдаться, если hv > А вых . При hv вых фотоэффект не наблюдается. Если hv кp = А, то электроны освобождаются с нулевой скоростью. Учитывая, что
Исходя из гипотезы Планка о квантах, Эйнштейн в 1905 г. предложил квантовую теорию фотоэффекта. В отличие от Планка, который считал, что свет излучается квантами, Эйнштейн предположил, что свет не только излучается, но и распространяется, и поглощается отдельными неделимыми порциями — квантами Кванты представляют собой частицы с нулевой массой покоя, которые движутся в вакууме со скоростью м/с. Эти частицы получили название фотонов. Энергия квантов Е = hv.
По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально числу поглощенных фотонов, т.е. пропорционально интенсивности света.
Уравнение Эйнштейна позволяет объяснить законы фотоэффекта. Из него следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты и не зависит от его интенсивности (числа фотонов), так как ни А, ни ν от интенсивности света не зависят (1-й закон фотоэффекта). Выражая кинетическую энергию электрона через работу задерживающего поля можно записать уравнение Эйнштейна в виде
Из уравнения (4) следует, что
Это соотношение совпадает с экспериментальной закономерностью, выраженной формулой (2).
Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А = const), то при некоторой достаточно малой частоте кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (2-й закон фотоэффекта). Согласно изложенному, из (3) получим
Это и есть «красная граница»фотоэффекта для данного металла. Она зависит лишьот работы выхода электрона, т.е. от химической природы вещества и состояния его поверхности.
Выражение (3), используя (17) и (6), можно записать в виде
Так же естественно объясняется пропорциональность тока насыщения IН мощности падающего света. С возрастанием общей мощности светового потока W возрастает число отдельных порций энергии hv, а следовательно, и число п вырываемых в единицу времени электронов. Так как IН пропорционально п, то тем самым объясняется и пропорциональность тока насыщения IН мощности света W.
Если интенсивность очень большая (лазерные пучки), то возможен многофотонный (нелинейный) фотоэффект, при котором фотоэлектрон одновременно получает энергию не одного, а нескольких фотонов. Многофотонный фотоэффект описывается уравнением
где N — число вступивших в процесс фотонов. Соответственно «красная граница» многофотонного фотоэффекта
Следует отметить, что лишь малое число фотонов передает свою энергию электронам и участвует в фотоэффекте. Энергия большинства фотонов затрачивается на нагревание вещества, поглощающего свет. Применение фотоэффекта
На явлении фотоэффекта основано действие фотоэлектронных приборов, которые получили широкое применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы — приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.
Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой баллон, из которого выкачан воздух, внутренняя поверхность (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем и является фотокатодом. В качестве анода обычно используются кольцо (рис. 10) или сетка, помещаемые в центре баллона. Фотоэлемент включается в цепь батареи, ЭДС которой выбирается такой, чтобы обеспечить фототок насыщения.
Выбор материала фотокатода определяется рабочей областью спектра: для регистрации видимого света и инфракрасного излучения используется кислородно-цезиевый катод, для регистрации ультрафиолетового излучения и коротковолновой части видимого света — сурьмяно-цезиевый. Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например, экспонометров и люксметров для измерения освещенности. Для увеличения интегральной чувствительности вакуумных фотоэлементов баллон заполняют инертным газом Аr или Nе при давлении 1,3 ÷ 13 Па). Фототок в таком газонаполненном элементе усиливается вследствие ударной ионизации молекул газа фотоэлектронами. Самые разные объективные оптические измерения немыслимы в наше время без применения фотоэлементов. Современная фотометрия, спектроскопия и спектрофотометрия, спектральный анализ вещества проводятся с применением фотоэлементов. Широко используются фотоэлементы в технике: контроль, управление, автоматизация производственных процессов, в военной технике для сигнализации и локации невидимым излучением, в звуковом кино, в разнообразных системах связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразных технических вопросов в современной промышленности и связи.