In электроника, общий коллектор усилитель (также известный как эмиттерный повторитель ) является одним из трех основных одноступенчатых транзисторов с биполярным переходом (BJT) усилитель топологии, обычно используемый как буфер напряжения.
В этой схеме клемма базы транзистора служит входом, эмиттер является выходом, а коллектор — общий для обоих (например, он может быть связан с опорным заземлением или шиной питания ), отсюда и его название. Аналогичная схема полевого транзистора представляет собой усилитель с общим стоком , а аналогичная схема лампы представляет собой катодный повторитель.
Содержание
1 Базовая схема
2 Применение
3 Характеристики
3.1 Производные
Базовая схема
Рисунок 2: A отрицательный Усилитель обратной связи
Схема может быть объяснена, если рассматривать транзистор как находящийся под управлением отрицательной обратной связи. С этой точки зрения, каскад с общим коллектором (рис. 1) представляет собой усилитель с полной последовательностью отрицательной обратной связи. В этой конфигурации (фиг. 2 с β = 1) все выходное напряжение V OUT размещено напротив и последовательно с входным напряжением V IN. Таким образом, два напряжения вычитаются согласно закону напряжения Кирхгофа (KVL) (вычитатель из функциональной блок-схемы реализуется только входным контуром) и их необычной разностью V diff = V IN — V OUT применяется к переходу база-эмиттер. Транзистор непрерывно контролирует V diff и регулирует напряжение своего эмиттера, почти равное (за вычетом V BEO) входному напряжению, пропуская соответствующий ток коллектора через резистор эмиттера R E. В результате выходное напряжение следует за изменениями входного напряжения от V BEO до V + ; отсюда и название, эмиттер-последователь.
Интуитивно это поведение можно также понять, поняв, что напряжение база-эмиттер в биполярном транзисторе очень нечувствительно к изменениям смещения, поэтому любое изменение базового напряжения передается (с хорошим приближением) непосредственно на эмиттер.. Это немного зависит от различных нарушений (допуски транзистора, колебания температуры, сопротивление нагрузки, резистор коллектора, если он добавлен и т. Д.), Поскольку транзистор реагирует на эти нарушения и восстанавливает равновесие. Он никогда не насыщается, даже если входное напряжение достигает положительной шины.
Можно математически показать, что схема общего коллектора имеет коэффициент усиления по напряжению, равный почти единице:
Небольшой изменение напряжения на входной клемме будет повторяться на выходе (немного зависит от усиления транзистора и значения сопротивления нагрузки ; см. формулу усиления ниже). Эта схема полезна, потому что у нее большой входной импеданс , поэтому она не будет загружать предыдущую схему:
и небольшой выходной импеданс, поэтому он может управлять нагрузками с низким сопротивлением:
Обычно эмиттер резистор значительно больше и может быть удален из уравнения:
Приложения
Рис. 4: Повторитель напряжения NPN с источником тока смещением, подходящим для интегральных схем
Низкое выходное сопротивление позволяет использовать источник с большим выходным сопротивлением управлять небольшим сопротивлением нагрузки ; он функционирует как буфер напряжения . Другими словами, схема имеет усиление по току (которое в значительной степени зависит от h FE транзистора) вместо усиления по напряжению, поскольку из-за своих характеристик она предпочтительна во многих электронных устройствах. Небольшое изменение входного тока приводит к гораздо большему изменению выходного тока, подаваемого на выходную нагрузку.
Одним из аспектов действия буфера является преобразование импедансов. Например, сопротивление по Тевенину комбинации повторителя напряжения, управляемого источником напряжения с высоким сопротивлением Тевенину, уменьшается только до выходного сопротивления повторителя напряжения (небольшое сопротивление). Такое снижение сопротивления делает комбинацию более идеальным источником напряжения. И наоборот, повторитель напряжения, вставленный между малым сопротивлением нагрузки и приводной ступенью, представляет большую нагрузку на приводную ступень — преимущество в передаче сигнала напряжения на небольшую нагрузку.
Эта конфигурация обычно используется в выходных каскадах усилителей класса B и класса AB. Базовая схема модифицирована для работы транзистора в режиме класса B или AB. В режиме класса A иногда используется активный источник тока вместо R E (рис. 4) для улучшения линейности и / или эффективности.
Характеристики
На низких частотах и с использованием упрощенной модели гибридного Пи можно получить следующие характеристики слабого сигнала. (Параметр β = gmr π <\ displaystyle \ beta = g_ r _ <\ pi>> , а параллельные линии указывают на параллельные компоненты.)
где R source <\ displaystyle R _ <\ mathrm> \> — эквивалентное сопротивление источника Thévenin.
Производные
Рисунок 5: Схема слабого сигнала, соответствующая рисунку 3, использующая модель гибридного Пи для биполярного транзистора на частотах, достаточно низких, чтобы игнорировать емкости биполярного устройства Рисунок 6: Низкочастотная малая -сигнальная цепь для биполярного повторителя напряжения с испытательным током на выходе для определения выходного сопротивления. Резистор RE = RL ∥ r O <\ displaystyle R _ <\ mathrm > = R _ <\ mathrm > \ parallel r _ <\ mathrm >> .
На рис. частотная гибридная пи-модель для схемы, показанной на рисунке 3. С помощью закона Ома были определены различные токи, и эти результаты показаны на диаграмме. Применяя закон Кирхгофа к эмиттеру, получаем:
Определите следующие значения сопротивления:
Затем, собрав члены, коэффициент усиления по напряжению находится как:
Из этого результата коэффициент усиления приближается к единице (как и ожидалось для буферного усилителя ), если отношение сопротивлений в знаменателе маленький. Это соотношение уменьшается с увеличением значения коэффициента усиления по току β и с увеличением значений R E <\ displaystyle R _ <\ mathrm >> . Входное сопротивление находится как:
Выходное сопротивление транзистора r O <\ displaystyle r _ <\ mathrm >> обычно больше по сравнению с нагрузкой RL <\ displaystyle R _ <\ mathrm >> и, следовательно, RL <\ displaystyle R _ <\ mathrm >> доминирует над RE <\ displaystyle R _ <\ mathrm >> . Из этого результата входное сопротивление усилителя намного больше, чем выходное сопротивление нагрузки RL <\ displaystyle R _ <\ mathrm >> для большого коэффициента усиления по току β <\ displaystyle \ beta>. То есть размещение усилителя между нагрузкой и источником представляет большую (высокоомную) нагрузку на источник, чем прямое соединение с RL <\ displaystyle R _ <\ mathrm >> , что приводит к меньшему затуханию сигнала в импедансе источника RS <\ displaystyle R _ <\ mathrm >> как следствие деления напряжения.
. На рисунке 6 показано небольшое -сигнальная цепь на рисунке 5 с короткозамкнутым входом и испытательным током на выходе. Выходное сопротивление определяется по этой схеме как:
Используя закон Ома, были определены различные токи найдено, как указано на схеме. Собирая члены для базового тока, базовый ток находится как:
где RE <\ displaystyle R _ <\ mathrm < E>>> определено выше. Используя это значение базового тока, закон Ома дает v x <\ displaystyle v _ <\ mathrm >> как:
Подстановка основания текущие и собирающие термины,
где || обозначает параллельное соединение, а R <\ displaystyle R>определено выше. Поскольку R <\ displaystyle R>обычно является небольшим сопротивлением, когда текущее усиление β <\ displaystyle \ beta>велико, R <\ displaystyle R>доминирует над выходным импедансом, который, следовательно, также невелик. Малый выходной импеданс означает, что последовательная комбинация исходного источника напряжения и повторителя напряжения представляет собой источник напряжения Тевенина с более низким сопротивлением Тевенина в его выходном узле; то есть комбинация источника напряжения с повторителем напряжения делает источник напряжения более идеальным, чем исходный.
См. Также
Портал электроники
Усилительный каскад с общим коллектором
Наш следующий в изучении тип включения транзистора немного проще для вычисления коэффициентов усиления. Так называемая схема с общим коллектором показана на рисунке ниже.
В схеме с общим коллектором и вход, и выход используют коллектор (стрелками показаны направления движения потоков электронов)
Конфигурация этого каскада называется схемой с общим коллектором, потому что (игнорируя батарею источника питания) и источник сигнала, и нагрузка делят между собой вывод коллектора как общую точку (рисунок ниже).
Общий коллектор: входной сигнал подается на базу и коллектор, выходной сигнал берется со схемы эмиттер-коллектор
Должно быть очевидно, что через резистор нагрузки, помещенный в цепь эмиттера, в схеме усилителя с общим коллектором протекают как ток базы, так и ток коллектора. Поскольку через вывод эмиттера транзистора протекает самое большое значение тока (сумма токов базы и коллектора, которые всегда объединяются вместе для формирования тока эмиттера), было бы разумным предположить, что этот усилитель буде иметь очень большой коэффициент усиления по току. Это предположение действительно правильное: коэффициент усиления по току усилителя с общим коллектором довольно большой, больше, чем в любом другом типе схемы транзисторного усилителя. Однако это не совсем то, что его отличает от других типов схем транзисторных усилителей.
Давайте сразу же перейдем к SPICE анализу этой схемы усилителя, и вы сможете сразу увидеть, что уникального в этом типе включения транзистора. Схема и список соединений приведены ниже.
Схема усилительного каскада с общим коллектором для SPICE Общий коллектор: напряжение на выходе меньше напряжения на входе на 0,7 В (на падение напряжения VБЭ)
В отличие от усилительного каскада с общим эмиттером из предыдущего раздела, схема с общим коллектором создает выходное напряжение в прямой, а не в обратной пропорции к возрастающему входному напряжению. Смотрите рисунок выше. По мере увеличения входного напряжения увеличивается и выходное напряжение. Более того, тщательный анализ показывает, что выходное напряжение почти идентично входному, отставая от него примерно на 0,7 вольта.
Это уникальная особенность усилительного каскада с общим коллектором: выходное напряжение, которое почти равно входному напряжению. При рассмотрении с точки зрения изменения выходного напряжения для заданного изменения величины входного напряжения, этот усилитель имеет коэффициент усиления по напряжению, равный почти единице (1), или 0 дБ. Это справедливо для транзисторов с любым значением β и для любых сопротивлений нагрузки.
Понять, почему выходное напряжение в схеме с общим коллектором всегда почти равно входному напряжению, очень просто. Обратившись к модели транзистора на базе диода и источника тока (рисунок ниже), мы увидим, что ток базы должен протекать через PN-переход база-эмиттер, который эквивалентен обычному выпрямляющему диоду. Если этот переход смещен в прямом направлении (транзистор проводит ток в активном режиме или режиме насыщения), падение напряжения на нем будет равно примерно 0,7 вольта (предполагаем, что транзистор кремниевый). Это падение 0,7 вольта во многом не зависит от реальной величины тока базы; таким образом, мы можем считать его постоянным.
Эмиттерный повторитель: напряжение на эмиттере повторяет напряжение на базе (меньше на величину падения напряжения база-эмиттер, 0,7 вольта) (стрелками показаны направления движения потоков электронов)
Учитывая полярности напряжений на PN-переходе база-эмиттер и на резисторе нагрузки, мы видим, что одни должны складываться вместе, чтобы в соответствии с законом напряжений Кирхгофа равняться входному напряжению. Другими словами, напряжение на нагрузке всегда будет примерно на 0,7 вольта меньше входного напряжения при всех условиях, когда транзистор проводит ток. Отсечка происходит при входном напряжении ниже 0,7 вольта, а насыщение – при входном напряжении выше напряжения батареи (источника питания) плюс 0,7 вольта.
Поэтому схема усилителя с общим коллектором также известна как повторитель напряжения или эмиттерный повторитель, поскольку напряжения на эмиттерной нагрузке почти повторяют напряжения на входе.
Применение схемы с общим коллектором для усиления сигналов переменного напряжения также требует использования «смещения» входного сигнала: постоянное напряжение должно быть добавлено к входному сигналу переменного напряжения, чтобы удерживать транзистор в активном режим в течение всего периода синусоиды входного сигнала. Когда смещение будет добавлено, в результате получится неинвертирующий усилитель, показанный на рисунке ниже.
Усилительный каскад с общим коллектором (эмиттерный повторитель)
Результаты моделирования SPICE на рисунке ниже показывают, что выходной сигнал повторяет входной. Амплитуда выходного сигнала такая же, как и у входного. Тем не менее, уровень постоянной составляющей смещается вниз на падение напряжения VБЭ.
Схема каскада с общим коллектором (эмиттерный повторитель): выход V(3) повторяет вход V(1), но ниже на VБЭ = 0,7 вольта
Вот еще один вид схемы (рисунок ниже) с осциллографами, подключенным к нескольким интересным точкам.
Коэффициент усиления по напряжению каскада с общим коллектором равен 1
Поскольку эта конфигурация усилителя не обеспечивает никакого усиления по напряжению (на самом деле, коэффициент усиления по напряжению у нее чуть меньше 1), ее единственным усиливающим фактором является ток. Коэффициент усиления по току схемы усилителя с общим эмиттером, рассмотренной в предыдущем разделе, равен β транзистора, поскольку входной ток проходит через базу, а выходной ток (ток нагрузки) – через коллектор, а β – это и есть отношение тока коллектора к току базы. Однако в схеме с общим коллектором нагрузка расположена последовательно с эмиттером, и, следовательно, ток через неё равен току эмиттера. В схеме протекает два тока: ток от эмиттера к коллектору и ток базы. Через нагрузку в этом типе схемы усилителя протекают оба этих тока: ток коллектора плюс ток базы. Это дает коэффициент усиления по току, равный β плюс 1.
Опять же, PNP транзисторы так же можно использовать в схеме с общим коллектором, как и NPN транзисторы. Расчеты усиления одинаковы, равно как и неинвертирование усиленного сигнала. Единственное различие заключается в полярностях напряжений и направлениях токов (рисунок ниже).
PNP версия усилительного каскада с общим коллектором
Популярное применение усилителя с общим коллектором – стабилизированные источники питания постоянного напряжения, где нестабилизированное (изменяющееся) постоянное напряжение источника фиксируется на заданном уровне для подачи стабилизированного (устойчивого) напряжения на нагрузку. Конечно, стабилитроны уже выполняют эту функцию по стабилизации напряжения (рисунок ниже).
Стабилизатор напряжения на стабилитроне
Однако при использовании этой схемы стабилизатора непосредственно для питания нагрузки величина тока, которая может быть подана на нагрузку, обычно очень сильно ограничена. По сути, эта схема стабилизирует напряжение на нагрузке, поддерживая ток на последовательном резисторе на уровне достаточно высоком, чтобы на нем упало всё избыточное напряжение источника, при этом и стабилитрон, если необходимо, потребляет ток, чтобы напряжение на нем было постоянным. Для сильноточных нагрузок простой стабилизатор напряжения на стабилитроне должен будет пропускать через стабилитрон большой ток, чтобы эффективно стабилизировать напряжение на нагрузке в случае сильных изменений сопротивления нагрузки или напряжения источника.
Одним из популярных способов увеличения допустимой величины тока, подаваемого на нагрузку, в подобных схемах является использование транзистора, включенного по схеме с общим коллектором, для усиления тока нагрузки так, чтобы цепь стабилитрона работала только с той величиной тока, которая необходима для подачи на базу транзистора (рисунок ниже).
Применение схемы с общим коллектором: стабилизатор напряжения (стрелками показаны направления движения потоков электронов)
Есть только одна оговорка: напряжение на нагрузке будет примерно на 0,7 вольта меньше напряжения стабилитрона из-за падения напряжения на PN переходе транзистора база-эмиттера. Так как эта разница в 0,7 вольта довольно постоянна в широком диапазоне токов нагрузки, в реальной схеме стабилитрон может быть выбран с номинальным напряжением на 0,7 вольта выше, чем необходимое выходное напряжение стабилизатора.
Иногда в конкретном приложении со схемой с общим коллектором бывает недостаточно высокого коэффициента усиления по току одиночного транзистора. Если это так, то несколько транзисторов могут быть объединены в популярную схему, известную как пара Дарлингтона, являющуюся просто расширением концепции схемы с общим коллектором (рисунок ниже).
NPN пара Дарлингтона
Пары Дарлингтона, по сути, ставят один транзистор в качестве нагрузки другого транзистора по схеме с общим коллектором, тем самым перемножая их собственные коэффициенты усиления по току. Ток базы верхнего левого транзистора усиливается на эмиттере этого транзистора, который напрямую соединен с базой нижнего правого транзистора, где ток снова усиливается. Общий коэффициент усиления по току выглядит следующим образом:
Коэффициент усиления по току пары Дарлингтона:
\[A_I = (\beta_1 + 1)(\beta_2 + 1)\]
β1 – бета первого транзистора;
β2 – бета второго транзистора;
Если вся сборка включена по схеме с общим коллектором, коэффициент усиления по напряжению по-прежнему равен почти 1, хотя напряжение на нагрузке будет на 1,4 вольта меньше входного напряжения (рисунок ниже).
В схеме усилителя с общим коллектором на паре Дарлингтона теряется удвоенное напряжение VБЭ, падение напряжение на PN переходах
Пары Дарлингтона могут быть приобретены как отдельные устройства (два транзистора в одном корпусе) или могут быть собраны из пары отдельных транзисторов. Конечно, если требуется еще большее усиление по току, чем то, что может быть получено на паре, можно собрать и триплет, и квадруплет Дарлингтона.
Биполярный транзистор
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
Коллектор имеет более положительный потенциал , чем эмиттер
Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
-коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
Чтож, теперь давайте попробуем рассчитать значение базового резистора.
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.
Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
1.2. Биполярные транзисторы
Биполярный транзистор — это полупроводниковый прибор с двумя p-n-переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов), а управление протекающим через него током осуществляется с помощью управляющего тока.
Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.
1.2.1. Устройство и основные физические процессы
Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-п-р или п-р-п) и соответственно два p-n-перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу.
Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод — коллектором.
Дадим схематическое, упрощенное изображение структуры транзистора типа п-р-п (рис. 1.51, а) и два допустимых варианта условного графического обозначения (рис. 1.51, б).
Транзистор типа р-п-р устроен аналогично, упрощенное изображение его структуры дано на рис. 1.52, а, более простой вариант условного графического обозначения — на рис. 1.52, б.
Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков — электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна.
Транзисторы типа п-р-п более распространены в сравнении с транзисторами типа р-п-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа п-р-п играют электроны, а в транзисторах типа р-п-р — дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.
Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора.
Количественное своеобразие структуры транзистора. Для определенности обратимся к транзистору типа п-р-п. В основе работы биполярного транзистора лежат не какие-либо новые физические процессы, еще не рассмотренные при изучении полупроводникового диода: своеобразие транзистора определяется особенностями его конструкции.
Основными элементами транзистора являются два соединенных p-n-перехода. Это позволяет дать формальное представление структуры транзистора, представленное на рис. 1.53.
Для понимания принципа работы транзистора исключительно важно учитывать, что p-n-переходы транзистора сильно взаимодействуют. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот. Именно это взаимодействие радикально отличает транзистор от схемы с двумя диодами (рис. 1.54).
В схеме с диодами ток каждого диода зависит только от напряжения на нем самом и никак не зависит от тока другого диода.
Указанное взаимодействие имеет исключительно простую главную причину, а именно: очень малое расстояние
между переходами транзистора (от 20—30 мкм до 1 мкм и менее). Это расстояние называют толщиной базы. Именно эта количественная особенность структуры создает качественное своеобразие транзистора.
Вообще полезно отметить, что в электронике достаточно часто реализуется следующий способ получения устройства, обладающего новым качеством: особым образом соединяют два одинаковых, уже хорошо изученных элемента. При изучении дифференциального усилителя станет ясно, что новое качество можно получить при использовании в роли таких элементов уже самих двух транзисторов.
Основные физические процессы. Концентрация атомов примеси (и свободных электронов) в эмиттере сравнит тельно велика, поэтому этот слой низкоомный. Концентрация атомов примеси (и дырок) в базе сравнительно низка, поэтому этот слой высокоомный. Концентрация атомов примеси (и свободных электронов) в коллекторе может быть как больше концентрации атомов примеси в базе, так и меньше ее.
С помощью источников напряжения сместим эмиттерный переход в прямом, а коллекторный — в обратном направлении (рис. 1.55). Тогда через эмиттерный переход потечет ток iэ, который будет обеспечиваться главным образом инжекцией электронов из эмиттера в базу. Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.
Из-за малой толщины базы почти все электроны, пройдя базу, через так называемое время пролета достигают коллектора. Только малая доля электронов рекомбиниру-ет в базе с дырками. Убыль этих дырок компенсируется протеканием тока базы i6. Из изложенного следует, что
Обратное смещение коллекторного перехода способствует тому, что электроны, подошедшие к нему, захватываются электрическим полем перехода и переносятся в коллектор. В то же время это поле препятствует переходу электронов из коллектора в базу.
Ток коллектора iK лишь незначительно меньше тока эмиттера, т. е. iK
i3. Более точно:
где аст— так называемый статический коэффициент передачи эмиттерного тока (термин статический подчеркивает тот факт, что этот коэффициент связывает постоянные токи);
1ко — так называемый обратный ток коллектора.
Природа обратного тока коллектора такая же, как и у обратного тока диода (т. е. тока диода, включенного в обратном направлении). Ток 1ко протекает и тогда, когда ток эмиттера равен нулю.
Различают диффузионные (бездрейфовые) и дрейфовые транзисторы. В диффузионных транзисторах концентрация атомов примесей в базе примерно одинакова во всех ее частях, поэтому ионы атомов примесей не создают в базе дополнительное электрическое поле, которое влияло бы на движение носителей электричества через базу При этом движение этих носителей проходит главным образом в форме диффузии. В дрейфовых транзисторах указанная концентрация различна в различных точках базы. Это приводит к появлению дополнительного электрического поля, которое оказывает существенное влияние на движение носителей через базу (говорят, что носители дрейфуют под действием этого поля). Дрейф ускоряет движение носителей через базу, поэтому дрейфовые транзисторы часто отличаются высоким быстродействием.
1.2.2. Характеристики и параметры
Рассмотрим характерные схемы включения транзистора и соответствующие характеристики.
Схема с общей базой.Приведенная схема включения транзистора в электрическую цепь называется схемой с общей базой, так как база является общим электродом для источников напряжения. Изобразим ее с использованием условного графического обозначения транзистора (рис. 1.56).
Транзисторы традиционно характеризуют их так называемыми входными и выходными характеристиками. Для схемы с общей базой входной характеристикой называют зависимость тока iэ от напряжения и6э при заданном напряжении ик6, т. е. зависимость вида
где f-некоторая функция.
Входной характеристикой называют и график соответствующей зависимости (это справедливо и для других характеристик).
Выходной характеристикой для схемы с общей базой называют зависимость тока iк от напряжения икб при заданном токе iэ, т. е. зависимость вида
где f— некоторая функция.
Входные характеристики для схемы с общей базой. Каждая входная характеристика в значительной степени определяется характеристикой эмиттерного перехода и поэтому
аналогична характеристике диода. Изобразим входные характеристики кремниевого транзистора КТ603А (максимальный постоянный ток коллектора — 300 мА, максимальное постоянное напряжение коллектор-база — 30 В при t < 70° С) (рис. 1.57) . Сдвиг характеристик влево при увеличении напряжения икб объясняется проявлением так называемого эффекта Эрли (эффекта модуляции толщины базы).
Указанный эффект состоит в том, что при увеличении напряжения икб коллекторный переход расширяется (как и всякий обратно смещенный p-n-переход). Если концентрация атомов примеси в базе меньше концентрации атомов примеси в коллекторе, то расширение коллекторно-
го перехода осуществляется в основном за счет базы. В любом случае толщина базы уменьшается. Уменьшение толщины базы и соответствующее уменьшение ее сопротивления приводит к тому, что при неизменном токе iэ напряжение ибэ уменьшается. Как было отмечено при рассмотрении диода, при малом по модулю обратном напряжении на р-n-переходе это напряжение влияет на ширину перехода больше, чем при большом напряжении. Поэтому различные входные характеристики, соответствующие различным напряжениям икб, независимо от типа транзистора практически сливаются, если икб> 5 В (или даже если икб > 2 В).
Входные характеристики часто характеризуют дифференциальным сопротивлением гдиф, определяемым аналогично дифференциальному сопротивлению диода.
Выходные характеристики для схемы с общей базой. Изобразим выходные характеристики для транзистора КТ603А (рис. 1.58).
Как уже отмечалось, если коллекторный переход смещен в обратном направлении (икб > 0), то ток коллектора примерно равен току эмиттера: iк
iэ. Это соотношение сохраняется даже при икб = 0 (если ток эмиттера достаточно велик), так как и в этом случае большинство электронов, инжектированных в базу, захватывается электрическим полем коллекторного перехода и переносится в коллектор.
Только если коллекторный переход смещают в прямом направлении (икб < 0), ток коллектора становится равным нулю, так как при этом начинается инжекция электронов из коллектора в базу (или дырок из базы в коллектор). Эта инжекция компенсирует переход из базы в коллектор тех электронов, которые были инжектированы эмиттером. Ток коллектора становится равным нулю при выполнении условия икб< 0,75 В.
Режим, соответствующий первому квадранту характеристик (икб > 0, iк > 0, причем ток эмиттера достаточно велик), называют активным режимом работы транзистора. На координатной плоскости ему соответствует так называемая область активной работы.
Режим, соответствующий второму квадранту (икб< 0), называют режимом насыщения. Ему соответствует область насыщения.
Обратный ток коллектора 1ко мал (для КТ603А 1ко < 10 мкА при t < 25°С). Поэтому выходная характеристика, соответствующая равенствам /э = 0 и iK— аст• /э + 1ко= 1ко, практически сливается с осью напряжений.
При увеличении температуры ток /ко возрастает (для КТ603 1ко
100 мкА при t < 85° С) и все выходные характеристики несколько смещаются вверх.
Режим работы транзистора, соответствующий токам коллектора, сравнимым с током 1ко, называют режимом отсечки. Соответствующую область характеристик вблизи оси напряжений называют областью отсечки.
В активном режиме напряжение икб и мощность рк= =iK• ик6, выделяющаяся в виде тепла в коллекторном переходе, могут быть значительны. Чтобы транзистор не перегрелся, должно выполняться неравенство
Рк <Р к макс
где Ркмакс — максимально допустимая мощность (для КТ603А Ркмаке=500 мВт при t< 50° С).
График зависимости iK = Ркмакс,/икб (гипербола) изображен на выходных характеристиках пунктиром.
Таким образом, в активном режиме эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме насыщения оба перехода смещены в