Управление RGB лентой с помощью Arduino и драйвера L298N
В данное время стали доступны светодиодные ленты с изменяемым цветом свечения. Они классно выглядят, не дорого стоят и их можно хорошо приспособить для декоративной подсветки интерьера, рекламы, и т.д.
К таким лентам можно купить источник питания, диммер, диммер с пультом управления. Это позволит вам использовать светодиодную ленту для посветки. Однако если вы захотите запрограммировать алгоритм изменения цвета, или сделать управление из компьютера — то тут начинается разочарование. Вы в продаже не найдете диммеров с управлением через COM-порт или Ethernet.
Я решил эту проблему с помощью Arduino, и хочу поделиться своим вариантом решения с Вами.
Добро пожаловать под кат.
Теоретическая часть
Для реализации плавного изменения свечения всех 3 каналов нам потребуется сделать собственный димер. Сделать его очень просто, для этого требуется взять силовые ключи и управлять ими с помощью ШИМ сигнала. Также наш диммер должен быть программируемым и/или управляемым из вне.
В качестве мозгов идеально подходит Arduino. В её программу можно записать любой алгоритм изменения цветов, а также её можно управлять как с помощью модулей Arduino, так и удаленно по Ethernet, Ик-порту, Bluetooth, используя соответствующие модули.
Для реализации задуманного я выбрал Arduino Leonardo. Она одна из самых дешевых плат Arduino, и она имеет много выводов с поддержкой ШИМ.
И так, источник ШИМ у нас имеется, остаётся придумать с силовыми ключами. Если побродить по интренет магазинам, то выяснится, что не существует модуля Arduino для управления RGB лентами. Или просто универсальных модулей с силовыми транзисторами. Также можно найти огромное количество сайтов радиолюбителей, которые делают платы с силовыми ключами сами.
Однако есть способ проще! Нас выручит модуль Arduino для управления двигателями. Этот модуль имеет все необходимое для нас — на нем установлены мощные ключи на 12В.
Пример такого модуля является «L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407». Такой модуль основан на микросхеме L298N, которая представляет из себя 2 моста. Однако мостовое включение полезно для двигателя (от этого он может менять направление вращения), а в случае RGB ленты, оно бесполезное.
Мы будем использовать не весь функционал этой микросхемы, а только 3 её нижних ключа, подключив ленту как показано на рисунке.
Практическая часть часть
Для реализации потребуется Arduino Leonardo, Модуль управления двигателями L298N, Источник 12В (для запитки ленты), сама RGB лента, соединительные провода.
Для удобства подключения я еще использовал Fundruino IO Expansion, но он никакой функциональной нагрузки не несет.
Схема подключения показана на рисунке.
Хочу дополнительно описать питание системы. В данной схеме питание подается на модуль управления двигателями, в нем стоит понижающий источник питания на 5В, и эти 5В я подаю на вход Vin питания Arduino. Если разорвать эту связь (естественно земли оставив соединенными), то запитывать Arduino и силовые ключи можно от разных источников питания. Это может быть полезно когда к Arduino много всего подключено, и источник в модуле управления двигателями не справляется (выключается по перегреву).
Управляется RGB лента с помощью команд analogWrite, которая настраивает выход для формирования ШИМ сигнала.
Адресная светодиодная лента Ардуино WS2812B
Адресная светодиодная лента WS2812B привлекает многих радиолюбителей за возможность создания интересных и ярких проектов на Ардуино с ws2812b светодиодами. Но прежде, чем приступать к новому крутому проекту, следует понять, как подключить и правильно управлять адресной лентой от Ардуино. Рассмотрим в этой статье несколько простых примеров по работе с WS2812B Arduino Uno.
Адресные светодиоды ws2812b и Ардуино
Адресные ленты отличаются плотностью — от 30 до 144 светодиодов на метр, изготавливаются разном защитном исполнении: IP30, IP65, IP67, IP68. Все варианты исполнения, кроме IP30, могут применяться на улице в диапазоне температур от -25 до +80°C. Еще одна, более надежная лента — WS2813 отличается возможностью передавать сигналы дальше по цепочке даже через сгоревший чип.
Светодиодная лента WS2812B характеристики
- Размер светодиода — 5 х 5 мм
- Частота ШИМ — 400 Гц
- Скорость передачи данных — 800 кГц
- Размер данных — 24 бита на светодиод
- Напряжение питания — 5 Вольт
- Потребление при нулевой яркости — 1 мА на светодиод
- Потребление при максимальной яркости — 60 мА на светодиод
- Цветность: RGB, 256 оттенков на канал, 16 миллионов цветов
Адресная светодиодная лента ws2812b — это вершина эволюции лент. Каждый светодиод в ленте состоит из обычного RGB светодиода и контроллера с тремя транзисторными выходами. Благодаря этому есть возможность управлять цветом любого светодиода и создавать потрясающие цветовые и световые эффекты. Именно поэтому устройство пользуется популярностью, несмотря на высокую стоимость.
Как проверить адресную ленту без Ардуино
При подключении обращайте внимание на направление стрелок
Многих интересует, как включить адресную ленту без Ардуино и проверить ее на работоспособность. Если просто подключить питание к ленте, то ничего не произойдет — проверить ленту без контроллера нельзя. Если задеть цифровой вход адресной ленты, то могут загореться несколько светодиодов из-за случайных помех, которые воспринимаются контроллерами ws2812b светодиодов, как команды.
Если под рукой нет платы Ардуино, то можно использовать для проверки специальный контроллер. В крайнем случае, просто потрогать цифровой провод, чтобы понять будут гореть светодиоды на ленте или нет. Другого надежного способа проверить работу ws2812b ленты нет, поэтому рассмотрим далее управление и программирование адресной светодиодной ленты на микроконтроллере Ардуино Нано или Уно.
Как подключить адресную ленту WS2812B Arduino
Для этого занятия понадобится:
- Arduino Uno / Arduino Nano / Arduino Mega;
- лента WS2812B;
- макетная плата;
- 1 резистор от 100 до 500 Ом;
- провода «папа-папа».
WS2812B светодиоды довольно энергоемкие, один светодиод потребляет до 60 мА при максимальной яркости. Для ленты со 100 диодами потребуется блок питания на 6 и более Ампер. Микроконтроллер Arduino и светодиодная лента могут быть подключены к разным источникам питания, но «земля» должна быть общая. Дело в том, что пин GND тоже участвует в управлении адресной лентой от платы Ардуино Уно.
Схема подключения адресной ленты 5 Вольт к Ардуино
WS2812B | Arduino Uno | Arduino Nano | Arduino Mega |
GND | GND | GND | GND |
5V | 5V | 5V | 5V |
DO | 10 | 10 | 10 |
Для работы с лентой используются три популярные библиотеки — FastLED, AdafruitNeoPixel и LightWS2812. Все библиотеки доступны для скачивания на нашем сайте. Работать с библиотеками FastLED и Adafruit NeoPixel просто, отличаются они в функциональности и объеме занимаемой памяти. После сборки этой простой схемы и установки библиотек, загрузите скетч для адресной светодиодной ленты.
Скетч. Тестирование адресной ленты WS2812b Arduino
Пояснения к коду:
- нумерация светодиодов в ленте начинается с нуля, поэтому если мы хотим включить первый светодиод, то указывать надо «0».
Схема подключения адресной ленты 12 Вольт к Ардуино
Если у вас лента на 12 Вольт, то ее нужно подключать по схеме, размещенной выше. Резистор на цифровом пине защищает его от выгорания (если питание к ленте будет отключено, то она начнет питаться от цифрового пина, при этом пин может выгореть. Также не стоит подключать питание ленты к плате Ардуино, иначе может выгореть защитный диод на Ардуино или USB порт на компьютере (в худшем случае).
Скетч. Управление адресной лентой Ардуино
Пояснения к коду:
- с помощью библиотеки Adafruit NeoPixel довольно просто управлять адресной лентой. В примерах к библиотеке можно найти много различных эффектов. Мы продемонстрировали простой вариант с циклом for для включения ленты.
Заключение. В этом обзоре мы рассмотрели лишь подключение и возможность управления адресной лентой от Ардуино. Так как возможности работы с библиотеками FastLED, AdafruitNeoPixel довольно разнообразны. Больше интересных примеров на Arduino и WS2812B размещено в разделе Проекты на Ардуино, где представлены проекты с бегущей строкой на адресной ленте и другие световые эффекты.
Подключение адресной светодиодной ленты WS2812 (NeoPixel LEDs) к Arduino
В настоящее время адресные светодиодной ленты (NeoPixel LEDs) на базе светодиодов WS2812 находят широкое применение в различных областях. В данной статье мы рассмотрим подключение подобной ленты к плате Arduino и научимся управлять ею в различных режимах.
Ранее на нашем сайте применение адресной светодиодной ленты (NeoPixel LEDs) рассматривалось в следующих проектах:
Также у нас теперь на сайте есть более подробная статья про подключение подобной ленты к плате Arduino, но в ней использована более сложная библиотека для работы с данной лентой, но зато позволяющая создать более «навороченные» режимы цветовых схем ленты.
Необходимые компоненты
- Плата Arduino Uno (купить на AliExpress).
- Адресная светодиодная лента (WS2812 RGB LED Ring Module) (купить на AliExpress).
- Макетная плата.
- Соединительные провода.
Что такое NeoPixel?
После своего изобретения в 1962 году светодиоды стали неотъемлемой частью нашей жизни. В большинстве электронных проектов используются светодиоды одного цвета, но использование светодиодов разных цветов выглядело настолько привлекательно, что следом за обычными светодиодами появились трехцветные светодиоды (RGB LEDs) – их еще называют полноцветными или многоцветными светодиодами. На нашем сайте можно прочитать статью о подключении подобного светодиода к плате Arduino.
RGB светодиод способен излучать любой цвет, комбинируя в нужной пропорции 3 основных базовых цвета – красный, зеленый и синий. Например, красного и синего цвета формирует фиолетовый цвет. То есть если каждым из базовых цветов управлять с помощью соответствующих им значений от 0 до 255, то можно сформировать любой цвет. Например, фиолетовый (magenta) цвет в этом случае будет формироваться совокупностью значений 255 0 255 (в шестнадцатеричном коде — 2550255 = # FF00FF). RGB светодиоды формируют множество цветов, основываясь на этой модели.
Для управления RGB светодиодом необходимо 3 цифровых контакта микроконтроллера (платы Arduino). То есть, к примеру, если мы хотим управлять 60 RGB светодиодами (причем цвет каждого из них настраивать независимо от других), то нам для этой цели понадобится 180 цифровых контактов. Естественно, подобный подход очень неудобен, поэтому для управления большой совокупностью RGB светодиодов, объединенных, к примеру, в ленту, стали использовать адресацию.
Адресуемые (адресные) светодиоды (addressable LEDs) – это новое поколение светодиодов, включающих помимо RGB светодиоды также микросхему (контроллер) управления им. В настоящее время для управления подобными светодиодами наиболее часто используется контроллер WS2812, который позволяет получить доступ к множеству светодиодов с помощью одного цифрового контакта по интерфейсу one wire (1-wire), используя адреса светодиодов.
Но в отличие от обычных светодиодов данные светодиоды не включаются просто при подаче на них напряжения, для управления ими необходим микроконтроллер. NeoPixel – это марка (наименование) компании Adafruit для адресуемых светодиодов.
Почему NeoPixel?
Способность управлять отдельно каждым светодиодом в адресной светодиодной ленте дает вам возможность создать уникальные визуальный эффекты для своих проектов. Но помните о том, что если вам требуются очень высокие скорости переключения светодиодов, то использование подобной адресной светодиодной ленты нежелательно. Еще одним достоинством адресной светодиодной ленты NeoPixel является ее низкая цена по сравнению с другими типами адресуемых светодиодов. Светодиоды NeoPixel доступны в форме колец, лент, прямоугольников и поверхностей круглой формы – вы можете выбрать любой ее тип для своих проектов.
Примечание : чем больше светодиодов NeoPixel вы используете, тем больше оперативной памяти и больше мощности необходимо для управления ими, также при этом увеличивается время обработки, поэтому выбирайте оптимальное количество светодиодов NeoPixel исходя из возможностей используемого вами микроконтроллера.
Схема проекта
Схема подключения адресной светодиодной ленты WS2812 к плате Arduino представлена на следующем рисунке.
Резистор в схеме необходим для защиты от повреждений светодиодов NeoPixel и для корректной передачи данных. Наилучшее расстояние для связи между модулем светодиодов NeoPixel и микроконтроллерной платой составляет от 1 до 2 метров.
Примечание : если вы используете адресную светодиодную ленту с большим количеством светодиодов, то в этом случае рекомендуется подключать конденсатор большой емкости (приблизительно 1000 мкФ) параллельно + и – источника питающего напряжения.
Объяснение программы Arduino для работы с адресной светодиодной лентой
Прежде чем начинать работу с адресной светодиодной лентой в Arduino необходимо скачать и установить библиотеку для нее — NeoPixel Adafruit library.
Гайд по адресной светодиодной ленте
Данный гайд посвящен адресной светодиодной ленте применительно к использованию с микроконтроллерами (Arduino, esp8266). Рассмотрены базовые понятия, подключение, частые ошибки и места для покупки.
КУПИТЬ АДРЕСНУЮ ЛЕНТУ
Лента WS2812
- Giant4 30 LED
- Giant4 60 LED
- Giant4 144 LED
- AliExpress
- AliExpress
Гибкий профиль
- AliExpress
- AliExpress
- AliExpress
Гирлянда
- Giant4 (РФ)
- Giant4 (РФ)
- AliExpress
Полоски
- AliExpress
- AliExpress
Кольца
- AliExpress
- AliExpress
- AliExpress
Матрицы
- Giant4 16×16
- Giant4 32×8
- AliExpress
- AliExpress
- Black PCB / White PCB — цвет подложки ленты, чёрная / белая
- 1m/5m — длина ленты в метрах
- 30/60/74/96/100/144 — количество светодиодов на 1 метр ленты
- IPXX – влагозащита
- IP30 лента без влагозащиты
- IP65 лента покрыта силиконом
- IP67 лента полностью в силиконовом коробе
ТИПЫ АДРЕСНЫХ ЛЕНТ
Сейчас появилось несколько разновидностей адресных светодиодных лент, они основаны на разных светодиодах. Рассмотрим линейку китайских чипов с названием WS28XX.
Чип Напряжение Светодиодов на чип Кол-во дата-входов Купить в РФ WS2811 12-24V 3 1 30 led, 60 led WS2812 3.5-5.3V 1 1 30 led, 60 led, 144 led WS2813 3.5-5.3V 1 2 (дублирующий) 30 led, 60 led WS2815 9-13.5V 1 2 (дублирующий) 30 led, 60 led WS2818 12/24V 3 2 (дублирующий) 60 led У двухпиновых лент из линейки WS28XX достаточно подключить к контроллеру только пин DI, пин BI подключать не нужно. При соединении кусков ленты нужно соединять все пины!
WS2811 (WS2818) и WS2812
Сейчас популярны два вида ленты: на чипах WS2812b и WS2811 (и новая WS2818). В чём их разница? Чип WS2812 размещён внутри светодиода, таким образом один чип управляет цветом одного диода, а питание ленты – 5 Вольт. Чип WS2811 и WS2818 размещён отдельно и от него питаются сразу 3 светодиода, таком образом можно управлять цветом только сегментами по 3 диода в каждом. А вот напряжение питания у таких лент составляет 12-24 Вольта!
ЧТО ТАКОЕ АДРЕСНАЯ ЛЕНТА
Итак, данный гайд посвящен адресной светодиодной ленте, я решил сделать его познавательным и подробным, поэтому дойдя до пункта “типичные ошибки и неисправности” вы сможете диагностировать и успешно излечить косорукость сборки даже не читая вышеупомянутого пункта. Что такое адресная лента? Рассмотрим эволюцию светодиодных лент.
Обычная светодиодная лента представляет собой ленту с напаянными светодиодами и резисторами, на питание имеет два провода: плюс и минус. Напряжение бывает разное: 5 и 12 вольт постоянки и 220 переменки. Да, в розетку. Для 5 и 12 вольтовых лент нужно использовать блоки питания. Светит такая лента одним цветом, которой зависит от светодиодов.
RGB светодиодная лента. На этой ленте стоят ргб (читай эргэбэ – Рэд Грин Блю) светодиоды. Такой светодиод имеет уже 4 выхода, один общий +12 (анод), и три минуса (катода) на каждый цвет, т.е. внутри одного светодиода находится три светодиода разных цветов. Соответственно такие же выходы имеет и лента: 12, G, R, B. Подавая питание на общий 12 и любой из цветов, мы включаем этот цвет. Подадим на все три – получим белый, зелёный и красный дадут жёлтый, и так далее. Для таких лент существуют контроллеры с пультами, типичный контроллер представляет собой три полевых транзистора на каждый цвет и микроконтроллер, который управляет транзисторами, таким образом давая возможность включить любой цвет. И, как вы уже поняли, да, управлять такой лентой с ардуино очень просто. Берем три полевика, и ШИМим их analogWrit’ом, изи бризи.
Адресная светодиодная лента, вершина эволюции лент. Представляет собой ленту из адресных диодов, один такой светодиод состоит из RGB светодиода и контроллера. Да, внутри светодиода уже находится контроллер с тремя транзисторными выходами! Внутри каждого! Ну дают китайцы блэт! Благодаря такой начинке у нас есть возможность управлять цветом (то бишь яркостью r g b) любого светодиода в ленте и создавать потрясающие эффекты. Адресная лента может иметь 3-4 контакта для подключения, два из них всегда питание (5V и GND например), и остальные (один или два) – логические, для управления.
Лента “умная” и управляется по специальному цифровому протоколу. Это означает, что если просто воткнуть в ленту питание не произойдет ровным счётом ничего, то есть проверить ленту без управляющего контроллера нельзя. Если вы потрогаете цифровой вход ленты, то скорее всего несколько светодиодов загорятся случайными цветами, потому что вы вносите случайные помехи, которые воспринимаются контроллерами диодов как команды. Для управления лентой используются готовые контроллеры, но гораздо интереснее рулить лентой вручную, используя, например, платформу ардуино, для чего ленту нужно правильно подключить. И вот тут есть несколько критических моментов:
ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ
1) Команды в ленте передаются от диода к диоду, паровозиком. У ленты есть начало и конец, направление движение команд на некоторых моделях указано стрелочками. Для примера рассмотрим ws2812b, у нее три контакта. Два на питание, а вот третий в начале ленты называется DI (digital input), а в конце – DO (digital output). Лента принимает команды в контакт DI! Контакт DO нужен для подключения дополнительных кусков ленты или соединения матриц.
2) Если в схеме возможна ситуация, при которой на ленту не будет подаваться питание 5V, но будет отправляться сигнал с микроконтроллера – лента начнёт питаться от дата-пина. В этом случае может сгореть как первый светодиод в ленте, так и пин контроллера. Не испытывайте удачу, поставьте резистор с сопротивлением 200-500 Ом. Точность резистора? Любая. Мощность резистора? Любая. Да, даже 1/4.
2.1) Если между лентой и контроллером (Arduino) большое расстояние, т.е. длинные провода (длиннее 50 см), то сигнальный провод и землю нужно скрутить в косичку для защиты от наводок, так как протокол связи у ленты достаточно скоростной (800 кГц), на него сильно влияют внешние наводки, а экранирование земляной скруткой поможет этого избежать. Без этого может наблюдаться такая картина: лента не работает до тех пор, пока не коснёшься рукой сигнального провода.
2.2) При подключении ленты к микроконтроллерам с 3.3V логикой (esp8266, ESP32, STM32) появляется проблема: лента питается от 5V, а сигнал получает 3.3V. В даташите указана максимальная разница между питанием и управляющим сигналом, если её превысить – лента не будет работать или будет работать нестабильно, с артефактами. Для исправления ситуации можно:
- Уменьшить напряжение питания ленты до 4.5V, “промышленные” (металлические в дырочку) блоки питания позволяют это сделать (у них есть крутилка).
- Поставить конвертер (преобразователь) уровней с 3.3 до 5V на управляющий сигнал.
- Также я придумал весьма грязный трюк с диодом: первый светодиод в ленте можно запитать от более низкого напряжения через любой кремниевый диод (например 1N4007), а остальные – как обычно. На диоде падает около 0.6V, таким образом сигнал пройдёт через ступеньку повышения 3.3-4.4-5.0V и всё будет работать стабильно. Для этого нужно аккуратно вырезать кусочек дорожки 5V между 1 и 2 светодиодом, подключить питание ко второму, и диодом оттуда же – на первый (см. схему #1 справа).
- Ещё один способ с нашего форума: диодом “приподнять” землю самого микроконтроллера на те же 0,6V. Для этого диод ставится между GND питания катодом и GND микроконтроллера анодом (см. схему #2 справа). Ну и самый правильный способ – конвертация логического уровня при помощи любого PNP транзистора:
3) Самый важный пункт, который почему то все игнорируют: цифровой сигнал ходит по двум проводам, поэтому для его передачи одного провода от ардуины мало. Какой второй? Земля GND. Как? Контакт ленты GND и пин GND Ардуино (любой из имеющихся) должны быть обязательно соединены. Смотрим два примера.
4) Питание. Один цвет одного светодиода при максимальной яркости кушает 12 миллиампер. В одном светодиоде три цвета, итого
36 мА на диод. Пусть у вас есть метр ленты с плотностью 60 диод/метр, тогда 60*36 = 2.1 Ампера при максимальной яркости белого цвета, соответственно нужно брать БП, который с этим справится. Также нужно подумать, в каком режиме будет работать лента. Если это режимы типа «радуга», то мощность можно принять как половину от максимальной. Подробнее о блоках питания, а также о связанных с ними глюках читай здесь.
5) Продолжая тему питания, хочу отметить важность качества пайки силовых точек (подключение провода к ленте, подключение этого же провода к БП), а также толщину проводов. Как показывает мой опыт, брать нужно провод сечением минимум 1.5 квадрата, если нужна полная яркость. Пример: на проводе 0.75 кв.мм. на длине 1.5 метра при токе 2 Ампера падает 0.8 вольта, что критично для 5 вольт питания. Первый признак просадки напряжения: заданный программно белый цвет светит не белым, а отдаёт в жёлтый/красный. Чем краснее, тем сильнее просело напряжение!
6) Мигающая лента создаёт помехи на линию питания, а если лента и контроллер питаются от одного источника – помехи идут на микроконтроллер и могут стать причиной нестабильной работы, глюков и даже перезагрузки (если БП слабый). Для сглаживания таких помех рекомендуется ставить электролитический конденсатор 6.3V ёмкостью 470 мкФ (ставить более ёмкий нет смысла) по питанию микроконтроллера, а также более “жирный” конденсатор (1000 или 2200 мкФ) на питание ленты. Ставить их необязательно, но очень желательно. Если вы заметите зависания и глюки в работе системы (Ардуино + лента + другое железо), то причиной в 50% является как раз питание.
7) Слой меди на ленте не очень толстый (особенно на модели ECO), поэтому от точки подключения питания вдоль ленты напряжение начинает падать: чем больше яркость, тем больше просадка. Если нужно сделать большой и яркий кусок ленты, то питание нужно дублировать медным проводом 1.5 (или больше, надо экспериментировать) квадрата через каждый метр.
КАК ДЕЛАТЬ НЕЛЬЗЯ
Как мы уже поняли, для питания ленты нужен источник 5 Вольт с достаточным запасом по току, а именно: один цвет одного качественного светодиода на максимальной яркости потребляет 0.012 А (12 мА), соответственно весь светодиод – 0.036 А (36 мА) на максимальной яркости. У китайцев есть “китайские” ленты, которые потребляют меньше и светят тускло. Я всегда закупаюсь в магазине BTF lighting (ссылки в начале статьи), у них ленты качественные. Я понимаю, что порой очень хочется запитать ленту напрямую от Ардуино через USB, либо используя бортовой стабилизатор платы. Так делать нельзя. В первом случае есть риск выгорания защитного диода на плате Arduino (в худшем случае – выгорания USB порта), во втором – синий дым пойдёт из стабилизатора на плате. Если всё-таки очень хочется, есть два варианта:
-
Не подключать больше количества светодиодов, при котором ток потребления будет выше 500 мА, а именно 500/32
Вы наверное спросите: а как тогда прошивать проект с лентой? Ведь судя по первой картинке так подключать нельзя! Оч просто: если прошивка не включает ленту сразу после запуска – прошивайте. Если включает и есть риск перегрузки по току – подключаем внешнее питание на 5V и GND.