Школьная энциклопедия. Дисперсия света. Нормальная и аномальная дисперсия
Каждый охотник желает знать, где сидит фазан. Как мы помним, эта фраза означает последовательность цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Кто показал, что белый цвет это совокупность всех цветов, какое отношение имеет к этому радуга, красивые закаты и восходы солнца, блеск драгоценных камней? На все эти вопросы отвечает наш урок, тема которого: «Дисперсия света».
До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).
Рис. 1. Ход лучей в призме ()
Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление — из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:
Рис. 2. Опыт Ньютона ()
В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму. Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» — «видение»). Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?
1. Свет имеет сложную структуру (говоря современным языком — белый свет содержит электромагнитные волны разных частот).
2. Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).
3. Скорость света зависит от среды.
Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?
Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего — фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n. Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового. Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.
Вспомним, как показатель преломления связан со скоростью света:
n — показатель преломления
С — скорость света в вакууме
V — скорость света в среде
ν — частота света
Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость — фиолетовый.
Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.
Дисперсия — зависимость скорости распространения света в среде от его частоты.
Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.
Причина этого явления — во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.
Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.
В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.
Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн. Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим. «Моно» — один, «хромос» — цвет.
Рис. 3. Расположение цветов в спектре по длинам волн в воздухе ()
Самый длинноволновый — это красный цвет (длина волны — от 620 до 760 нм), самый коротковолновый — фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет — это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.
Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение. Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета. Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.
Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы — радуга (рис. 4).
Рис. 4. Явление радуги ()
Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.
Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.
1. Явление дисперсии — это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света. 2. Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.
Список литературы
- Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) — М.: Мнемозина, 2012.
- Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. — М.: Мнемозина, 2014.
- Кикоин И.К., Кикоин А.К. Физика — 9, Москва, Просвещение, 1990.
Домашнее задание
- Какие выводы сделал Ньютон после опыта с призмой?
- Дать определение дисперсии.
- Чем определяется цвет тела?
- Интернет-портал B -i-o-n.ru ().
- Интернет-портал Sfiz.ru ().
- Интернет-портал Femto.com.ua ().
Дисперсия света — это зависимость показателя преломления n вещества от длины волны света (в вакууме)
или, что то же самое, зависимость фазовой скорости световых волн от частоты:
Дисперсией вещества называется производная от n по
Дисперсия — зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.
Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)
Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия
оказывается положительной и называется аномальной (рис. 6.7, область 2–3).
Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны l вблизи одной из полос поглощения ()
Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).
Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие — на экране возникает спектр
Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).
Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).
Рис. 6.9. Возникновение радуги
Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).
Рис. 6.10. Расположение радуги
Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя — в красный. Радуги третьего и высших порядков наблюдаются редко.
Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.
При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:
где v — скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно
Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:
Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:
где — амплитуда напряженности электрического поля в световой волне, — фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде
где, — собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили
Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.
Атом со смещенным электроном приобретает дипольный момент
(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде
В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:
Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:
С другой стороны, как известно,
где — диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением
В результате получаем выражение для квадрата показателя преломления вещества:
Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.
Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны
Учитывая связь частоты с длиной электромагнитной волны в вакууме
можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):
Длины волн, соответствующие собственным частотам колебаний , — постоянные коэффициенты.
В области аномальной дисперсии () частота внешнего электромагнитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.
Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» — расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн — совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).
Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме
Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной
где — волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).
Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.
Пучок света, проходя через треугольную призму, отклоняется к грани, лежащей напротив преломляющегося угла призмы. Однако если это будет пучок именно белого света, то он, после того как пройдет через призму, не только отклонится, но и разложится на цветные пучки. Такое явление называется дисперсия света. Оно было впервые изучено в в серии замечательных опытов.
Источником света в опытах Ньютона служило небольшое круглое отверстие, расположенное в ставне окна, освещаемого лучами Солнца. Когда перед отверстием устанавливалась призма, то на стене вместо круглого пятна появлялась окрашенная полоска, названная Ньютоном спектром. Такой спектор состоит из семи главных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового, которые постепенно переходили один в другой. Каждый из них занимает в спектре пространство различного размера. Наибольшую длину имеет фиолетовая полоса, наименьшую — красная.
Следующий опыт состоял в том, что из широкого пучка цветных лучей, полученных с помощью призмы, экраном с небольшим отверстием выделились узкие пучки определенной цветности и направлялись на вторую призму.
Призма отклоняя их, не изменяет цвета этих лучей. Такие лучи называются простые или монохроматическими (одноцветными).
Опыт показывает, что красные лучи ощущают меньшее отклонение по сравнению с фиолетовыми, т.е. лучи различной цветности неодинаково преломляются призмой.
Собирая пучки лучей, вышедшие из призмы, Ньютон получил на белом экране вместо окрашенной полосы белое изображение отверстия.
Из всех проведенных опытов Ньютон сделал такие выводы:
- белый свет по своей природе является сложным светом, который состоит из цветных лучей;
- у лучей света различной цветности различны и показатели преломления вещества; в результате этого, когда пучок белого света отклоняется призмой, он разлагается в спектр;
- если соединенить цветные лучи спектра, то вновь получится белый свет.
Таким образом, дисперсия света — это явление, которое обусловлено зависимостью вещества от длины волны (или частоты).
Дисперсия света отмечается не только, когда свет проходит через призму, но и в различных других случаях преломления света. Так, в частности, преломление в каплях воды солнечного света сопровождается его разложением на разноцветные лучи, этим поясняется образование радуги.
Ньютон для получения спектра направлял на призму довольно широкий цилиндрический пучок солнечного света через круглое отверстие, сделанное в ставне.
Полученный таким способом спектр представляет собой ряд разноцветных изображений круглого отверстия, частично налагающихся друг на друга. Для получения более чистого спектра, при изучении такого явления как дисперсия света, Ньютон предложил пользоваться не круглым отверстием, а узкой щелью, параллельной преломляющему ребру призмы. При помощи линзы на экране получают четкое изображение щели, после чего за линзой устанавливается призма, которая дает спектр.
Наиболее чистые и яркие спектры получают при помощи специальных приборов — спектроскопов и спектрографов.
Поглощение света — это явление, при котором энергия световой волны уменьшается при еѐ прохождении через вещество. Это происходит вследствие превращения энергии волны света в энергию вторичного излучения или, другими словами, вещества, которое имеет другой спектральный состав и другие направления распространения.
Поглощение света сможет вызывать нагревание вещества, ионизацию или возбуждение молекул либо атомов, фотохимические реакции, а также другие процессы в веществе.
Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.
Природа света
С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными свойствами. Это подтверждается всем известным явлением фотоэффекта. Выходит, что световой поток имеет двоякую природу.
Цветовой спектр
Белый свет, доступный для человеческого зрения, — это совокупность нескольких волн, любая из которых характеризуется определенной частотой и собственной энергией фотонов. В соответствии с этим его можно разложить на волны разного цвета. Каждая из них носит название монохроматической, а определенному цвету соответствует свой диапазон длины, частоты волн и энергии фотонов. Другими словами, энергия, излучаемая веществом (или поглощаемая), распределяется по вышеназванным показателям. Это объясняет существование светового спектра. Например, зеленый цвет спектра соответствует частоте, находящейся в диапазоне от 530 до 600 ТГц, а фиолетовый — от 680 до 790 ТГц.
Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму. Дисперсия света выражается следующим равенством:
где n — показатель преломления, ƛ — частота, а ƒ — длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе. Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.
Первые шаги на пути к открытию дисперсии
Как было сказано выше, световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Научный интерес к свойствам света появился еще до нашей эры. Знаменитый Аристотель уже тогда заметил, что солнечный свет может иметь разные оттенки. Ученый утверждал, что характер цвета зависит от «количества темноты», присутствующей в белом свете. Если ее много, то возникает фиолетовый цвет, а если мало, то красный. Великий мыслитель также говорил о том, что основным цветом световых лучей является белый.
Исследования предшественников Ньютона
Аристотелевскую теорию взаимодействия темноты и света не опровергли и ученые 16-17 веков. И чешский исследователь Марци, и английский физик Хариот независимо друг от друга проводили опыты с призмой и были твердо уверены в том, что причиной появления разных оттенков спектра является именно смешивание светового потока с темнотой при прохождении его через призму. На первый взгляд, выводы ученых можно было назвать логичными. Но их эксперименты были достаточно поверхностными, и они не смогли подкрепить их дополнительными исследованиями. Так было, пока за дело не взялся Исаак Ньютон.
Открытие Ньютона
Благодаря пытливому уму этого выдающегося ученого было доказано, что белый свет не является основным, и что остальные цвета возникают вовсе не в результате взаимодействия света и темноты в разных соотношениях. Ньютон опроверг эти убеждения и показал, что белый свет является составным по своей структуре, его образуют все цвета светового спектра, называемые монохроматическими. В результате прохождения светового пучка через призму разнообразие цветов образуется из-за разложения белого света на составляющие его волновые потоки. Такие волны с разной частотой и длиной преломляются в среде по-разному, образуя определенный цвет. Ньютон поставил опыты, которые до сих пор используются в физике. Например, эксперименты со скрещенными призмами, с использованием двух призм и зеркала, а также пропускание света через призмы и перфорированный экран. Теперь нам известно, что разложение света на цветовой спектр происходит вследствие различной скорости прохождения волн с разной длиной и частотой сквозь прозрачное вещество. В результате одни волны выходят из призмы раньше, другие — чуть позже, третьи — еще позже и так далее. Так и происходит разложение светового потока.
Аномальная дисперсия
В дальнейшем ученые-физики позапрошлого столетия сделали очередное открытие, касающееся дисперсии. Француз Леру обнаружил, что в некоторых средах (в частности, в парах йода) зависимость, выражающая явление дисперсии, нарушается. За изучение этого вопроса взялся живший в Германии физик Кундт. Для своего исследования он позаимствовал один из методов Ньютона, а именно опыт с использованием двух скрещенных призм. Разница состояла лишь в том, что вместо одной из них Кундт применял призматический сосуд с раствором цианина. Оказалось, что показатель преломления при прохождении света через такие призмы увеличивается, а не уменьшается, как это происходило в экспериментах Ньютона с обычными призмами. Немецкий ученый выяснил, что этот парадокс наблюдается вследствие такого явления, как поглощение света веществом. В описанном опыте Кундта поглощающей средой выступал раствор цианина, а дисперсия света для таких случаев была названа аномальной. В современной физике такой термин практически не используют. На сегодняшний день открытую Ньютоном нормальную и обнаруженную позже аномальную дисперсию рассматривают как два явления, относящихся к одному учению и имеющих общую природу.
Низкодисперсные линзы
В фототехнике дисперсия света считается нежелательным явлением. Она становится причиной так называемой хроматической аберрации, при которой на изображениях появляется искажение цветов. Оттенки фотографии при этом не соответствуют оттенкам снимаемого объекта. Особенно неприятным такой эффект становится для фотографов-профессионалов. Из-за дисперсии на фотоснимках не только происходит искажение цветов, но и нередко наблюдается размытие краев или, наоборот, появление чересчур очерченной каймы. Мировые производители фототехники справляются с последствиями такого оптического явления с помощью специально разработанных низкодисперсных линз. Стекло, из которого они производятся, обладает великолепным свойством одинаково преломлять волны с разными значениями длины и частоты. Объективы, в которых устанавливаются низкодисперсные линзы, называются ахроматами.
Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.
Природа света
С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными.
Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона). У этого термина существуют и другие значения, см. Дисперсия.
Диспе рсия све та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.
Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления.
Опыты Ньютона
Первые опыты с дисперсионным разложением света проделал Ньютон. Он направил обычный луч солнечного света на призму и получил то, что многие сегодня видят ежедневно – призма разложила световой пучок на множество разноцветных цветов — от красного до фиолетового. После серии других опытов с линзами и призмой Ньютон сделал вывод, что призма не изменяет солнечного света, а лишь разлагает его на составляющие. Но как же это получается?
Дело в том, что свет имеет определенную скорость. Как показал опыт, световой пучок состоит из множества цветов, вот их-то скорость как раз и различна. То есть каждый цвет спектра имеет свою скорость движения и свою длину волны. Различной оказалась также степень преломления цветовых лучей. Вспомните, как выглядит.
Глава 1. Световые волны — Урок 5. Дисперсия света
Вернуться к оглавлению
Урок 5. ДИСПЕРСИЯ СВЕТА
Показатель преломления не зависит от угла падения светового пучка, но он зависит от его цвета. Это было открыто Ньютоном.
Занимаясь усовершенствованием телескопов. Ньютон обратил внимание на то. что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемого линзой, наблюдали, конечно, и до него. Было замечено также, что радужные края имеют предметы, рассматриваемые через призму. Пучок световых лучей, прошедший через призму, окрашивается по краям.
Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную.
Гимназия № 26 ДИСПЕРСИЯ СВЕТА Выполнил: ученик 11 В класса Шелепов Дмитрий Руководитель: Пылкова Л.В. Томск-2011 В 17 веке начинает развиваться представление о волновой природе света. Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским учёным Франческо Гримальди. Он заметил, что если на пути очень узкого пучка света поставить предмет, то на экране не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить правильно не сумел. Он понимал, что наблюдаемое им явление находится в противоречии с корпускулярной теорией света, однако не решился полностью отказаться от этой теории. Правильное объяснение открытого явления связано с теорией цветного зрения, основы которой были заложены замечательным английским учёным Исааком Ньютоном. Дисперсия света (разложение света) — это явление зависимости абсолютного показателя преломления вещества от длины волны света.
Диспе рсия све та (разложение света) — это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия) , а также, от координаты (пространственная дисперсия) , или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты) . Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.
Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона) . Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета) . Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:
у красного цвета максимальная скорость в среде и минимальная степень преломления.
Урок физики «Дисперсия света»
Образовательные: ввести понятия спектр, дисперсия света; ознакомить учащихся с историей открытия данного явления. наглядно продемонстрировать процесс разложение узкого светового луча на составляющие различных цветовых оттенков. выявить различия этих элементов луча света. продолжить формирование научного мировоззрения учащихся. Развивающие: развитие внимания, образного и логического мышления, памяти при изучении данной темы. стимулирование познавательной мотивации учащихся. развитие критического мышления. Воспитательные: воспитание интереса к предмету; воспитание чувства прекрасного, красоты окружающего мира.
Тип урока: урок изучения и первичного закрепления новых знаний.
Методы обучения: беседа, рассказ, объяснение, эксперимент. (Информационно-развивающий)
Министерство науки и образования Украины
Украинская инженерно-педагогическая академия
Выполнил студент гр. ДРЭ-С5-1
Дисперсия света. В яркий солнечный день закроем окно в комнате плотной шторой, в ко торой сделаем маленькое отверстие. Через это отвер стие будет проникать в комнату узкий солнечный луч, образующий на противоположной стене светлое пятно. Если на пути луча поставить
стеклянную призму, то пятно на стене превратится в разноцветную по лоску, в которой будут представлены все цвета ра дуги-от фиолетового до красного (рис. 1,ф– фиолетовый, С — синий, Г — голубой, 3 — зеленый, Ж -желтый, О -оранжевый, К — красный).
Дисперсия света – зависимость показателя преломления n вещества от частоты f (длины волны) света или зависимость.
Слайд 1
Слово “дисперсия” происходит от латинского слова dispersio , что в буквальном переводе означает “рассеяние, развеивание ”. Дисперсия света Работу выполнила ученица 11 «Э» класса Адельшина Ильвира
Слайд 2
История открытия Определение Опыт Ньютона Особенность прохождения светового пучка через призму Основные свойства Следствия Условия возникновения радуги Вопросы Выводы Содержание
Слайд 3
Световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Первые шаги на пути к открытию дисперсии
Слайд 4
Около 300 лет назад Исаак Ньютон пропустил солнечные лучи через призму. Недаром на его надгробном памятнике, поставленном в 1731 году и украшенном фигурами юношей, которые держат в руках эмблемы его главнейших открытий, одна фигура держит призму, а в надписи на памятнике есть слова: «Он.
Изучение дисперсии света в 11-м классе
Статья отнесена к разделу: Преподавание физики
Этот урок проводится в конце изучения темы “волновые свойства света” в классах физико-математического профиля.
А. Учащиеся должны усвоить:
Пучок белого света, при прохождении через вещество, имеющее преломляющий угол, разлагается на пучки различной цветности. Это явление называется дисперсией света.
При падении на границу раздела двух сред световые пучки разной цветности преломляются по-разному: красные — меньше, а фиолетовые — больше.
Объективная характеристика цветности – частота электромагнитной волны.
Б. Учащиеся должны научиться:
Создавать понятие “дисперсия света”.
Распознавать дисперсию света среди других явлений.
Воспроизводить дисперсию света в конкретной ситуации.
Дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав веществ. Частицы вещества совершают вынужденные колебания в переменном электромагнитном поле волны.
Дисперсия света – зависимость абсолютного показателя преломления вещества n от частоты.
Наблюдение явления дисперсии света лабораторная
В физике дисперсией света называется зависимость показателя преломления вещества от длины световой волны. Наиболее наглядно демонстрирует явление дисперсии света его разложение под действием какой-либо призмы.
1.3. Первые опыты с призмами. Представления о при чинах возникновения цветов до Ньютона.
1.4. Опыты Ньютона с призмами. Ньютоновская теория возникновения цветов
1.5. Открытие аномальной дисперсии света. Опыты Кундта
Глава II . Дисперсия в природе
2.1. Радуга
Глава III . Экспериментальная установка для наблюдения смешения цветов
3.1. Описание установки
3.2. Устройство экспериментальной установки
Заключение
Литература
Введение.
Дисперсия света. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. Наверное, нет человека, который не.
МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева»
Петропавловск-Камчатского городского округа
Дисперсия света и цвета тел
Конспект урока физики в 11 классе
Урок изучения нового материала, закрепления и контроля
Учитель физики МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева» Юрьева О. Л.
Не жалею, не зову, не плачу,
Все пройдет, как с белых яблонь дым.
Увяданья золотом охваченный,
Я не буду больше молодым.
Ты теперь не так уж будешь биться,
Сердце, тронутое холодком,
И страна березового ситца
Не заманит шляться босиком.
Дух бродяжий! ты все реже, реже
Расшевеливаешь пламень уст
О, моя утраченная свежесть,
Буйство глаз и половодье чувств!
Я теперь скупее стал в желаньях,
Жизнь моя, иль ты приснилась мне?
Словно я весенней гулкой ранью
Проскакал на розовом коне.
Все мы, все мы в этом мире тленны,
Тихо льется.
Какие волны называются когерентными?
волны, имеющие одинаковую частоту
волны, имеющие одинаковую амплитуду
волны, имеющие одинаковую частоту и постоянную разность фаз
Поляризация света доказывает, что свет –
поток нейтральных частиц
поперечная волна
продольная волн
Что называется дифракцией света?
разложение белого света в спектр при помощи стеклянной призмы
усиление или ослабление света при наложении двух когерентных волн
огибание светом препятствий
Цвета спектра (красный – к, оранжевый – о, синий – с, желтый – ж, голубой – г, зеленый – з, фиолетовый – ф) в порядке убыли длины волны правильно указаны в ответе:
1.ф, с, г, з, ж, о, к
к, о, ж, з, г, с, ф
ф, г, з, с, ж, о, к
Радужная окраска тонких пленок нефтепродуктов в лужах вызвана явлением
дифракции
дисперсии
интерференции
Просветление линз объясняется за счет.
Реферат: Тема урока: «Свет это поток частиц»
Учитель Пылкова Л.В., МОУ гимназия № 26
Тема урока: «Свет это поток частиц»
Тип урока: Модифицированные дебаты
Организация «модифицированных» дебатов допускает некоторые изменения правил, можно увеличить или уменьшить количество игроков в командах; допустимы вопросы аудитории, организуются группы поддержки, к которым команды могут обращаться во время игры, группа экспертов осуществляет функции судейства, вырабатывает компромиссное решение, когда это необходимо для реализации учебных целей. Основными этапами организации учебного процесса на основе использования методики дебатов являются: ориентация (выбор темы); подготовка к проведению; проведение дебатов; обсуждение игры.
Кто исследовал аномальную дисперсию
Аномальная диспе́рсия — вид дисперсии света, при которой показатель преломления среды уменьшается с увеличением частоты световых колебаний.
где — показатель преломления среды,
Согласно современным представлениям и нормальная, и аномальная дисперсии представляют собой явления единой природы. Эта точка зрения основывается на электромагнитной теории света, с одной стороны, и на электронной теории вещества, — с другой. Термин «аномальная дисперсия» сохраняет сегодня лишь исторический смысл, поскольку «нормальная дисперсия» — это дисперсия вдали от длин волн, при которых происходит поглощение света данным веществом, а «аномальная дисперсия» — это дисперсия в области полос поглощения света веществом. Аномальная дисперсия обусловлена взаимодействием света с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны. Для видимого света частота столь велика (ν
10 15 Гц), что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов. Эти электроны называют оптическими электронами. В процессе вынужденных колебаний оптических электронов в поле монохроматической волны с частотой ν периодически изменяются дипольные электрические моменты молекул и последние излучают вторичные электромагнитные волны той же частоты ν [1] .
История открытия
В 1860 году французский физик Леру, проводя измерения показателя преломления для ряда веществ, неожиданно обнаружил, что пары иода преломляют синие лучи в меньшей степени, нежели красные. Леру назвал обнаруженное им явление аномальной дисперсией света.
Если при обычной дисперсии показатель преломления с ростом частоты увеличивается, то при аномальной дисперсии показатель преломления, наоборот, уменьшается. Явление аномальной дисперсии было детально исследовано немецким физиком Кундтом в 1871—1872 гг.
Последующие исследования аномальной дисперсии света показали, что наиболее интересные экспериментальные результаты получаются, когда вместо двух скрещенных призм используется, например, призма и интерферометр. Такая экспериментальная методика была применена известным русским физиком Д. С. Рождественским в начале XX века. [2]
.184.3. Аномальная дисперсия света.
Если вещество поглощает часть лучей, то в области поглощения и вблизи нее ход дисперсии обнаруживает аномалию (рис.29). На некотором участке дисперсия вещества , т.е. показатель преломления возрастает с увеличением . Аномальная дисперсия проявляется в том, что длинноволновые лучи преломляются больше, чем коротковолновые. Аномальная дисперсия в видимой части спектра наблюдается в парах Na и J.
Явление дисперсии света подтверждает волновую точку зрения на природу света.
Явление аномальной дисперсии носит резонансный характер. Аномальная дисперсия наблюдается при условии, что частота внешнего электромагнитного поля () приближается или равна одной из собственных частот колебаний электронного облака (0). С увеличением частоты и приближением ее к частоте 0 амплитуда вынужденных колебаний зарядов в веществе резко возрастает, происходит сильное поглощение энергии первичной (падающей) волны и задержка ее с обратным испусканием. Благодаря этой задержке средняя скорость движения фотонов в среде vср. сильно уменьшается, а показатель преломления резко увеличивается. При переходе за резонансную частоту 0 (>0) амплитуда вынужденных колебаний резко падает, а фаза колебаний меняется на противоположную. Это приводит к уменьшению поглощения фотонов, увеличению vср. и уменьшению показателя преломления n. Следовательно, участки нормальной дисперсии (довольно широки) сменяются узкими участками аномальной дисперсии при резонансных частотах. Таким образом, аномальная дисперсия является неотъемлемым свойством вещества.
.194.4. Электронная теория дисперсии света.
Дисперсия света может быть объяснена на основе электромагнитной теории и электронной теории вещества.
При падении света на вещество падающие световые волны складываются со вторичными волнами, возникающими вследствие колебаний электронов и ядер, входящих в состав атомов и молекул вещества и приведенных в состояние колебательного движения переменным полем падающей световой волны.
При этом принято считать, что заряженные частицы в атомах и молекулах удерживаются около своего положения равновесия квазиупругими силами. Вследствие этого электроны, ядра, ионы могут обладать собственной частотой колебаний 0. Падающая световая волна, распространяясь через вещество, заставляет заряженные частицы совершать вынужденные колебания с частотой . Основываясь на этих представлениях можно получить зависимость показателя преломления от длины световой волны.
Известно, что . Для большинства прозрачных сред (диэлектриков) магнитная проницаемость =1. Следовательно, . Из электростатики также известно, что электрическая индукция или , где диэлектрическая восприимчивость среды (диэлектрика). Здесь диэлектрическая проницаемость.
Среда называется поляризованной, если под действием внешнего электрического поля дипольный момент диэлектрика становится отличным от нуля.
Величина называется поляризованностью среды (диэлектрика). Иногда ее называют электрическим моментом единицы объема поляризованной среды.
Под действием внешнего переменного электрического поля, создаваемого падающей световой волной, электроны в атомах вещества будут смещаться на некоторую величину «l».
Пусть в единице объема вещества будет N атомов, каждый атом представляет собой диполь, электрический момент которого равен
Тогда , где l – определяется напряженностью электрического поля падающей световой волны, т. к. на каждый электрон в атоме световая волна действует с силой .
Примем, что в падающей световой волне колебания вектора происходят по гармоническому закону , тогда получим, что на каждый электрон в атоме будет действовать сила , а положение электрона относительно своего ядра будет подчиняться закону , где A – амплитуда вынужденных колебаний, численно равная
(действием магнитной составляющей пренебрегаем).
Тогда электрический момент единицы объема среды может быть представлен в виде:
Отсюда или закон дисперсии.
Строго говоря, эта задача решается, если записать дифференциальное уравнение осциллирующего электрона в виде , где квазиупругая сила; тормозящая сила, позволяет учесть затухание колебаний электрона; вынуждающая сила. Получается аналогичное решение только с учетом затухания:
описывает нормальную дисперсию прозрачных тел
десь коэффициент затухания, . Если =0, то получаем такой же результат, как и выше.
Из полученного выражения видно, что имеется определенная зависимость показателя преломления от циклической частоты падающего света () и собственной частоты колебаний электрических зарядов вещества (0) (рис.30).
Возможны следующие варианты соотношения частот и 0 (=0 – поглощения нет):
1) n>1. Дисперсия изучается вдали от линии поглощения. Справедливо для всей видимой области спектра, иными словами: частота собственных колебаний осциллирующего электрона соответствует УФ области спектра.
2) n<1. Такое приближение можно использовать при описании дисперсии рентгеновского излучения. Очевидно, что здесь можно положить 0=0 и тогда
Т.к. очень велика, то можно считать n
Полученный результат соответствует экспериментальным данным и используется в оптике рентгеновских лучей, где можно наблюдать полное внутреннее отражение при переходе рентгеновского излучения из воздуха в стекло, что было невозможно в оптическом диапазоне.
3) =0. Функция терпит разрыв, это означает, что преломление света в веществе отсутствует; свет полностью поглощается веществом.
Таким образом, дисперсия света является неотъемлемым свойством вещества. Для веществ, состоящих из атомов с несколькими электронами возможно наличие нескольких полос аномальной дисперсии, т.к. частота собственных колебаний электрона 0 в атомах зависит от их удаления от ядра атома. А число электронов зависит от величины заряда ядра. Из сказанного следует, что каждое вещество обязательно имеет как минимум две полосы аномальной дисперсии. Одна полоса соответствует колебаниям внешних электронов, а вторая – колебаниям ядер. Полосы аномальной дисперсии, соответствующие колебаниям ядер лежат в далекой ИК области спектра, т.к. колебания ядер происходят с меньшей частотой, чем колебания электронов.
САМОСТОЯТЕЛЬНО: Поглощение и рассеяние света. Закон Бугера u , закон Релея.
Что такое дисперсия света – открытие Ньютона, что нужно знать
Пока ученые не объяснили видимые природные явления, когда все цвета выстраиваются в определенном порядке или мигрируют один в другой (радуга, северное сияние), людям казалось это чем-то волшебным. Сейчас мы понимаем, что это происходит из-за преломления солнечного потока. Но давайте разберемся в этом явлении чуть глубже. Что представляет собой дисперсия света?
Определение дисперсии света
Солнце проходит через прозрачные или условно прозрачные вещества, такие как вода, стекло, хрусталь. При этом белый луч, который мы считаем бесцветным, раскладывается на составляющие его радужные цвета.
Это происходит из-за того, что волны, попадая из одного вещества в другое, частично или полностью меняют свое направление. Такое изменение направления называется преломлением.
Но почему поток из белого, превращается в разноцветный? Это объясняется тем, что он не монохромный, а как раз содержит в себе весь цветовой ряд. Когда диапазоны всех цветов сливаются, мы видим белое излучение. При этом каждый цвет имеет разную длину волны. И в зависимости от нее по-своему меняет угол преломления.
Например, для зеленого диапазона угол отклонения будет больше, чем для оранжевого, а для синего больше, чем для зеленого. При этом скорость распространения изменяется при прохождении через другую среду, а вот частота остается прежней.
Объяснив эти наблюдения, можно дать определение такому понятию, как разложение белого света на составляющие.
Дисперсия — это зависимость показателя преломления от длины волны, или зависимость скорости света в веществе от длины волны. Это определение можно представить в виде формулы: n = f(v) или n = f(v), где
n — показатель приломления, λ — длина, а ν — частота.
Где встречается в природе
Разложение волнового потока в природе мы наблюдаем часто, но порой даже не догадываемся, что это дисперсия.
- Солнце на заходе, окрашивает все в красный или оранжевый цвет. Это происходит из-за разложения освещения в среде газа, который составляет нашу атмосферу.
- На дне аквариума или водоема с достаточно прозрачной водой мы можем видеть радужные блики. Это солнечный диапазон, преломленный в воде, раскладывается на цветовой спектр.
- Бриллианты, огранённый хрусталь, фиониты переливаются всеми гранями при ярком освещении.
Первые шаги на пути к открытию дисперсии
Еще задолго до того, как явление разложение спектра было описано и объяснено с точки зрения современной физики и представлений о волновой природе облучения, люди наблюдали и пытались понять суть этого явления.
Древнегреческий ученый Аристотель еще в 3 веке до н.э. активно изучал и пытался дать объяснение некоторым свойствам светового потока. Он наблюдал дисперсию света в природе и даже пытался экспериментально выяснить, как устроено солнечное излучение.
Так он выяснил, что солнечные лучи могут иметь разный цвет. И попытался описать суть этого явления. Ученый объяснил это тем, что разный оттенок свет приобретает из-за разного «количества темноты» в нем. Если темноты много, тогда освещение становится фиолетовым, если мало, то красным.
Уже тогда ученый сделал предположение, что белый спектр является основным и состоит из множества оттенков.
Открытие Ньютона
Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона.
В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.
Цвета были расположены строго по порядку от красного до фиолетового. Ученый выделил семь полос разного оттенка и назвал этот ряд спектром (от латинского видимый).
Сегодня для опытного наблюдения разложения диапазона применяют дифракционные решетки. Это стеклянные пластины с нанесенными бороздками и тонкими отверстиями. С помощью них можно наблюдать разложение не только цветового спектра, но и расщепление самого луча.
Советуем посмотреть видео:
Аномальная дисперсия
Нормальная дисперсия характеризуется тем, что чем выше частота излучения, тем больше угол преломления.
Аномальная же — это разновидность обычного расщипления видимого диапазона, когда при распространении света в веществе показатель преломления уменьшается с увеличением частоты светового потока. То есть обратная зависимость.
На практике отличия между двумя видами явлений можно увидеть в парах некоторых газов. При разложении луча красные волны преломляются больше чем синие, а некоторый диапазон поглощается веществом.
Радуга
Самым ярким и занятным проявлением разложения спектра в природе является радуга. После дождя в насыщенной водными каплями атмосфере солнечные лучи проходит через эти капли. Преломляясь в водных порах поток раскладывается на спектральную полосу.
Солнечный поток может преломляться дважды. Тогда мы видим двойную радугу. При чем, во второй радуге цвета расположены в обратно порядке от фиолетового к красному. Это явление редкое, но объяснимое с точки зрения физики.
Чем выше радуга, там она бледнее и наоборот.
В заключение
Очень часто мы сталкиваемся с явлениями обыденными, объяснить которые мы по-прежнему не всегда можем. Но появление радуги теперь для нас вполне объяснимо. Попробуйте провести ньютоновский опыт с детьми и делитесь своими результатами в комментариях и социальных сетях.
Оптика. Дисперсия света. Опыт Ньютона.
Дисперсия света предоставила возможность впервые достаточно достоверно обосновать составную сущность белого света. Так же этот феномен можно увидеть, к примеру, при преломлении света в частицах воды, на траве или в атмосфере при формировании радуги или же около фонарей в тумане.
Один из наиболее убедительных маркеров дисперсии — разложение белого света при пропускании его сквозь призму (опыт Ньютона). Ньютон устремил луч солнечного света сквозь небольшой просвет на стеклянную призму.
Попадая на призму, луч преломлялся и образовывал на противостоящей стене растянутый рисунок радужной последовательности цветов – спектр.
Запомнить полученную последовательность не сложно: "Каждый Охотник Желает Знать, Где Сидит Фазан".
Далее ученый, наоборот, сконцентрировал исходящие из призмы цветные лучи, применив собирающие линзы, и получил на белой стене вместо окрашенной полосы белое изображение просвета.
Ньютоном были сделан ряд заключений:
— призма не изменяет свет, а только разделяет его на составляющие;
— световые лучи, различающиеся по цвету, различаются по степени преломляемости;
— у света красного цвета фазовая скорость распространения в среде наибольшая, а степень преломления — наименьшая;
— у света фиолетового цвета фазовая скорость распространения в среде наименьшая, а степень преломления — наибольшая.
Взаимосвязь значения преломления света от его цвета обозначается дисперсией.
И все же в отдельных средах (к примеру в парах йода) проявляется феномен аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от человека скрыты. Вообще, аномальная дисперсия обширно представлена, к примеру, она имеет место фактически у всех газов на частотах вблизи линий поглощения, и все же у паров йода она достаточно благоприятна для мониторинга в оптическом диапазоне, где они чрезвычайно интенсивно поглощают свет.
Что такое дисперсия света – открытие Ньютона, что нужно знать
Пока ученые не объяснили видимые природные явления, когда все цвета выстраиваются в определенном порядке или мигрируют один в другой (радуга, северное сияние), людям казалось это чем-то волшебным. Сейчас мы понимаем, что это происходит из-за преломления солнечного потока. Но давайте разберемся в этом явлении чуть глубже. Что представляет собой дисперсия света?
Определение дисперсии света
Солнце проходит через прозрачные или условно прозрачные вещества, такие как вода, стекло, хрусталь. При этом белый луч, который мы считаем бесцветным, раскладывается на составляющие его радужные цвета.
Это происходит из-за того, что волны, попадая из одного вещества в другое, частично или полностью меняют свое направление. Такое изменение направления называется преломлением.
Но почему поток из белого, превращается в разноцветный? Это объясняется тем, что он не монохромный, а как раз содержит в себе весь цветовой ряд. Когда диапазоны всех цветов сливаются, мы видим белое излучение. При этом каждый цвет имеет разную длину волны. И в зависимости от нее по-своему меняет угол преломления.
Например, для зеленого диапазона угол отклонения будет больше, чем для оранжевого, а для синего больше, чем для зеленого. При этом скорость распространения изменяется при прохождении через другую среду, а вот частота остается прежней.
Объяснив эти наблюдения, можно дать определение такому понятию, как разложение белого света на составляющие.
Дисперсия — это зависимость показателя преломления от длины волны, или зависимость скорости света в веществе от длины волны. Это определение можно представить в виде формулы: n = f(v) или n = f(v), где
n — показатель приломления, λ — длина, а ν — частота.
Где встречается в природе
Разложение волнового потока в природе мы наблюдаем часто, но порой даже не догадываемся, что это дисперсия.
- Солнце на заходе, окрашивает все в красный или оранжевый цвет. Это происходит из-за разложения освещения в среде газа, который составляет нашу атмосферу.
- На дне аквариума или водоема с достаточно прозрачной водой мы можем видеть радужные блики. Это солнечный диапазон, преломленный в воде, раскладывается на цветовой спектр.
- Бриллианты, огранённый хрусталь, фиониты переливаются всеми гранями при ярком освещении.
Первые шаги на пути к открытию дисперсии
Еще задолго до того, как явление разложение спектра было описано и объяснено с точки зрения современной физики и представлений о волновой природе облучения, люди наблюдали и пытались понять суть этого явления.
Древнегреческий ученый Аристотель еще в 3 веке до н.э. активно изучал и пытался дать объяснение некоторым свойствам светового потока. Он наблюдал дисперсию света в природе и даже пытался экспериментально выяснить, как устроено солнечное излучение.
Так он выяснил, что солнечные лучи могут иметь разный цвет. И попытался описать суть этого явления. Ученый объяснил это тем, что разный оттенок свет приобретает из-за разного «количества темноты» в нем. Если темноты много, тогда освещение становится фиолетовым, если мало, то красным.
Уже тогда ученый сделал предположение, что белый спектр является основным и состоит из множества оттенков.
Открытие Ньютона
Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона.
В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.
Цвета были расположены строго по порядку от красного до фиолетового. Ученый выделил семь полос разного оттенка и назвал этот ряд спектром (от латинского видимый).
Сегодня для опытного наблюдения разложения диапазона применяют дифракционные решетки. Это стеклянные пластины с нанесенными бороздками и тонкими отверстиями. С помощью них можно наблюдать разложение не только цветового спектра, но и расщепление самого луча.
Советуем посмотреть видео:
Аномальная дисперсия
Нормальная дисперсия характеризуется тем, что чем выше частота излучения, тем больше угол преломления.
Аномальная же — это разновидность обычного расщипления видимого диапазона, когда при распространении света в веществе показатель преломления уменьшается с увеличением частоты светового потока. То есть обратная зависимость.
На практике отличия между двумя видами явлений можно увидеть в парах некоторых газов. При разложении луча красные волны преломляются больше чем синие, а некоторый диапазон поглощается веществом.
Радуга
Самым ярким и занятным проявлением разложения спектра в природе является радуга. После дождя в насыщенной водными каплями атмосфере солнечные лучи проходит через эти капли. Преломляясь в водных порах поток раскладывается на спектральную полосу.
Солнечный поток может преломляться дважды. Тогда мы видим двойную радугу. При чем, во второй радуге цвета расположены в обратно порядке от фиолетового к красному. Это явление редкое, но объяснимое с точки зрения физики.
Чем выше радуга, там она бледнее и наоборот.
В заключение
Очень часто мы сталкиваемся с явлениями обыденными, объяснить которые мы по-прежнему не всегда можем. Но появление радуги теперь для нас вполне объяснимо. Попробуйте провести ньютоновский опыт с детьми и делитесь своими результатами в комментариях и социальных сетях.
Аномальная дисперсия света
Аномальная диспе́рсия — вид дисперсии света, при которой показатель преломления среды уменьшается с увеличением частоты световых колебаний.
,
где — показатель преломления среды,
— частота волны.
Согласно современным представлениям и нормальная, и аномальная дисперсии представляют собой явления единой природы. Эта точка зрения основывается на электромагнитной теории света, с одной стороны, и на электронной теории вещества, — с другой. Термин «аномальная дисперсия» сохраняет сегодня лишь исторический смысл, поскольку «нормальная дисперсия» — это дисперсия вдали от длин волн, при которых происходит поглощение света данным веществом, а «аномальная дисперсия» — это дисперсия в области полос поглощения света веществом. Аномальная дисперсия обусловлена взаимодействием света с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны. Для видимого света частота столь велика (ν
10 15 Гц), что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов. Эти электроны называют оптическими электронами. В процессе вынужденных колебаний оптических электронов в поле монохроматической волны с частотой ν периодически изменяются дипольные электрические моменты молекул и последние излучают вторичные электромагнитные волны той же частоты ν [1] .
История открытия
В 1860 году французский физик Леру, проводя измерения показателя преломления для ряда веществ, неожиданно обнаружил, что пары иода преломляют синие лучи в меньшей степени, нежели красные. Леру назвал обнаруженное им явление аномальной дисперсией света.
Если при обычной дисперсии показатель преломления с ростом частоты увеличивается, то при аномальной дисперсии показатель преломления, наоборот, уменьшается. Явление аномальной дисперсии было детально исследовано немецким физиком Кундтом в 1871—1872 гг.
Последующие исследования аномальной дисперсии света показали, что наиболее интересные экспериментальные результаты получаются, когда вместо двух скрещенных призм используется, например, призма и интерферометр. Такая экспериментальная методика была применена известным русским физиком Д. С. Рождественским в начале XX века. [2]