Как правильно читать векторные диаграммы для счетчиков
Перейти к содержимому

Как правильно читать векторные диаграммы для счетчиков

  • автор:

Монтаж и эксплуатация счетчиков — Проверка правильности включения счетчика

Мониторинг уже подключенных на наш сервис счетчиков показал, что большое количество пользователей даже не подозревает, правильно ли подключены их приборы учета, и правильно ли осуществляется учет потребления. При этом вскрывались проблемы даже у ранее опломбированных приборов при их подключению к нашей системе. Как выявлять ошибки в подключении и работе приборов учета?

Мгновенные значения

На яЭнергетик можно увидеть, что счетчик подключен не правильно, если перейти во вкладку «Мгновенные значения» счетчика.

Подключив электросчетчик к системе, нажмите кнопку «Опросить». Операция опроса занимает некоторое время. На экране появится таблица данных, в которой отображены параметры электросети.

Фазное напряжение

На него стоит обращать внимание, особенно когда прибор учета подключен через трансформаторы напряжения. При этом данные отображаются уже с учетом указанного при добавлении счетчика коэффициента трансформации. Отклонения в фазных напряжениях могут свидетельствовать о:

  • неисправности или некорректном подключении трансформаторов напряжения;
  • неправильной схеме подключения счетчика (перепутаны клеммы на счетчике, не обжаты провода);
  • неисправности самого прибора учета – об этом можно говорить, если все другие возможные причины исключены.
Токи нагрузки

Если вы знаете, что у вас симметричная нагрузка, а счетчик регистрирует искажения – повод проверить схему присоединения приборов и их состояние:

  • бракованные счетчики могут не регистрировать токи по какой-либо фазе;
  • в трансформаторах тока и напряжения могут произойти межвитковые замыкания, их функциональность нарушается;
  • состояние соединительных кабелей: на рисунке ниже видно, что ток по фазе С отсутствовал. После осмотра и прозвона кабеля была установлена причина – не прожата клемма трансформатора тока. После устранения проблемы картинка выровнялась.

Активная мощность

Знак активной мощности показывает корректность подключения трансформаторов тока и их фазировку.

На котельной, график активной мощности которой изображен ниже, была перепутана схема подключения трансформаторов тока: контакты и фазировка. Как видно, после корректировки схемы графики приняли положительные значения, и общая регистрируемая мощность возросла на 30%.

Наиболее часто встречаются случаи, когда вторичные обмотки ТТ подключены «наоборот», бывали выявления заводского брака – все контакты подключены по схеме, но счетчик регистрирует обратное направление мощности.

Коэффициенты мощности.

В нормальном режиме работы с преобладающей активной нагрузкой значения коэффициентов мощности принимают значения 0,7 – 1,0, чаще 0,85-0,95. Если регистрируемые прибором учета коэффициенты сильно отличаются от данных значений — нужно проверять схему подключения.

На рисунке ниже показан график коэффициентов мощности объекта, где была нарушена схема подключения трансформатора тока на фазе С: как видим, значение коэффициента находилось в пределах 0,05 – 0,2.

Векторная диаграмма

Для удобства проверки правильности подключения счетчика на сервисе яЭнергетик можно увидеть векторную диаграмму. Она строится на основе последних полученных данных и отображается в таблице при опросе мгновенных значений, а так же во вкладке внизу страницы.

Здесь цветами обозначены векторы разных фаз. Чередование рассматривается по часовой стрелке, по цветам ЖЕЛТЫЙ (фаза А) — ЗЕЛЕНЫЙ (фаза В) — КРАСНЫЙ (фаза С). Фаза А всегда отображается сверху. Если векторы фаз В и С перепутаны местами, то необходимо в схеме поменять местами подключение по 2м фазам (на счетчике прямого включения — как подходящие, так и отходящие, чтобы не сбилось направление вращения подключенных после счетчика двигателей).

Если у вас возникли проблемы с настройкой, сообщите нам, и мы направим последний вариант инструкции.

Для этого необходимо заказать обратный звонок (кнопка вверху экрана) или написать на

Мы ответим на все интересующие вопросы и поможем настроить опрос ваших счетчиков.

Проверка правильности монтажа счетчика

Векторные диаграммы и комплексное представление

Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy – оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).

Тогда вектор длиной A

, вращающийся в комплексной плоскости с постоянной угловой скоростью
ω
с начальным углом
φ0
запишется как комплексное число

а его действительная часть

-есть гармоническое колебание с циклической частотой ω

и начальной фазой
φ0
.

Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.

  • Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.
  • Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, т.к. естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.
  • Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) – более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.

Векторная диаграмма токов и напряжений 4 Абрамян Евгений Павлович Васильев Дмитрий Петрович

Примеры применения

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k


Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.


Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.


Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Снятие показаний счетчиков

Для определения расхода электроэнергии, учитываемого универсальным трансформаторным счетчиком за какой-либо промежуток времени, необходимо разность показаний, взятых в начале и в конце этого промежутка, умножить на пересчетный коэффициент.

Пересчетный коэффициент kп определяется по формуле

где Ki — коэффициент трансформации трансформаторов тока; Ku -коэффициент трансформации трансформатора напряжения.

Вопросы для самопроверки:

  • 1. Назначение счетчика учета электрической энергии.
  • 2. Перечислить основные узлы и рассказать устройство индукционного счетчика.
  • 3. Что такое коэффициент трансформации?
  • 4. От чего зависит погрешность трансформатора тока?

Проверка правильности включения счетчика на действующем присоединении

Сделать вывод о правильности включения счетчика можно, если векторная диаграмма, снятая на его зажимах, совпадет с нормальной (cм. рис. 8). Необходимыми и достаточными условиями для этого являются, во-первых, правильность выполнения вторичных цепей трансформатора напряжения и подключения к ним параллельных обмоток счётчика и, во-вторых, правильность выполнения вторичных цепей трансформатора тока и подключения к ним последовательных обмоток счетчика.

Исключением из этого правила являются случаи, когда и трансформаторы тока и трансформаторы напряжения включены с обратными полярностями, а счетчик тем не менее может быть включен правильно. Однако такие случаи маловероятны, и мы их не рассматриваем. Итак, проверка правильности включения счетчиков состоит из двух этапов: проверки цепей напряжения и цепей тока (снятие векторной диаграммы).

Подготовка данных для лучевой диаграммы

Как уже упоминалось выше данный шаблон будет обладать возможностью визуального построения связей до 20-ти участников (компаний, филиалов, контрагентов и т.п.). На листе книги шаблона «Данные» предоставленная таблица для заполнения входящих значений. Например, заполним ее для 14-ти участников рынка:

На этом же листе создадим дополнительную таблицу, которая представляет собой матрицу связей всех возможных участников, сгенерированную формулой:

С подготовкой данных мы закончили переходим к обработке.

Как вычислить сумму векторов?

Вектора и матрицы в электронной таблице хранятся в виде массивов.

Известно, что сумма векторов – это вектор, координаты которого равны суммам соответствующих координат исходных векторов:

Для вычисления суммы векторов нужно выполнить следующую последовательность действий:

– В диапазоны ячеек одинаковой размерности ввести значения числовых элементов каждого вектора.

– Выделить диапазон ячеек для вычисляемого результата такой же размерности, что и исходные векторы.

– Ввести в выделенный диапазон формулу перемножения диапазонов

= Адрес_Вектора_1 + Адрес_Адрес_Вектора_2

– Нажать комбинацию клавиш [Ctrl] + [Shift] +[Enter].

Даны два вектора:

Требуется вычислить сумму этих векторов.

Решение:

– В ячейки диапазона А2:A4

введем значения координат вектора a1, а в ячейки диапазона
С2:С4
– координаты вектора a2.

– Выделим ячейки диапазона, в которых будет вычисляться результирующий вектор С (E2:E4

) и введем в выделенный диапазон формулу:

– Нажмем комбинацию клавиш [Ctrl] + [Shift] +[Enter]. В ячейках диапазона E2:E4

Как проверить правильность включения счетчика на действующем присоединении

Сделать вывод о правильности включения счетчика можно, если векторная диаграмма, снятая на его зажимах, совпадет с нормальной. Необходимыми и достаточными условиями для этого являются, во-первых, правильность выполнения вторичных цепей трансформатоpa напряжения и подключения к ним параллельных обмоток счетчика и, во-вторых, правильность выполнения вторичных цепей трансформатора тока и подключения к ним последовательных обмоток счетчика.

Векторная диаграмма трехфазного двухэлементного счетчика при индуктивной нагрузке

Итак, проверка правильности включении счетчиков состоит из двух этапов: проверки цепей напряжения и цепей тока (снятие векторной диаграммы). Проверка вторичных цепей трансформатора напряжения. Эта проверка заключается в проверке правильности маркировки фаз и в проверке исправности цепей напряжения.

Проверка выполняется под рабочим напряжением. Измеряются все линейные напряжения и напряжения каждой фазы относительно «земли». Очевидно, что в исправных цепях все линейные напряжения равны и составляют 100 — 110 В.

Значения же напряжений между фазой и «землей» зависят от схемы включения трансформатора напряжения и выполнения вторичных цепей. Если два однофазных трансформатора напряжения соединены в открытый треугольник, либо применен трехфазный трансформатор напряжения с заземленной фазой, то напряжение этой фазы относительно «земли» равно 0, а на остальных фазах оно равно линейному.

Если в трехфазном трансформаторе напряжения заземлена нейтраль вторичной обмотки, то напряжения всех фаз относительно «земли» составят около 58 В.

Проверку правильности наименования фаз начинают с отыскания фазы B , которая должна быть подсоединена к среднему зажиму счетчика. В первом случае ее легко найти по результатам измерения напряжении относительно «земли». Во втором случае можно поступить следующим образом.

Трансформатор напряжения отключают с обеих сторон. После проверки отсутствия напряжения и принятия всех необходимых мер безопасности на стороне высшего напряжения вынимается предохранитель средней фазы.

Трансформатор напряжения включается в работу. Измеряются вторичные линейные напряжения. Линейные напряжения на отключенной фазе будут снижены (примерно вдвое), в то время как напряжение между неотключенными фазами не изменится. Найденная фаза подключается к среднему зажиму цепей напряжения счетчика, а две другие к крайним зажимам соответственно маркировке.

Затем после повторного отключения трансформатора напряжения и принятия мер безопасности предохрантель устанавливается на место, после чего трансформатор напряжения включается в работу.

Остальные фазы во всех случаях можно определить при помощи фазоуказателя, который предназначен для определения порядка чередования фаз в трехфазной сети. Этот прибор представляет собой миниатюрный трехфазный асинхронный двигатель с кнопочным выключателем. В качестве ротора в нем используется легкий металлический диск с контрастными секторами. Прибор рассчитан .на кратковременную работу (до 5.с).

Для проверки маркированные выводы фазоуказателя в таком же порядке, как и у счетчика, присоединяют к выводам обмоток напряжения счетчика и, нажав кнопку, наблюдают за направлением вращения диска. Вращение диска по стрелке указывает на правильность маркировки, а следовательно, и на правильное подключение обмоток напряжения. В противном случае необходимо выявить одну из возможных причин обратного чередования фаз: неправильную маркировку (расцветка фаз) первичных цепей или ошибку в выполнении вторичных цепей трансформатора напряжения.

Для выявления причин обратного чередования фаз проверяют чередование фаз на ближайшей к трансформатору напряжения сборке зажимов и повторяют прозвонку цепей напряжения. После исправления ошибки (пересоединение «крайних» фаз в первичных цепях или в цепях трансформатора напряжения) проверку чередования фаз повторяют.

Определение правильности маркировки значительно упрощается, если от этого трансформатора напряжения питаются другие счетчики или устройства релейной защиты с заведомо проверенной правильностью включения. Тогда достаточно сфазировать с ними проверяемый счетчик.

Рассмотрим некоторые ошибки и неисправности, выявляемые при проверке цепей напряжения. Перегорание предохранителей или отключение автоматического выключателя вследствие короткого замыкания во вторичных цепях чаще всего происходит из-за ошибочного подключения цепей напряжения к зажимам последовательных обмоток.

Понижение или отсутствие линейного напряжения может быть вызвано различными причинами: обрыв провода или перегорание предохранителя, неисправность трансформатора напряжения, подключение к двум зажимам одноименной фазы. Конкретная причина выявляется в результате дальнейших проверок после отключения трансформатора напряжения.

Если при измерении линейных напряжений одно из них, обычно между крайними зажимами, будет около 173 В, то это указывает на то, что вторичная обмотка одного трансформатора напряжения вывернута по отношению к вторичной обмотке второго трансформатора.

После исправления ошибок в схеме и устранения неисправностей все измерения повторяют.

Проверка вторичных цепей трансформаторов тока

Затем отсоединяется провод средней фазы цепи напряжения и снова отсчитывается число оборотов диска за тот же промежуток времени. Если счетчик включен правильно, то число оборотов уменьшится вдвое.

Проверка правильности включения счетчиков в установках ниже 1000 В

Если счетчик включен правильно, то в любом случае обеспечивается сопряжение одноименных фаз тока и напряжения в каждом вращающем элементе.

При проверке правильности включения счетчика измеряются фазные и линейные напряжения, а также определяется порядок чередования фаз. Если чередование обратное, следует взаимно переключить любые два вращающих элемента и питающие их трансформаторы тока.

Затем поочередно проверяют правильность направления вращения диска при воздействии на подвижную систему каждого элемента в отдельности. Проверка производится путем снятия перемычек на зажимной коробке поочередно, при этом в работе остается один вращающий элемент, а два других выводятся из работы. Отсоединение и подключение перемычек производится только при снятом напряжении.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Монтаж и эксплуатация счетчиков — Проверка правильности включения счетчика

Проверка правильности монтажа счетчика

После установки и подключения счетчика производится проверка его схемы. Проверка схемы производится также в следующих случаях: после замены счетчика; после замены измерительных трансформаторов; после переделки монтажа вторичной коммутации или изменения ее схемы; после замены или капитального ремонта силового трансформатора или линий, питающих данное распределительное устройство; в случае возникновения сомнения в правильности учета.
Проверка схемы включения счетчика производится в два приема: сначала при отключенном присоединении, а затем на включенном присоединении при наличии на нем нагрузки.
При проверке схемы включения двухэлементного счетчика активной энергии, включенного в сеть через измерительные трансформаторы, необходимо иметь в виду следующее: чередование фаз, подключенных к зажимам параллельных обмоток счетчика слева направо, должно быть прямым; к обмоткам каждого вращающего элемента счетчика активной энергии должны подводиться ток и напряжение одноименной фазы. К элементу, зажимы которого выведены слева (1-й элемент), подводятся ток и напряжение опережающей фазы (фаза А), а к элементу, зажимы которого выведены справа,— ток и напряжение отстающей фазы (фаза С). К общей точке параллельных обмоток должно быть подведено напряжение фазы В (средняя фаза). В сетях с изолированной нейтралью в этой фазе обычно трансформаторы тока не устанавливаются.
О подключении «начала» последовательной обмотки каждого элемента к генераторным зажимам был) сказано ранее.
Проверка схемы на отключенном присоединении. В первую очередь необходимо произвести непосредственную прозвонку проводников. Для прозвонки могут быть использованы омметр, микротелефонные трубки, лампа или вольтметр с питанием от карманной батареи или трансформатора 220/12 в, звонок и т. п. (рис. 16). При прозвонке проверяемый провод с одного конца должен быть отсоединен от сборки — это исключает возможные обходные цепи. В результате проверки убеждаются в полном соответствии выполненного подключения монтажной схеме. После прозвонки восстанавливают схему, оставив отсоединенными параллельные цепи от трансформатора напряжения и заземляющий провод от вторичных обмоток трансформаторов тока.

Рис. 16. Проверка правильности монтажа с помощью батарейки и вольтметра (а), контрольной лампы (б), мегомметра (в).
Если параллельные и последовательные цепи объединены (рис. 8), то необходимо отсоединить перемычки на зажимах трансформаторов тока и счетчика.
Затем измеряется сопротивление изоляции вторичных цепей при помощи мегомметра 1 000 в. Производятся три замера: между последовательными цепями и «землей»; между параллельными цепями и «землей»; между параллельными и последовательными цепями.
Сопротивление изоляции во всех случаях должно быть не ниже 1 Мом. После этого схему восстанавливают полностью, плотно поджав все зажимы.
Следующий этап проверки — определение исправности цепей трансформатора напряжения, правильности их подключения к зажимам счетчика и соответствия токовой цепи и цепи напряжения на зажимах счетчиков.

Как известно, в электроустановках фазы А, В, С окрашиваются соответственно в желтый, зеленый и красный цвета. Правильность выполнения расцветки фаз, а также правильность включения трансформатора напряжения должны быть проверены перед сдачей электроустановки в эксплуатацию. При проверке схемы включения счетчика эта работа производится, если она не производилась ранее. Заключается она в следующем: убеждаются путем осмотра в том, что выводы обмотки высокого напряжения трансформатора напряжения
А, В, С подключены к фазам соответствующей окраски. Если в схеме применены однофазные трансформаторы напряжения, то необходимо убедиться, что общая точка подключена к фазе В.
Проверяется порядок чередования фаз обмотки низшего напряжения на зажимах ячейки трансформатора напряжения при помощи индукционного фазоуказателя. Этот прибор представляет собой трехфазный асинхронный двигатель.
Для проверки чередования фаз необходимо подать напряжение на шины распределительного устройства и включить трансформатор напряжения. Выводы фазоуказателя А, В, С присоединяют к зажимам, на которых подключены соответствующие выводы обмотки низшего напряжения, затем кратковременно нажимают кнопку. При прямом чередовании фаз диск фазоуказателя вращается по часовой стрелке. Это указывает на правильность выполнения расцветки фаз. Если порядок чередования фаз обратный (диск вращается против часовой стрелки), то расцветка фаз выполнена неверно. В этом случае вторичная обмотка трансформатора тока, установленного в «желтой» фазе, подключается ко второму элементу счетчика, а обмотка трансформатора тока, установленного в «красной» фазе,— к первому элементу.
Далее производятся следующие измерения: измеряется вольтметром напряжение между зажимами параллельных обмоток счетчика. При исправных и правильно включенных трансформаторах напряжения все три измерения должны дать величину приблизительно 100 в. 1
Измеряется вольтметром напряжение между каждым зажимом параллельной обмотки и «землей». Если в схеме применен трехфазный трансформатор напряжения с заземленной нулевой точкой, то каждое измерение даст величину около 100//3 =58 в, если в схеме применены два однофазных трансформатора напряжения, соединенные по схеме открытого треугольника, то два измерения дадут величину около 100 в, а третье (общая фаза) равно 0.
Определяются фазы, подключенные к зажимам параллельных обмоток. Для этого сначала находят общую фазу (фазу В). Если в схеме применен трехфазный трансформатор, то его отключают со стороны высшего и низшего напряжения. Со средней фазы (фаза В) на стороне высшего напряжения снимается предохранитель и трансформатор вновь включается в работу. Измеряются напряжения между зажимами параллельных обмоток. Напряжение между неотключенными фазами составляет величину около 100 в, напряжение между отключенной и неотключенной — 50 в. Затем трансформатор напряжения снова отключается с двух сторон, предохранитель устанавливается на место и трансформатор снова включается в работу.
При двух однофазных трансформаторах напряжения средняя фаза находится путем замеров напряжений относительно «земли». Напряжение между средней фазой и «землей» равно нулю. Найденный провод от средней фазы трансформатора напряжения подключают к среднему зажиму параллельных обмоток.
Проверяется чередование фаз непосредственно на зажимах счетчика. Если чередование фаз обратное, необходимо поменять местами провода, подключенные к крайним зажимам параллельных обмоток.
Фазы напряжения могут быть также определены путем фазировки с параллельными цепями счетчика с проверенной ранее схемой включения. Можно также произвести фазировку с вторичными цепями другого трансформатора напряжения с проверенной схемой. К этому прибегают в случае, если трансформатор напряжения не может быть отключен по условию работы релейной защиты.
У счетчиков, включенных в сеть 0,4 кв по схеме рис. 8, обеспечивается соответствие фаз токовой цепи и цепи напряжения.
Проверка схемы включения счетчика под нагрузкой в установках напряжением выше 1 000 в. При равномерной и симметричной нагрузке фаз проверка может быть произведена наиболее просто путем перекрещивания цепей напряжения на активном счетчике. Провод, идущий к зажиму 1 активного счетчика, пересоединяют к зажиму 3, а провод, идущий к зажиму 3, пересоединяют к зажиму 1 (рис. 9). Если счетчик до-этого пересоединения был включен правильно, то после пересоединения диск счетчика должен остановиться. Это объясняется тем, что при такой схеме вращающие моменты, создаваемые каждым из двух элементов счетчика, равны по величине и противоположны по направлению. При неправильной схеме включения счетчика при этом пересоединении проводов диск счетчика будет вращаться в ту или другую сторону. Этот способ проверки является приближенным, так как равномерная и симметричная нагрузка фаз имеет место не во всех случаях. Поэтому его можно применять лишь при отсутствии лабораторных приборов.
Укажем еще один приближенный способ проверки, не требующий лабораторных приборов. Его можно применять, когда нагрузка постоянна в течение нескольких минут. Проверка производится следующим образом. Отсчитывается число оборотов, совершаемое диском активного счетчика в течение определенного промежутка времени (1—3 мин). Затем отсоединяется провод цепи напряжения средней фазы и снова отсчитывается число оборотов за тот же промежуток времени. Если счетчик включен правильно, то во втором случае число оборотов будет вдвое меньше.
Наиболее точным способом проверки схемы включения счетчика, дающим полную уверенность в результате, является снятие и построение векторной диаграммы. Этот способ заключается в определении положения векторов токов, протекающих через последовательные обмотки счетчика. Построив эти векторы, определяют правильность включения счетчика по углу ф, образованному вектором тока, с вектором напряжения соответствующей фазы. Отсчет угла, как было указано выше, ведется от вектора тока к вектору напряжения против часовой стрелки.
При индуктивном характере нагрузки вектор тока отстает от вектора напряжения на некоторый угол, лежащий в пределах от 0 до 90°. При емкостном характере нагрузки вектор тока опережает вектор напряжения на угол, лежащий в тех же пределах.
Для снятия векторных диаграмм можно использовать следующие приборы: ваттметр, прибор ВАФ-85, вектормер Ц-50, фазометр, контрольный счетчик. Ниже излагаются методы снятия векторных диаграмм с помощью ваттметра и с помощью прибора ВАФ-85. Эти методы получили наибольшее распространение.


Рис. 17. Принцип снятия векторной диаграммы с помощью ваттметра.
Как известно, ваттметр, включенный в цепь нагрузки однополярными генераторными зажимами в сторону питания, покажет мощность P=UIcos ф. Произведение /cos ф можно представить как проекцию вектора тока / на вектор напряжения U (рис. 17). Таким образом, если напряжение, подводимое к ваттметру, остается неизменным, то он в определенном масштабе покажет проекцию вектора тока, протекающего через его последовательную обмотку, на вектор подведенного к нему напряжения. Отрицательные показания ваттметра при этом соответствуют отрицательной проекции вектора тока, т. е. положительной проекции, повернутой на 180°. Зная проекции вектора тока на две оси, которыми являются векторы линейных напряжений, можно построить и сам вектор тока.
Для снятия векторной диаграммы используется переносный ваттметр класса 0,5 с пределами измерения 5 а, 150 в, имеющий переключатель направления мощности (например, типа АСТ-Д).
Порядок снятия векторной диаграммы следующий. Токовая цепь ваттметра включается в рассечку последовательной цепи фазы А счетчика, причем к зажиму последовательной обмотки ваттметра, обозначенному звездочкой, подключается провод, который был подключен к началу последовательной обмотки счетчика. Последовательно с токовой обмоткой ваттметра включается амперметр с пределом измерения 2,5—5 а. Для того чтобы не допустить разрыва цепей трансформаторов то ка, эти цепи должны быть предварительно закорочены на специально предназначенных для этого зажимах После подключения приборов закоротка снимается.
Далее на зажимы параллельной обмотки ваттметра с зажимов параллельных обмоток счетчика поочередно подаются напряжения согласно последовательности фаз 1—2, 2—3, 3—1. Зажим, обозначенный первой цифрой, подключается к зажиму параллельной обмотки ваттметра, обозначенному звездочкой. Показания ваттметра в делениях с указанием знака, а также показания амперметра записываются в бланк векторной диаграммы. Те же измерения проделывают, включая ваттметр и амперметр в другую фазу. Проведенные измерения считаются правильными, если в каждой фазе алгебраическая сумма трех показаний ваттметра равна нулю или близка к нулю. Затем приборы отсоединяются.

Векторная диаграмма строится на заранее заготовленной сетке, на которой нанесены векторы линейных напряжений 1—2, 2—3, 3—1, обратные им векторы и векторы фазных напряжений. Для удобства построения векторов тока векторы линейных напряжений разделены на равные отрезки прямыми, перпендикулярными их направлению.
Результаты показаний контрольного ваттметра в выбранном масштабе откладывают на линии вектора соответствующего линейного напряжения. При этом отрицательные показания откладывают на векторе, обратном вектору линейного напряжения. Из концов полученных отрезков восстанавливают перпендикуляры. Точка пересечения двух перпендикуляров определяет на векторной диаграмме положение вектора соответствующего тока. Третий перпендикуляр должен пересечься с первыми двумя в той же точке или вблизи нее.
Необходимо запомнить, что для построения векторов тока используются векторы линейных напряжений, а правильность включения определяется по углу, образованному вектором тока с вектором соответствующего ему фазного напряжения.
Если векторная диаграмма покажет, что счетчик включен неверно, то схему включения необходимо исправить. Исправление производят на зажимах счетчика, после чего векторная диаграмма снимается снова.
Пример 4. На отходящем присоединении с индуктивным характером нагрузки (активная и реактивная мощности положительны) установлен счетчик активной энергии. При снятии векторной диаграммы получены следующие данные:

Для построения векторной диаграммы (рис. 18) откладываем на линии вектора Uab отрезок ОК, равный в выбранном масштабе
25 единицам; на линии вектора UBC отрезок 01, равный 10 единицам; отрезок От, равный 35 единицам, откладываем на линии вектора, обратного вектору Uca, так как показание ваттметра имеет отрицательный знак. Из точек К, I, т восстанавливаем перпендикуляры. Точка их пересечения является концом вектора тока /а.
Вектор /с строится аналогично. Из диаграммы видно, что ток отстает от соответствующего ему фазного напряжения на угол ф,
равный приблизительно 15°.
Полученная диаграмма соответствует диаграмме, приведенной на рис. 7. Следовательно, первый элемент счетчика включен на ток 1а и напряжение Uab, а второй элемент — на ток 1с и напряжение Uс в, т. е. счетчик включен правильно.

Рис. 18. Векторная диаграмма к примеру 4.

Вольтамперфазоиндикатор ВАФ-85 более удобен для снятия векторных диаграмм. Он позволяет определять величину и фазу тока и напряжения без разрыва цепи, а также чередование фаз. Вольтамперфазоиндикатор является многопредельным детекторным прибором. В качестве выпрямителя используются германиевые диоды Д2В, работающие по однополупериодной схеме. Для определения величины тока в пределах 1, 5 и 10 а, а также фазы тока без разрыва цепи имеется токосъемная приставка — клещи. Она представляет собой разъемный магнитопровод и работает как трансформатор тока.

При определении фазы вместо диодов последовательно, с измерительным прибором включается механический выпрямитель. Напряжение возбуждения подается на механический выпрямитель с ротора фазорегулятора (сельсина). На трехфазную обмотку статора фазорегулятора подается питание от сети 100 в или 220 в. С поворотом оси фазорегулятора меняется фаза возбуждения механического выпрямителя, а следовательно, фаза включения и выключения его контактов относительно фазы тока по измерительному прибору. Отсчет угла производится по лимбу, закрепленному на оси фазорегулятора, в момент, когда стрелка прибора становится на нуль. Нуль градуировки лимба установлен на фазе АВ, т. е. если на зажим, обозначенный звездочкой (*), подается фаза А, а на зажим, обозначенный U,— фаза В, то прибор покажет нуль при установке на контрольную риску отметки нуль лимба (питанию от трехфазной сети 110 в соответствует левая риска, питанию от сети 220 в соответствует правая риска). Таким путем можно проверить правильность работы прибора. Фазорегулятор служит одновременно и указателем чередования фаз.
Измерение малых переменных токов с разрывом цепи производится при помощи трансформатора тока, встроенного в прибор и выполненного на тороидальном пермаллоевом сердечнике. Во вторичную обмотку трансформатора тока включается измерительный прибор. Выпрямление производится с помощью диодов Д2В, включенных по двухполупериодной схеме.
Проверка правильности включения счетчика с помощью прибора ВАФ-85 производится следующим образом.
Тумблер «тА — IjU» устанавливается в положение IjU; тумблер «фаза — величина» устанавливается в по-( ложение «величина»; переключатель пределов измерения устанавливается в положение «125 в». Производятся замеры линейных и фазных напряжений, а в случае необходимости отыскивается фаза В, как было указано выше.
К зажимам А, В, С подводятся соответственно три фазы напряжения. Отжав рукоятку верньера, наблюдают за вращением свободной оси фазорегулятора. Вращение по часовой стрелке указывает на правильность чередования фаз.
Для определения величины и фазы тока необходимо охватить клещами токопровод последовательной обмотки фазы А так, чтобы сторона магнитопровода, отмеченная знаком *, была обращена к генераторному концу токопровода (аналогично включению токовой цепи ваттметра.) Соединительная вилка клещей включается в гнезда * и /. Штыри соединительных вилок должны
входить в гнезда клещей и в клеммы лицевой панели прибора одноименными обозначениями.
Переключатель пределов измерения устанавливается в положение 1, 5 или 10 а в зависимости от предполагаемой величины вторичного тока. Три фазы напряжения остаются подведенными к зажимам А, В, С.
В положении тумблера «величина» записывается величина вторичного тока. Затем тумблер переводится в- положение «фаза». Лимб вращают, добиваясь установки стрелки прибора на нуль. Затем производят отсчет угла по лимбу у левой риски (110 в). Так как за один оборот лимба стрелка устанавливается на нуль дважды, то необходимо запомнить, что во внимание принимается то показание, при котором стрелка устанавливается на нуль, двигаясь в ту же сторону, что и лимб.
Затем клещами охватывают токопроводы, подключенные к последовательным обмоткам других фаз, и- повторяют измерения. Полученные углы откладывают на бланке векторной диаграммы относительно напряжения иАв.
Пример 5. Счетчик активной энергии установлен на стороне низшего напряжения питающего трансформатора. Характер нагрузки емкостный. При снятии векторной диаграммы прибором ВАФ-85 получены следующие данные.

Величина тока, а

Откладывая от вектора линейного напряжения UАв по часовой стрелке угол 15°, строим вектор тока 1А (рис. 19). Этот вектор опережает вектор напряжения UA на угол <рл = 15°. Откладывая от вектора линейного напряжения Uав против часовой стрелки угол 105°, строим вектор тока /с. Он также опережает вектор напряжения Uс на угол фс = 15°. Следовательно, счётчик включен правильно.
Пример £. Счетчик активной энергии установлен на отходящем присоединении с индуктивным характером нагрузки. При снятии
векторной диаграммы прибором ВАФ-85 получены следующие данные:

Устранение ошибки в подключении трехфазного счетчика электрической энергии

В целом, для лучшего понимания процедур, происходящих в радиотехнических цепях, их взаимосвязи между собой, бывает недостаточно оперировать характеристиками и параметрами данной цепи, имеющими цифровое отображение. В связи с тем, что основная масса цепей характеризуется переменными значениями приложенного напряжения и протекающего тока, являющимися синусоидальными функциями времени, то исчерпывающий ответ по состоянию цепи может дать ее графическая презентация посредством векторной гистограммы.

Векторная диаграмма напряжений и токов

Разновидности векторных диаграмм

Любую характеристику электротехнической цепи, изменяющуюся по синусоидальному или косинусоидальному принципу, можно отобразить посредством точки на поверхности, в соответствующей системе величин. В качестве размерности по оси Х выступает действительный компонент параметра, по оси Y размещается воображаемая составляющая. Именно такие составляющие входят в алгебраическую модель записи комплексной величины. Последующее соединение точки на поверхности и нулевой точки системы координат позволит рассматривать эту прямую и ее угол с действительной осью как изображение комплексного числа. На практике положительно направленный отрезок принято называть вектором.

Векторной диаграммой принято называть множество положительно направленных отрезков на комплексной поверхности, которая соответствует комплексным значениям и параметрам гальванической цепи и их взаимосвязям. По своему характеру векторные диаграммы подразделяются на:

  • Точные гистограммы;
  • Качественные гистограммы.

Особенностями достоверных гистограмм является соблюдение пропорций всех характеристик и параметров, полученных путем вычислений. Данные диаграммы находят свое применение в проверке ранее проведенных расчетов. В основе использования качественных гистограмм лежит учет взаимного влияния характеристик друг на друга, и в основном они предшествуют расчетам либо заменяют их.

Векторные диаграммы токов и напряжений визуально отображают процесс достижения цели по расчету электротехнической цепи. При соблюдении всех правил по построению векторных отрезков можно просто из гистограммы установить фазы и амплитуды вещественных характеристик. Построение качественных гистограмм поможет контролировать правильный процесс решения задачи и с легкостью определить сектор с определяемыми векторами. В зависимости от особенностей построения, графические диаграммы делятся на такие типы:

  1. Круговая диаграмма, представляющая собой графическую гистограмму, образованную вектором, описывающим своим концом круг или полукруг, при любых изменениях характеристик цепи;
  2. Линейная диаграмма, представляющая собой графический рисунок в виде прямой линии, образованной вектором, посредством изменения характеристик цепи.

Построение векторной диаграммы напряжений и токов

Для лучшего понимания того, как построить векторную диаграмму токов и напряжений, следует рассматривать RLC цепь, состоящую из пассивного элемента в виде резистора и реактивных элементов в виде катушки индуктивности и конденсатора.

Схема цепи с последовательным соединением элементов

Перед тем, как построить векторную диаграмму токов и напряжений, необходимо охарактеризовать все известные параметры цепи. Согласно схемы цепи, изображенной на картинке а:

  • U – величина переменного напряжения в текущий момент времени;
  • I – мощность тока в заданный момент времени;
  • UА – напряжение, падающее на активном сопротивлении;
  • UC – напряжение, падающее на емкостной нагрузке;
  • UL – напряжение, падающее на индуктивной нагрузке.

Поскольку входное напряжение U изменяется по колебательному закону, то сила тока характеризуется уравнением:

  • Im – максимальная амплитуда тока;
  • ω – частота тока;
  • t – время.

Суммарное входное напряжение, в соответствии со вторым законом Кирхгофа, равно общей величине напряжений на всех элементах цепи:

В соответствии с законом Ома, падение напряжения на резистивном компоненте равняется:

Противодействие току активного элемента зависит сугубо от свойства проводника и не обуславливается ни характеристиками тока, ни аспектом времени и, соответственно, имеет идентичный с напряжением фазовый сдвиг.

Поскольку конденсатору в цепи с электротоком, изменяющимся по синусоиде, свойственно наличие реактивного емкостного сопротивления, и ввиду того, что напряжение на нем постоянно имеет фазовое отставание от протекающего тока на π/2, то уместно выражение:

  1. RC=XC=1/ωC;
  2. UC=Im*RС*cos(ωt-π/2), где:
  • RC – сопротивление конденсатора;
  • XC – реактивный импеданс конденсатора;
  • C – емкость конденсатора.

Реактивное индуктивное сопротивление катушки индуктивности обуславливается наличием изменяющегося по синусоидальному закону электротока, и поскольку напряжение на любом отрезке времени имеет фазовое опережение по отношению к электротоку на π/2, то формула, описывающая колебательный процесс на элементе, выглядит как:

  1. RL=XL=ωL;
  2. UL=Im*RL*cos(ωt+π/2), где:
  • RL – сопротивление катушки индуктивности;
  • XL – реактивный импеданс катушки индуктивности;
  • L – индуктивность катушки.

Следовательно, общее напряжение, подведенное к цепи, выглядит:

  • Um – максимальная величина напряжения;
  • φ – фазовый сдвиг.

Ввиду того, что напряжение и электроток изменяются по синусоидальному закону, и их фиксированные показатели отличаются лишь фазовым сдвигом, то данные величины строятся как вектора.

Векторная диаграмма токов и напряжений

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Векторные диаграммы и комплексное представление

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Монтаж и эксплуатация счетчиков — Проверка правильности включения счетчика

Важно понимать, что сделать вывод о правильности включения счетчика можно тогда, когда векторная диаграмма, снятая на его зажимах, будет полностью совпадать с нормальной.
Для того чтобы можно было правильно и качественно провести эту работу, нужно будет выполнить правильность вторичных цепей трансформатора. Естественно выполнить подобную работу, человек, у которого нет опыта в этой сфере, не сможет.

А тот, кто будет ее выполнять, должен понимать, что в сети Интернета находится большое количество формул и схем, которые готовы помочь вам в оказании данной процедуры. Ознакомившись с ними, вы сможете без особых проблем провести эту работу быстро и качественно.

Вообще нужно отметить, что проверка правильности включения счетчиков будет, состоят из двух этапов: в первую очередь нужно будет тщательным образом проверить цепь напряжения и цепи тока, провести снятие векторной диаграммы.

Техническое обслуживание электрооборудования

После этого необходимо проверить вторичную цепь трансформатора напряжения. И этому моменту необходимо уделять особо пристальное внимание, только так можно будет достичь желаемого результата.

Вы должны проверить правильность маркировки фаз. Важно также не забывать о том, что данная проверка должна в обязательном порядке проходить под рабочим напряжением, измерение тока без разрыва проверяемой цепи, и этому моменту нужно уделить как можно больше внимания.

Пример технического отчета

Электроиспытание

Вы должны будете тщательно измерить все линейные напряжения, более того, это касается и напряжения каждой фазы отдельно, относительно «земли». Вообще значения таких проверок могут быть самыми разными, так как здесь все будет зависеть от схемы подключения.

Вот поэтому к их изучению необходимо подходить грамотно и ответственно. И тогда вся работа будет качественной. Кроме того, вы должны уметь проверять вторичные цепи трансформаторного тока.

При их проверке нужно знать, что если на коробке зажимов местами поменять провода двух крайних цепей напряжения, то счетчик должен остановиться. Но это будет только тогда, если вам удастся правильно включить устройство.

Если счетчик будет включен правильно, то будет обеспечено сопряжение одноименных фаз тока. Вообще, как вы сами смогли догадаться, существует большое количество способов решения данного вопроса. Нерешаемых проблем не бывает, если работает опытный специалист.

инструменты для электроизмерения

Вы должны помнить, что если счетчик будет включен правильно, то каждый его элемент в обязательном порядке будет вращать диск вправо. Если нужно исправить ошибку, нужно будет поменять местами провода, которые подключены к этому элементу. Если прибор не работает, его сдают в электролабораторию.

Важно понимать, что отсоединять и подключать перемычки необходимо только при снятом напряжении, так как это особенно важный момент.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *